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ABSTRACT

Heterogeneous computing has emerged as an important method
for supporting more than one kind of processors or accelerators
in a program. There is generally a trade off between source code
portability and device performance for heterogeneous program-
ming. Thus, new programming abstractions to assist programmers
to reduce their development efforts while minimizing performance
penalties is extremely valuable.

The Khronos SYCL [2] standard defines an abstract single-program-
multiple-data (SPMD) programming model for heterogeneous com-
puting. This paper presents a language extension on top of the SYCL
standard to enable flexibility for programmers. We introduce a set
of single-instruction-multiple-data (SIMD) abstractions based on
multi-dimensional arrays (Tensors) in conjuction with the existing
SPMD programming paradigm.

Our work is based on a C++ language and a set new of LLVM
intermediate representation (IR) for representing the SIMD pro-
grams. This also includes a set of custom optimization passes that
performs instruction lowering, automatic address allocation, and
synchronization insertion. We show how our work can be used in
conjunction with conventional SYCL SPMD programming for vari-
ous benchmarks such as general matrix multiplication (GEMM) and
lower upper (LU) inverse [5] and evaluate its hardware utilization
performance.
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1 INTRODUCTION

With recent development of various device accelerators in domains
such as Deep Neural Network (DNN) [6], SYCL has become one
of the programming paradigms of interest for heterogeneous com-
puting. SYCL programming is based on standard ISO C++ with a
SPMD-based abstraction, and so developers may face challenges
in writing their DNN algorithms. There are various reasons such
as having to perform arithmetic operations on multi-dimensional
arrays across specific axes. These types of expressions become chal-
lenging to realize into source code due to the SYCL language itself
only provides C++-based abstractions. Thus, programmers resort
to having to write multiple nested for loops with complicated multi-
dimensional indexing. There are many SYCL implementations in
development with possibly Intel’s DPC++ being the most actively
developed implementation that is open source [1].

Figure 1 presents the Ascend hardware architecture overview [4],
at a per-core level. Each core maps to a logical thread abstraction
in the SYCL SPMD programming model. Thus, each core can be
asynchronously performing different compute tasks in multiple
hardware pipelines.
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Figure 1: Overview of the Ascend Architecture

Our work proposes a new language extension on top of the
existing SYCL abstractions that addresses such domain specific
programming challenges. In summary, we make the following new
contributions:

e We introduce a new set of language extensions based on a
custom multi-dimensional array type called, Tensor, and its
operations. These extensions work in conjunction with the
existing SYCL abstractions.

o Introduce new LLVM optimization passes that perform vari-
ous lowering functionalities for the Tensors and its opera-
tions such as address allocation, auto-synchronization inser-
tion, and instruction lowering.

e Demonstrate our extension with various benchmark appli-
cations and its performance results.
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2 LLVM IMPLEMENTATION

2.1 Ascend C++ Language Extension

In this section, we introduce the tensor extensions, including ten-
sor definitions, special tensor concepts, tensor format and tensor
assignment operator. Then, we elaborate the tensor operations in
the rest part of this section.

2.1.1  Tensor Extensions.

Tensor Definitions. A Tensor, shown in Listing 1, is a collection
of elements and it could have up to 5 dimensions. Tensor-related
attributes are as follow:

o Shape specifies the number of the elements in each dimen-
sion.
o Stride specifies the distance between consecutive elements
in a dimension in a linear address space.
e Coord specifies the coordinate index in a tensor.
o Attr specifies the tensor (or fractal) memory layout informa-
tion and the double buffering attribute.
o AS specifies the address space. It is passed via the template
parameter and the default is global
template <typename T, AS As = AS::GM> class Tensor final {
// Define a global memory tensor
Tensor(__gm__ T *addr, const Shape &shape,
const uint64_t attr = Attr::CONTIGUOUS){...}
// Define a local tensor

Tensor(const Shape &shape,
const uint64_t attr = Attr::CONTIGUOUS){...}

N R . I TR RN

Listing 1: Tensor Definitions

Special Tensor Concepts. We introduce two special tensor con-
cepts:

e Local tensor, shown in Listing 1, is created by the constructor
Tensor(const Shape &shape, ...) and its address is allocated by the
compiler. A local tensor is created when we chain the tensor
operations together. For example, dst = tsqrt(tadd(srco, sc1)) is
equal to tmp = tadd(srce, srcl); dst = tsqrt(tmp). The related ten-
sor operations will be discussed in Section 2.1.3.

e Virtual tensor is a view of the original tensor. That is, the
virtual tensor shares the memory with the original tensor.
The related operations will be introduced in Section 2.1.2.

Tensor Format. Tensor format defines the tensor’s data layout
in memory. By default, the format is contiguous. That is, a tensor
is constructed with the shape shapet, k, Ny, the elements can be
accessed by Tensor(m, k, n). The address is calculated through: (datatype

*)start_addr + n + ksN + mkN. It also supports the other formats, such
S TENSOR_FORMAT_Nz, FRACTAL_Zz, FRACTAL_zn and NC1Hwce.

Tensor Assignment. The following tensor assignment operations,
shown in Listing 2, are supported:

(1) The elements of the global memory tensor srcl are assigned
to the UB tensor tmp1.

(2) Elements of a slice (virtual tensor) of tensor src20 are assigned
to the UB tensor src21.

(3) The elements of the L1 Buffer tensor src30 are assigned to
the UB tensor src31.
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(4) The elements of the UB tensor src4 are assigned to the UB
tensor tmp4.

1 Shape s16x16(16, 16);

2 Shape s1x16(1, 16);

3 // 1. Assign a global memory tensor to a local UB tensor
4 Tensor<half> src1(s16x16);

5 Tensor<half, AS::UB> tmpl = srcl;

6 // 2. Assign a virtual tensor to a local UB tensor

7 Tensor<half, AS::UB> src20(s16x16);

8 Tensor<half, AS::UB> src21(s1x16);

9

src21 = src20.strided_slice(s1x16, stride(16, 1), 0);
10 // 3. Assign a local CBUF tensor to another local UB tensor
11 Tensor<half, AS::CBUF> src30(s16x16);
12 Tensor<half, AS::UB> src31(s16x16);
13 src31 = src30;
14 // 4. Assign a local UB tensor to another local UB tensor
15 Tensor<half, AS::UB> src4(s16x16);
16 Tensor<half, AS::UB> tmp4(s16x16);

17 tmp4 = src4;

Listing 2: Tensor Assignment

2.1.2  Tensor Member Operations. Slice returns a virtual sub-tensor
from the original tensor. Its function prototype is shown in Listing 3,
as a member function of the tensor class. For example, src.slice(
Shape(1, 5), Coord(1, @)). The return tensor shares memory with the
original tensor.

1 // dstS: the shape of destinate sub-tensor.

2 // dstC: the starting coordinate when slicing.
3 Tensor slice(const Shape &dstS, const Coord &dstC);

Listing 3: Tensor Member Operations

2.1.3  Tensor Element-Wise Operations. All the tensor operations
in this section, shown in Listing 4, are element-wise operations.
The operations always returns a tensor which has the same shape
as the input tensors. The input tensors should have the same shape
if there are two input tensors. To simplify the discussion, we omit
the template definition for the following tensor operations in this

paper.

1 // Unary Tensor Element-Wise Operations

2 Tensor<T> tUnaryOp(const Tensor<T> &src)

3 // Binary Tensor Element-Wise Operations

4 Tensor<T> tBinaryOp(const Tensor<T> &src@, const Tensor<T> &srcl)

5 // Tensor and Scalar Element-Wise Operations

6 Tensor<T> tOpScalar(const Tensor<T> &src, T s)

7 // Tensor Compare and Selection Element-Wise Operations

8 Tensor<T> tcmp(const Tensor<T> &src@, const Tensor<T> &srcl1, CmpOp op)
9 Tensor<T> tcmps(const Tensor<T> &src, T scalar, CmpOp op)

10 Tensor<T> tsel(const Tensor<T> &src@, const Tensor<T> &srcl, MASK mask)

11 Tensor<T> tcmpsel(const Tensor<T> &lhs, const Tensor<T> &rhs, const Tensor
<T> &slhs, const Tensor<T> &srhs, CmpOp op)

12 // Tensor Conversion Element-Wise Operations

13 Tensor<T1> tconv(const Tensor<T> src, T1 cast_type)

Listing 4: Tensor Element-Wise Operations

Unary Tensor Operations. The tUnaryOp in the Listing 4 supports
following operations: texp (exponential), tin (natural logarithm),
tsqrt (square root), trsqrt (reciprocal of square root), trec (reciprocal),
trelu (RELU operation on the src tensor. It is equivalent to dstr
srcinl), tlrelu (leaky RELU operation on the src
tensor. It is equivalent to dstfn] = srcln] < @ ? srcln] * factor : srcnl),
tabs computes the absolute value. tnot performs the logical not
operation.

n] =src[n] <0 ?0:
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Binary Tensor Operations. The tBinaryOp in the Listing 4 sup-
ports the following operations: tadd (addition), tsub (subtraction),
tmul (multiplication), tdiv (division), tmax (max value for each ele-
ment in the src and dst tensors), tmin (min value for each element
in the src and dst tensors), tand (logical and), tor (logical or).

Tensor and Scalar Operations. The tOpScalar in the Listing 4
supports following operations:

e tadds adds each element of the src tensor with the scalar
value s.

o tmuls multiplies each element of the src tensor with the
scalar value s.

e tmaxs returns the max value of each element of src tensor
and the scalar value s. It equals to dstn] = max(srcInl, s).

e tmins returns the min value of each element of src tensor
and the scalar value s. It equals to dstn] = min(srcinl, s).

Tensor Compare and Selection Operations. The CmpOp can be
EQ, NE, LT, 6T, G, L. The following tensor compare and selection
operations are supported in the Listing 4:

tcmp (compares each element in src0 and srcl tensors), tcmps
(compares each element in src tensor with the scalar value s), tsel
(performs selection between src0 and src1 tensors, based on mask. It
equals to dst[n] = (mask[n] = = 1)? srceln] : srcilnl), tempsel (compares
each element in lhs and rhs tensors. If the result of an element is
true, the element in slhs tensor would be selected. Otherwise, the
element in srhs tensor would be selected).

Tensor Conversion Operation. The following tensor data type
conversions are supported:
o half2float converts data type from half to float.
o float2half converts data type from float to half.

2.1.4 Tensor Reduction Operations. Tensor reduction operations
are defined in the Listing 5. The axis represents the axis that does
reduction operation. The keepDim is used to check whether to keep
the reduction axis or not.

o treduce_max gets the maximum element belonging to spe-
cific axis of the src tensor.

o treduce_min gets the minimum element belonging to specific
axis of the src tensor.

// src: the source tensor
Tensor<T> treduce_max(const Tensor<T> &src,
const enum axis,
bool keepDim = false)
Tensor<T> treduce_min(const Tensor<T> &src,
const enum axis,
bool keepDim = false)

P N N

Listing 5: Tensor Reduction Operations

2.1.5 Matrix Multiplication. Tmmad operation does a hardware ac-
celerated matrix-multiplication. It supports two versions of matrix
multiplication:

(1) AccMatrix = LhsMatrix X RhsMatrix + AccMatrix

(2) AccMatrix = LhsMatrix X RhsMatrix

// LhsMatrix: left matrix, shape is m x k.
// RhsMatrix: right matrix, shape is k x n.
// AccMatrix: result matrix, shape is m x n
// AccMatrix = LhsMatrix X RhsMatrix

Tensor<DstT> tmmad(const Tensor<LhsT> &LhsMatrix,

[ R N
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Figure 2: Matrix Multiplication

6 const Tensor<RhsT> &RhsMatrix)
7 // AccMatrix = LhsMatrix X RhsMatrix + AccMatrix
8 Tensor<DstT> tmmad(const Tensor<LhsT> &LhsMatrix,
9 const Tensor<RhsT> &RhsMatrix,
10 const Tensor<DstT> &AccMatrix)

Listing 6: Matrix Multiplication

2.1.6  Tensor Copy Operations. There are three tensor copy opera-
tions: tcpi, tcpo and tmov.

e tcpi copies a smaller tensor’s contents into a bigger tensor
starting at a given coordinate, coord. The bigger tensor must
be able to fit into the smaller tensor’s shape.

e tcpo copies a sub-tensor’s contents, from the bigger tensor,
into the smaller tensor starting at a given coordinate,a coord.
The smaller tensor must be able to fit into the sub-tensor’s
shape.

e tmov copies one tensor into another, the src and dst tensor
should have the same shape.

Tepi and tcpo allow that src and dst tensors have the same shape,
in this case, the semantic is the same as tmov.

1 // dst: the destination tensor.
2 // src: the source tensor.

3 // coord: the starting coordinate.
4 void tcpi(const Tensor<T> &dst,
5 const Tensor<T> &src,
6 const Coord &coord)

7 void tcpo(const Tensor<T> &dst,
8 const Tensor<T> &src,
9 const Coord &coord)

10 void tmov(const Tensor<T> &dst,
11 const Tensor<T> &src)

Listing 7: Tensor Copy Operations

2.2 Custom Compilation Tool Chain

In order to support the Tensor language extension on top of the
existing SYCL language using the Ascend heterogeneous program-
ming compiler, we present a custom modified tool chain. Figure 3
is a system level architecture overview for our custom tool chain
done in the clang driver. We leverage the existing clang front end
that already contains all the SYCL language specifications imple-
mented, and introduce new Tensor C++ classes along with intrinsic
instructions. The output of clang’s code generation is LLVM-IR
with the new Tensor intrinsic instructions. This IR module is then
passed to a custom LLVM project where it contains a series of
Ascend specific optimization passes. These custom optimization
passes converts the Tensor-based level of abstraction in the IR to
become intrinsic instructions closer to the actual Ascend hardware
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instructions. Finally, the IR is passed to the back end to be lowered
into a binary. The rest of the compilation flow follows the existing
SYCL compilation tool chain.

; BiSheng LLVM —J '
E sycl-clang + Tensor extensions ( Clang Offload ) '
: Front-end (custom C++ Wrapper :
I headers) 1
I . T :
i o T waspea sy
; Ascend LLVM ‘ LT ‘ 5
: Opt Mid-end :
H (generic scalar !
; optimizations) FAT Binary :
: | :
: Opt Mid-end: :
i Tensor to Intrinsic '
; Lowering '
' v
; LLC Back-end: :
' Intrinsic Lowering i
| | H
| |
1 I E

Figure 3: Overview of the Custom Compilation Tool Chain

2.3 Custom Optimization Passes

In this section, we first introduce the core data structures which
are used to maintain the tensor related information during the IR
transformation. Second, we describe the All-in-One module level
transform pass which first runs all the analysis passes and then
performs the IR transformation. Third, we elaborate the Ascend spe-
cific LLVM function analysis passes which the all-in-one transform
requires.

2.3.1 Data Structures.

Tensor Context. A module-level singleton TensorContext (shown
in Listing 8) is maintained in the backend. It contains TensorTable
and TensorGraph for each function.

1 class TensorContext {
2 public:

3 static TensorContext &getInstance() {
4 static TensorContext TLGlobal;
5 return TLGlobal;
6 }

7

8

9

private:
Map<Function *, TensorTable *> Func2TensorTable;
10 Map<Function *, TensorGraph *> Func2TensorGraph;

12 TensorContext() {

14 }
15 )

Listing 8: Tensor Context
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Tensor Table. TensorTable, shown in Listing 9, collects all the
tensor information (except for CFG-related) in the function. For
example, tensor intrinsic lowering information.

1 class TensorTable {

2 public:

3 TensorTable(const Function &F) { Func = &F; }
4 private:

5 SmallPtrSet<Tensor *, 16> Tensors = {};

6 // Mapping between tensor level intrinsic

7 // and lowered Basic Blocks

8 Map<const Instruction *, pair<BasicBlock *, BasicBlock *>>
9 Intrinsic2BBsMap;

10

1}

Listing 9: Tensor Table

Tensor Graph. TensorGraph, shown in Listing 10, records the ten-
sor CFG-related information, such as instruction insertion position.

class TensorGraph {
public:
TensorGraph(const Function &Func) : F(&Func){};

private:
// One-to-one map between BasicBlock and Vertex
Map<const BasicBlock *, TLVertex *> BB2VertexMap;
3

[ R S

Listing 10: Tensor Graph

2.3.2  All-in-one Transform Pass. All-in-one module-level trans-
form pass contains four function level transform passes: TLOplow-
ering, Address Allocation, Double Buffering and Auto synchroniza-
tion. Instead of modifying the IR in place, all-in-one transform pass
follows a Copy-Update-Replace style. There are two copies for each
kernel function: OldF and NewF. OIldF is immutable while NewF is
modified during the transform pass.

2.3.3 Tensor Def-Use and Liveness Analysis. The tensor Def-Use
analysis pass first collects all the tensor def and use information.
Then, tensor liveness analysis pass applies the standard variable
liveness algorithm, to compute tensor liveness.

2.3.4 Tensor OpLowering Analysis. Tensor OpLowering analysis
pass converts the tensor level operations into lower level intrinsic.
For example the tadd in Listing 11, it takes two input tensors, inl
and in2 and returns the output tensor dst. Based on the tensor’s
type, it setups the configuration parameters for the lower level
intrinsic, such as, repeat times. It could generate multiple intrinsic
if the repeat number exceeds the limit. Tensor OpLowering analysis
pass creates all the lowered intrinsic code and collects pipeline
information for each tensor-level operation, which will be used by
auto synchronization analysis pass.

; Tensor-Level operator
dst = tadd(in1, in2);

; Low-Level Intrinsic
call void 1lvm.tl.vadd(i64 1, i64 3, i64 0,

[ I R N R O

i64 %17, ... ; dst Tensor Parameters
i64 %13, ... ; inl Tensor Parameters
i64 %14, ...); in2 Tensor Parameters

Listing 11: Tensor OpLowering Analysis Pass
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2.3.5 Tensor Address Allocation Analysis. Tensor address allocation
analysis pass collects all the tensor address space information and
assign the address for the tensors (shown in Listing 12). It also
allows two tensors to use the same memory space if there is no
overlap between these two tensors’ live range.

%13 = rt.malloca() ; Address starts 0x1000
%14 = rt.malloca() ; Address starts 0x2000
%17 = rt.malloca() ; Address starts 0x3000

; Low-Level Intrinsic
call void 1lvm.tl.vadd(i64 1, i64 3, i64 @,

[ R N R O

i64 %17, ... ; dst Tensor Parameters
i64 %13, ... ; inl1 Tensor Parameters
i64 %14, ...); in2 Tensor Parameters

Listing 12: Tensor Address Allocation Analysis Pass

2.3.6 Auto Synchronization Analysis. Ascend C++ provides the
users with an synchronous programming model while the Ascend
hardware has multiple asynchronous hardware pipelines. That is,
the compiler needs to analyze the synchronization information
and automatically insert the synchronization instructions into the
LLVM IR. Based on the analysis results of Tensor liveness analysis
pass, the synchronization analysis pass determines the appropri-
ate location to insert the synchronization instructions. Low level
intrinsic sync_event is inserted by the backend to guarantee the syn-
chronization between different hardware pipelines. For example,
ubTensor in Listing 13 has a Read-After-Write (RAW) hazard and
sync_event is inserted by the backend.

1 ubTensor = tmuls(ubTensor, scalar);

2 // sync_event()
3 gmTensor = ubTensor;

Listing 13: Auto Synchronization

2.3.7 Double Buffering Analysis. Ascend hardware supports mem-
ory read and write operations at the same time. Therefore it is
possible for the compiler to overlap read and write operations in
order to improve the overall performance. The example in Listing 14
demonstrates how to use the double buffering feature. We can see
in Figure 4 read and write uTensor operations are overlapped among
adjacent iterations.
// Double buffering is enabled: Attr::DB
Tensor<half, AS::UB> ubTensor(ShapeUB, Attr::DB);
for (....){

// read ubTensor

. =op(..., ubTensor);
// write ubTensor

ubTensor = ...;

3

[ R S R O

Listing 14: Double Buffering Example

3 EXPERIMENTS

In order to demonstrate our language extension, we present the
following benchmarks written in the SYCL specification with our
Tensor language extension, validate its correctness and measure
its performance counters on the Ascend hardware. The Ascend
accelerator contains 32 physical cores, clocked at 1GHz, with 32GB
of HBM memory. The clock speed of the server, the host CPU is
2.6GHz with 64 KB L1 data cache, 512 KB L2 cache and 24M L3
cache.

63

ICPE °22, April 9-13, 2022, Bejing, China

3rd iteration Ath iterafion

Read ubTensor

Write ubTensor

1st iterafion 2nd iteration

Read ubTensor

Write ubTensor

Read ubTensor (B0) | Read ubTensor (B1) | Read ubTensor (B0) | Read ubTensor (B1)

Double
Buffering

Write ubTensor (B0) | Write ubTensor (B1) | Write ubTensor (B0)

Figure 4: Double Buffering

3.1 Benchmarks

The following are various benchmarks written using SYCL and our
Tensor extension. We describe the language extensions used and
how it maps to our Ascend hardware under the hood.

3.1.1  GEMM. The following example is based on a General Matrix
Multiply (GEMM) kernel. Both the input matrices are of element
type half precision floating point. We vary the input sizes to evaluate
how the size impacts the performance.

In this example, we are using the single_task SYCL abstraction
which maps to a single core in the Ascend accelerator. The loop nest
iterates through the input tiles to be accumulated on the output
tile. Note that the if-statement is used to control whether the tmadd
instruction is performing accumulation mode or not. Furthermore,
inorder to achieve maximum performance from the tmadd instruc-
tion, the input tensors should be in special formats, FRACTAL_Zz
and FRACTAL Zn.

3.1.2 LU Inverse. This LU Inverse algorithm [5] is comprised of
finding the inverse for the lower (L) and upper (U) parts of an in-
put matrix, namely A. The pseudocode for finding the U inverse
is shown below. The corresponding SYCL parallel_for implemen-
tation using our proposed tensor extension is shown in Figure 6.
The pseudocode and implementation for finding the L inverse are
conceptually similar and thus we omit them here. Each row up-
date is an iterative process. For instance, updating row i of Uinv
requires reads from row i, i+1, i+2, and etc. as well as from A. There
are clearly data dependencies from one row to others which then
require the update to be performed in a certain direction, and as
shown in the pseudocode, it is from bottom up.

Uinv = eye(n);
Uinv(n,:) /= A(n,n);
fori=n—-1:1:-1do

for j=i+1:ndo

| Uinv(i,)) = Uinv(i,)-A(L,j) Uinv(j,:);

end

Uinv(i,)) /= A(ii);
end

Algorithm 1: U Inverse Algorithm
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1

2 #define MO 16

3 #define Ko 16

4 #define No 16

5

6 constexpr uint64_t M =

7 constexpr uint64_t N =

8 constexpr uint64_t K = ...;

9

10  auto el = Queue.submit([&](cl::sycl::handler &cgh) {

11 auto kern = [IN_feature_acc, IN_weight_acc, OUT_accl() {

12

13 using namespace ANONYMOUS::TL;

14 __gm__ half *outBuf = (__gm__ half *)OUT_acc;

15 __gm__ half *fmBuf = (__gm__ half x)IN_feature_acc;

16 __gm__ half *wBuf = (__gm__ half *)IN_weight_acc;

17

18 Tensor<half> gm_in_feature_map(fmBuf, Shape(M, K), Attr::FRACTAL_Zz);
19 Tensor<half> gm_in_weight(wBuf, Shape(K, N), Attr::FRACTAL_Zn);
20 Tensor<half> gm_out_feature_map(outBuf, Shape(M, N));

21

22 for (uint64_t n = @; n < N; n += No) {

23 for (uint64_t m = @; m < M; m += Mo) {

24 Tensor<half, AS::CC> accMatrix(Shape(M@, N@), Attr::FRACTAL_Nz);
25 for (uint64_t k = @; k < K; k += Ko) {

26

27 Tensor<half, AS::CA> lhsMatrix(Shape(M@, K@), Attr::FRACTAL_Zz);
28 Tensor<half, AS::CB> rhsMatrix(Shape(K@, N@), Attr::FRACTAL_Zn);
29

30 tcpo(lhsMatrix, gm_in_feature_map, Coord(m, k));

31 tcpo(rhsMatrix, gm_in_weight, Coord(k, n));

32

33 if (k> 0) {

34 accMatrix = tmmad(lhsMatrix, rhsMatrix, accMatrix);

35 } else {

36 accMatrix = tmmad(lhsMatrix, rhsMatrix);

37 b

38 }

39

40 tcpi(gm_out_feature_map, accMatrix, Coord(m, n));

41 }

42 }

43

44 i

45 cgh.single_task<class TGEMM>(kern);

46 1);

Figure 5: SYCL single_task kernel GEMM

The dependencies are from elements of a row to elements of
other rows within the same columns. This allows parallelization
along the horizontal (or column) dimension as shown in Figure 7
by partitioning the work into n tiles where each core (or thread) is
responsible for computing the results for a single tile. This further
allows vectorization of computations (e.g. element-wise multiply,
subtract, and divide) within each tile. This is where our tensor
extension showcases itself.

3.2 Performance Evaluation

3.2.1 GEMM. Table 1 shows the relative slow down as we increase
the sizes of the input matrices, on a single Ascend core. Note that for
all input sizes, there is some fixed amount of performance overhead
incurred due to various reasons such as kernel launch ABI entry
code being executed. We observe that for the first few relatively
smaller shapes, the overall slow down was not significant. This can
be explained by the fact that the amount of data payload is most
likely able to fit into the inefficient slacks that were already incurred
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sycl::range<1> BlockRange{numCore};
sycl::range<1> LocalRange{1};

1

2

3

4 auto el = deviceQueue.submit([&](cl::sycl::handler &cgh) {
5 auto kern = [IN, OUT](sycl::nd_item<1> ids) {

6 int64_t N = 384, 1dA = 384, ldRes = 384, numTile = 6;
7 int64_t tileSize = N / numCore;

8
9

using namespace ANONYMOUS::TL;

10 __gm__ float xinA = (__gm__ float *)IN;

11 __gm__ float *result = (__gm__ float *)OUT;

12

13 Shape shapeInput(N, 1dA), shapeOutput(N, ldRes), ShapeTile(N, tileSize);

14 Tensor<float> input(inA, shapelnput), out(result, shapeOutput);

15 Tensor<float, AS::UB> TrigInv(ShapeTile);

16 TrigInv.set(Q);

17

18 int64_t tile = ids.get_global_id(@) * tileSize;

19

20 for (int64_t j = tile; j < tile + tileSize; ++j) {

21 TrigInv.set(1, j * tileSize + j - tile);

22 3}

23

24 for (int64_t col = tile; col < N; col++) {

25 Shape tileAShape(N);

26 Tensor<float, AS::UB> A(tileAShape);

27 A = input.slice(tileAShape, Coord(col, 0));

28 for (int64_t row = tile; row < col; row++) {

29 float scalar = A.get(row);

30 scalar = -1 x (float)scalar;

31 Tensor<float, AS::UB> tmp =

32 tmuls(TrigInv.slice(Shape(tileSize), Coord(row, 0)), scalar);

33 TrigInv.slice(Shape(tileSize), Coord(col, 0)) =

34 tadd(TrigInv.slice(Shape(tileSize), Coord(col, @)), tmp);

35 3}

36 float scalar2 = A.get(col);

37 scalar2 = (float)1.0 / (float)scalar2;

38 TrigInv.slice(Shape(tileSize), Coord(col, 0@)) =

39 tmuls(TrigInv.slice(Shape(tileSize), Coord(col, 0)), scalar2);

40 3}

41 out.slice(Shape(N, tileSize), Coord(@, tile)) = Triglnv;

42 i

43 cgh.parallel_for<class TLINV_DYNAMIC>(nd_range(BlockRange, LocalRange),
kern);

4 1

Figure 6: SYCL parallel_for kernel Finding Uinv

Core 0,Core 1 Core n-1

Figure 7: Parallelizing Uinv

by the 16x16 case. Hence, no additional time incurred up until a
certain point where the data payload got large enough such that
additional data transfer and compute was required by the hardware
pipeline.

Table 2 shows the relative slow down as we increase the sizes
of the input matrices, on a single CPU core. Note that we used the
standard clang O2 optimization pipeline. Comparing the rate of the
increased slow down between the host CPU implementation and
the one for the single Ascend core, we see that the CPU version is
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Shape Size | Slow down
16x16 1
32x32 1.017
64x64 1.043

128x128 1.079
256x256 2.255
512x512 9.416

1024x1024 56.42

Table 1: Ascend single_task GEMM Slowdown

Shape Size | Slow down
16x16 1
32x32 6.379
64x64 48.75

128x128 386.6
256x256 3083
512x512 24686

1024x1024 197400

Table 2: Host CPU single_task GEMM Slowdown

significantly more sensitive to the input matrices’ sizes becoming
larger.

3.22 LU Inverse. Figure 8 shows performance speedup normalized
against a single core performance for finding Uinv and Linv for A
being a 64x64 single precision matrix. While the CPU performance
continues to scale beyond 4 cores for both the Linv and Uinv kernels,
AICORE performance begins to drop after 4 cores. The key reason
is the design of the AICORE’s vector unit is variable in vector width
with a minimal width requirement of 32 bytes (or 8 elements of
fp32). Parallelizing 8-ways AICORE means the width of each tile,
or each row, comprises of 8 elements of fp32, thus using the vector
unit in the minimal possible way. Synchronization and data transfer
overheads can no longer be easily amortized by the benefit of the
vectorization leading to a slowdown in performance. Constrasting
with parallelizing 2-ways AICORE where each vector operation
operates on 32 elements of fp32, a speedup of 1.151x (Linv) and
1.326x (Uinv) are observed. A key lesson is optimizing for the As-
cend architecture requires careful balance between parallelization
and vectorization.

Figure 9 shows performance speedup normalized against 4-core,
for the size of A being a 384x384 single precision matrix. We have
also observed a similar pattern where the AICORE performance
continues to rise and peak at 6 AICORES with 1.083x (Linv) and
1.11x (Uinv), and begins to decline afterwards.

4 RELATED WORK

Triton [7] builds a tile or block programming abstraction on top of
CUDA. CUDA is a SIMT based programming language for GPU and
by imposing users to program in a block style, Triton convenietly
ensures no divergence of SIMT threads within a GPU block. Triton’s
shared memory allocation and synchronization are analogous to our
tensor liveness and auto-synchronization optimizations described
in section 2.3.
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Figure 9: Scalability Study A=384x384

An alternative for supporting native SYCL programs is to use the
AKG converter compilation path [3]. Instead of having SIMD-based
extensions, it takes native SYCL code and pass the LLVM-IR into a
custom optimization pass which generates an intermediate loopy
IR. Then it is taken in by AKG and generates native Ascend source
code. Similar to our approach, it takes the Ascend code and utilizes
the Ascend compiler to generate an executable binary.

5 CONCLUSION

We have introduced a set of custom language extensions of the SYCL
standard specifications by adding it on top of the existing clang
front end. We take the clang generated LLVM-IR and pass it through
a series of custom LLVM optimization passes that transforms the IR
into an Ascend executable binary. We are looking into optimizing
our custom LLVM passes to improve the run time performance of
Anonymous binaries compiled by this compilation path.
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