
LongTale: Toward Automatic Performance Anomaly Explanation
in Microservices

Richard Li

openrichard@fb.com

Meta

Menlo Park, CA, USA

Min Du

min.du.email@gmail.com

Palo Alto Networks

Santa Clara, CA, USA

Zheng Wang

gregdobbywz@gmail.com

University of Utah

Salt Lake City, UT, USA

Hyunseok Chang

hyunseok.chang@nokia-bell-

labs.com

Nokia Bell Labs

New Providence, NJ, USA

Sarit Mukherjee

sarit.mukherjee@nokia-bell-

labs.com

Nokia Bell Labs

New Providence, NJ, USA

Eric Eide

eeide@cs.utah.edu

University of Utah

Salt Lake City, UT, USA

ABSTRACT
Performance troubleshooting is notoriously difficult for distributed

microservices-based applications. A typical root-cause diagnosis

for performance anomaly by an analyst starts by narrowing down

the scope of slow services, investigates into high-level performance

metrics or available logs in the slow components, and finally drills

down to an actual cause. This process can be long, tedious, and

sometimes aimless due to the lack of domain knowledge and the

sheer number of possible culprits. This paper introduces a new

machine-learning-driven performance analysis system called Long-

Tale that automates the troubleshooting process for latency-related

performance anomalies to facilitate the root cause diagnosis and

explanation. LongTale builds on existing application-layer trac-

ing in two significant aspects. First, it stitches application-layer

traces with corresponding system stack traces, which enables more

informative root-cause analysis. Second, it utilizes a novel machine-

learning-driven analysis that feeds on the combined data to auto-

matically uncover the most likely contributing factor(s) for given

performance slowdown. We demonstrate how LongTale can be

utilized in different scenarios, including abnormal long-tail latency

explanation and performance interference analysis.

CCS CONCEPTS
•Networks→ Cloud computing; • Computing methodologies
→ Machine learning.

KEYWORDS
cross-layer tracing; performance analysis; tail latency

ACM Reference Format:
Richard Li, Min Du, Zheng Wang, Hyunseok Chang, Sarit Mukherjee,

and Eric Eide. 2022. LongTale: Toward Automatic Performance Anomaly

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

ICPE ’22, April 9–13, 2022, Beijing, China.
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-9143-6/22/04. . . $15.00

https://doi.org/10.1145/3489525.3511675

Explanation in Microservices. In Proceedings of the 2022 ACM/SPEC Interna-
tional Conference on Performance Engineering (ICPE ’22), April 9–13, 2022,
Beijing, China. ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/

3489525.3511675

1 INTRODUCTION
The microservices architecture [30] has been widely adopted for

cloud-native applications, but its deployment in the wild brings

many challenges. In particular, as the number of services and the

complexity of their interdependencies grow within a given cloud

application, their performance diagnosis becomes increasingly chal-

lenging. When a performance anomaly is encountered, the current

best-practice approach is to use a combination of application-layer

tracing and host-based performance profiling to drill down to its

root cause. That is, the troubleshooting process starts with locat-

ing the bottleneck service using application-layer tracing, then

queries high-level metrics (e.g., CPU/memory/IO utilization) on

the host where the service instance is running to get a sense of

which measures look suspicious, and finally drills down to potential

culprits for the slowdown by inspecting system state revealed by

performance profiling tools.

Let’s consider long tail latency analysis. Figure 1 shows the la-
tency distribution of a particular RPC, which is obtained from a

group of five load-balanced service instances deployed on multi-

ple hosts. While it is common to have tail latency in real-world

distributed applications, many questions can be raised against this

simple plot. For one, is the tail in this CDF normal? Even this simple

question is hard to answer because it is typically infeasible to define

the “normal” baseline behavior of a given microservice when it goes

through the rapid development life cycle of continuous integration

and continuous delivery (CI/CD). Even if we manage to conclude

that the tail latency deviates from its (projected) normal behavior,

how can we know which service instance out of five contributes

the most to the tail? Is it only one service instance contributing to

the slowdown or are all the instances to blame for the degraded

performance? Is the culprit long-lasting performance interference

or short-lived microbursts in resource usage? In the latter case, how

can we detect the presence of microbursts if they are randomly

scattered around the whole fleet of service instances?

Conducting analysis to answer these questions is challenging

for the following four reasons.

Session 1: Service and Cloud Computing ICPE ’22, April 9–13, 2022, Bejing, China

5

https://orcid.org/0000-0002-4666-6938
https://orcid.org/0000-0002-8277-0206
https://orcid.org/0000-0002-5596-9375
https://orcid.org/0000-0002-2840-1143
https://orcid.org/0000-0002-5861-940X
https://orcid.org/0000-0001-7206-8408
https://doi.org/10.1145/3489525.3511675
https://doi.org/10.1145/3489525.3511675
https://doi.org/10.1145/3489525.3511675

Figure 1: Example CDF of RPC latency.

• Horizontal complexity.Real-worldmicroservice deployments

easily include hundreds of different types of microservices [1,

13, 31], and each service independently scales out based on

load. Such massive-scale, distributed deployments pose a major

hurdle for narrowing down the scope of investigation. Imagine

a performance degradation case where slow RPC transactions

happen only sporadically, and the set of bottleneck services and

physical servers involved varies from time to time. In this case,

it is unclear which service or physical server an analyst should

start investigating.

• Vertical complexity. Even after an analyst manages to zero

in on the candidate services or physical servers to investigate,

there are too many performance metrics and subsystems to

inspect across the entire software stack and operating system.

Thus it becomes another challenge to decide on the right set of

metrics and establish causality between the chosen metrics and

a given performance anomaly.

• Operational knowledge. After having identified key con-

tributingmetric(s) to help explaining a given performance anom-

aly, an analyst often resorts to advanced performance profiling

and hotspot analysis tools to ultimately pinpoint the application

process or a kernel component that leads to such slowdown.

Wielding those tools itself is a non-trivial work.

• Domain knowledge. An analyst is typically not familiar with

the codebases of all the services. In the microservices architec-

ture, every development team takes ownership of its function-

ality with proper APIs exposed to other teams, and its service

is treated as a black box by other teams. Without any domain

knowledge, it is challenging for an analyst to corroborate his

or her findings.

Faced with these formidable challenges, we step back and start

with a very simple, intuitive question: what if we could simply
compare the slow and fast responses from a microservices-based appli-
cation to understand what is going on when a response is slow? More

specifically, if we can somehow compare the snapshots of individual

microservices’ execution contexts captured at the head and the tail

of the CDF curve shown in Figure 1, can we explain the slowdown?

In a nutshell, this is the question we set out to explore. The natural

next question is whether or not existing performance diagnosis

approaches can answer this question effectively. The answer is no,

as we clarify in the following.

There are mainly two families of tracing tools that have been

utilized for performance troubleshooting. Distributed application-

layer tracing solutions [4, 26, 28, 35] have been proposed in industry

and academia. While useful for identifying service-level dependen-

cies and detecting performance anomalies at service granularity,

these solutions are inadequate for diagnosing and explaining de-

tected anomalies, mainly because of lack of detailed execution

contexts associated with application-layer traces. Besides, since ap-

plication layer tracing only collects events that are on the execution

path of applications, it does not help uncover the root causes that

happen off the execution path [43]. To complement application-

level tracing, the system-level profiling tools [2, 6–9, 17, 21] provide

rich information about the running state of the host operating sys-

tem and its workloads. However, the complexity of the current

operating system necessitates that a diagnostician pose numerous

questions and hypotheses about potential root causes in order to

proceed step by step towards a reasonable explanation. Making

the right hypotheses and picking the right tools to start with are

non-trivial tasks even for an experienced diagnostician. For each

subsystem, an analyst typically utilizes a different set of tools [23]

for deeper level inspection to figure out the root cause of the anom-

aly, which requires substantial domain-specific knowledge and

familiarity with the tools.

In order to address these shortcomings of the existing approaches,

we propose a new approach called LongTale that combines the ad-

vantages of application-layer tracing and host-based performance

profiling, with the ultimate goal of enabling fully automatic perfor-
mance anomaly explanation. LongTale achieves this though cross-

layer trace stitching and machine learning-driven anomaly ex-

planation. More specifically, LongTale stitches application-layer

traces with corresponding system stack traces. This cross-layer

trace stitching allows the huge amount of runtime contexts of mi-

croservices to be properly sliced and reorganized to focus only on

the system states that are associated with two opposite regimes (i.e.,

head/tail) of latency distribution. LongTale feeds this reorganized

dataset into machine learning algorithms for regression and feature

selection, which ultimately highlights the most likely contributing

factor for given performance slowdown.

LongTale advances the existing state of the art tracing and diag-

nostic systems in three aspects.

• Non-intrusiveness: It is designed to avoid any application-

specific adaptation or kernel level change by relying solely

on data-oriented analysis. Such transparency allows it to be

immediate deployable.

• Ease of use: It requires no knowledge about microservices to

be deployed and the underlining infrastructure.

• Automated root cause diagnosis: Instead of focusing on sus-

picious high-level metrics, which are just an artifact of a real

root cause, LongTale is able to pinpoint the root cause itself

without an analyst going through an arduous procedure of re-

peated hypothesis testing. This capability is especially useful in

diagnosing microburst-induced anomalies which cannot easily

be detected with coarse-grained resource usage monitoring.

We evaluate LongTale by injecting simulated anomalies in a real-

world microservices-based e-commerce application. Experimental

results show that LongTale can help an analyst better understand

the behavior of the anomalies by automatically and precisely pin-

pointing culprit processes with low false positive rate.

Session 1: Service and Cloud Computing ICPE ’22, April 9–13, 2022, Bejing, China

6

Figure 2: Trace and Spans in application-level tracing.

The rest of the paper is structured as follows. After covering a

brief overview of existing tracing tools in Section 2 and a motivat-

ing scenario in Section 3, we present the LongTale architecture in

Section 4. Next, we describe the LongTale prototype implementa-

tion in Section 5 and its detailed evaluation in Section 6. After a

review of related works in Section 7, we discuss the scope of our

work in Section 8 and conclude in Section 9.

2 BACKGROUND
Before describing LongTale, we provide a brief overview of tracing

technologies that it builds on.

Application-layer tracing.Application-layer tracing collects times-

tamped application events in the form of Traces and Spans via in-
strumented RPC/web frameworks [36]. A Trace represents a series

of operations executed by an application due to an external event

(e.g., a user sending a request to an application). A Span represents

a particular action, such as an RPC call or a function call. A Trace is

constructed as a directed acyclic graph (DAG) of one or more Spans.

Each Span logs an operational context including operation name,

start/end timestamps, and its relationship with other Spans. An

edge between a Span and its parent Span indicates a causal relation-

ship between them. Figure 2 shows an example Trace composed

of three Spans, where RPC3 is invoked by RPC2, which in turn is

triggered by RPC1.

Stack trace monitoring. A stack trace of a process captures ac-

tive stack frames for that process at a particular point in time.

From the stack trace, one can extract the detailed execution con-

texts of the process during that time (i.e., chains of function calls

that are activated). In reality, the existing system-level profiling

tools [8, 17] that can record stack traces produce call chains of

memory addresses (addr𝐴 → addr𝐵 → addr𝐶 , etc.). Thus, perfor-
mance diagnosis with stack traces requires an additional symbol

resolution step that translates the raw stack traces into symbolic

call chains (func𝐴 → func𝐵 → func𝐶). Using these existing tools,
one can inspect system-wide runtime contexts of a server by taking

a global snapshot of stack traces for all active processes including
kernel worker threads. Taking one step further, one can collect

such system-wide stack trace snapshots periodically and aggregate

them over time to obtain approximated fine-grained CPU usage

attribution for different functional components of active processes

(e.g., flame graphs [21]).

3 MOTIVATING SCENARIO
As a motivating scenario we consider two possible variations of the

abnormal long tail latency depicted in Figure 3. In this scenario, five

(a) Single-host anomaly (b) Multi-host anomaly

Figure 3: Effect of anomalies on latency distribution.

replica service instances are deployed across five different hosts,

with a load balancer evenly distributing the load among them.

In one abnormal case (Figure 3a), a long-lasting computational

workload is artificially injected on host 0, affecting the latency of its

service instance, while the other hosts remain normal. Such long-

lasting performance interference anomaly can easily be detected

from the CDF plot. An analyst can then collect information at the

problematic host to determine which process is introducing the

slowdown. The analyst can use “baseline” data to compare different

execution states of the “normal” and “abnormal” hosts. In fact, this

type of comparative performance regression has become a common

practice in companies such as Netflix [22].

In the other abnormal case (Figure 3b), all five hosts experi-

ence multiple scattered microbursts in CPU usage from a series

of short-lived performance interference events. While all five ser-

vice instances handle the workload with almost the same latency,

these microbursts cause abnormal long-tail latency. In this case,

an analyst may find it difficult to conduct the investigation for the

following reasons.

First, since each host performs similarly, it is difficult to decide

which host an analyst should start with. Second, coarse-grained

resource usage monitoring may not be helpful for pinpointing

a period of execution worthy of investigation, especially if the

duration of a microburst is shorter than the interval of periodic

metric collection. For example, the top command’s default refresh

interval is 3 seconds. Any CPU saturation event that does not

outlast this interval will not be reported as such. Even if CPU

saturation does get detected via performance monitoring tools, the

spike cannot easily be correlated with long service latency. After

all, resource saturation is not an uncommon event, and most spikes

do not lead to a slowdown. Third, inspecting system-wide stack

traces like Flame Graphs on individual hosts does not help much,

because the microbursts may be spread out so sparsely that they

only take a minuscule amount of CPU quota, which can easily be

neglected by an analyst. Fourth, application-layer tracing alone can

barely help. Application-layer traces can highlight the Spans that

take much longer than the majority. However, without any runtime

contexts behind the slow Spans, an analyst can neither draw any

conclusion nor proceed further with the investigation.

It is worth noting that microburst-induced anomalies can also

prevent autoscaler from properly relieving the slowdown. An au-

toscaler is supposed to spawn new replica services when the re-

source saturation level exceeds a preset threshold. In reality, the

replica spawning operation comes with a delay in order not to waste

Session 1: Service and Cloud Computing ICPE ’22, April 9–13, 2022, Bejing, China

7

Figure 4: LongTale architecture.

resource by responding too quickly to short-lived resource spikes.

For example, the autoscaler of Kubernetes uses 15 seconds as its

default control period [40]. Therefore, only resource saturation that

outlasts this period will cause the autoscaler to spawn new replicas.

This means that autoscaling will never be activated by microbursts

as their duration is typically much shorter than 15 seconds.

In short, the abnormal long-tail latency resulting from scattered

performance interference can be extremely difficult to explain, not

to mention relieving it. This becomes a needle-in-a-haystack prob-

lem. LongTale was initially designed to tackle this kind of anomaly,

but it is useful for diagnosing other kinds of performance anomalies

as well. In this paper, we apply LongTale to a sparse microburst-

induced anomaly as well as several other anomalies.

4 SYSTEM DESIGN
In this section, we articulate the design goals driven by the moti-

vating scenario. Based on the design goals, we sketch the LongTale

architecture and detail the end-to-end workflow.

4.1 Design Goals
In order to address the challenges posed by the motivating scenario,

we set four design goals for LongTale.

Application agnostic. To be a viable performance diagnosis tool

for microservices, the first goal is generality across different mi-
croservice implementation. A typical cloud application consists of a

multitude of distinct microservices which are highly heterogeneous

in terms of programming languages and development platforms

used. It is unrealistic to expect any diagnostician to have any in-

depth knowledge about the microservices under examination.

Immediately deployable. Expecting production systems to adapt

their software stack to a debugging tool is impractical. This is

true especially for small- to mid-size organizations that rely on

publicly available open-source software, but that lack the capability

or manpower to retrofit the deployed software and available tracing

libraries for more advanced performance diagnosis. Besides, there

is always a risk that any adaptation for debugging may lead to

software crashes if not thoroughly tested. Any troubleshooting

solution that requires minimal adaptation for microservices and the
underlying operating system can be immediately deployable.

Unobtrusive. The performance overhead of a debugging or mon-

itoring tool is an important factor to consider. If the tool collects

information too aggressively, it may directly lead to performance

regression of deployed services, either lower throughput or higher

latency. It is also possible that the overhead introduced by the tool

may actually prevent an existing bug from showing up, which is

known as “Heisenberg effect” of the tracing system. To avoid both of

these problems, the tool needs to only rely on unobtrusive measures.

Informative. The tool should point an analyst directly to the root
cause, e.g., a culprit process, instead of flooding the analyst with

too much metric data or too huge a hypothesis space to explore.

Besides automated end-to-end explanation, the tool should provide

suitable visual means for the analyst to understand the running

state of the distributed system.

4.2 Architecture Overview
LongTale works by combining an application-layer tracing frame-

work with host-based tracing. Figure 4 presents its architecture

overview. The figure show that microservices are deployed across

three VMs. Each service runs in a container instantiated in any of

these VMs. Users issue requests and receive responses through a

front-end service or a load balancer. To service a user’s request,

multiple services may be triggered to execute specific functions

to complete the task. In the figure, the service A, B, and C are

collaborating to complete the task. Transparent to the deployed

microservices, there are two subsystems in LongTale that collect

information for anomaly detection and diagnosis. One is the cen-

tralized application-layer tracing subsystem, and the other is the

host-based tracing subsystem which is operated on each host.

In the application-layer tracing subsystem, each container—i.e.,

service—has a built-in application-layer tracing component that

records the functions triggered by a request along with timestamps.

The tracing component accumulates the data and send it to the

application-layer tracing agent (the app-agent in the figure) that

is running on each host. In the host-based tracing subsystem, the

host-based agent (the s-collector in the figure) collects information

that is complementary to the data gathered by application-layer

tracing. Unlike application-layer tracing, it collects information that

is pertinent to the local host where it is running. This information is

not just about local containers, but system-wide traces for all active

processes including kernel threads on the host. The data collected

by the app-agent and the s-collector will both be transferred to the

analysis node for machine-learning-based diagnosis.

4.3 End-to-end Workflow
LongTale combines the information from the two tracing subsys-

tems into a structure that is well suited for machine learning anal-

ysis. Figure 5 shows the end-to-end workflow of LongTale. Data

from application-layer tracing and host-based tracing goes through

a multi-stage pipeline to produce a diagnosis result.

4.3.1 Trace Sanitizer. The information collected by a host-based

tracing tool (e.g., perf) is system-wide stack traces for a given host.

These stack traces require additional preprocessing before being

fed into the LongTale’s pipeline. First, the original stack traces

which consist of call chains in the form of memory addresses need

to be resolved into symbolic call chains (e.g., 𝑓 𝑢𝑛𝑐𝐴 → 𝑓 𝑢𝑛𝑐𝐵 →
𝑓 𝑢𝑛𝑐𝐶) for subsequent stages of the pipeline. Symbol resolution

Session 1: Service and Cloud Computing ICPE ’22, April 9–13, 2022, Bejing, China

8

Figure 5: LongTale end-to-end workflow.

can be performed on the host where the traces are collected or on

a dedicated machine.

One issue is that periodically sampled stack traces may be sub-

ject to sampling bias due to Dynamic Voltage and Frequency Scal-

ing (DVFS) of modern CPU processors. That is, even with a pre-

configured fixed sampling rate of host-based tracing, the actual

sampling rate can dynamically fluctuate depending on the load

of the host [38], which will introduce a bias in the subsequent

Reassembler stage (see Section 4.3.5). To tackle this problem, we

regularize collected stack traces by inserting virtual samples. Specif-

ically, each time a stack trace sample is collected, the tracing tool

also records its duration. If a given sample spans across multiple

sampling intervals, we insert as many duplicates of this sample

(virtual samples) to cover its entire duration. The sampling inter-

val in host-based tracing is set based on the maximum CPU clock

frequency.

4.3.2 Span Selector. LongTale allows an analyst to narrow down

his or her investigation to a particular Span. This is not possible in

existing application-layer tracing systems as they allow users to

monitor services only on a Trace granularity. To achieve Span-level

filtering, Span Selector pulls all collected Traces for a given service,

and walks each Trace to pick only those Traces that contain the

Span in question. After all such Traces are retrieved, Span Selector

slices the Span in each Trace, such that only the time when the

Span is active within the service is recorded. Take Figure 2 for

example. If the target Span is 𝑅𝑃𝐶2, then Span Selector will cut

out the duration of 𝑅𝑃𝐶3 from the target Span, so that we only

account for the portion of 𝑅𝑃𝐶2 that does not include the time

when the Trace has gone off to another service. After this slicing,

the remaining Span of 𝑅𝑃𝐶2 will have two separate durations 30𝜇s—

50𝜇s and 80𝜇s—90𝜇s. For a Span that is the innermost in a Trace,

we do not need to slice it.

4.3.3 Stitcher. Once sliced Spans and stack traces are ready, the

LongTale’s pipeline moves on to stitching, where they are combined.

Stitching occurs on a per-Span basis as follows. For each Span

created on a particular host, Stitcher pulls the corresponding stack

traces that are collected from the same host and that fall within the

Span’s execution time window. By stitching the Spans and stack

traces collected from the same host, we can avoid timing skew that

is inherent in any distributed system. Both Spans and stack traces

are recorded with timestamps from the same monotonic clock.

By combining the Spans and stack traces collected in exactly the

same time window, we aim to explain a given Span’s application-

layer behavior (e.g., latency) from the corresponding microservice’s

complete runtime contexts.

4.3.4 Policy Materializer. As a general-purpose performance di-

agnosis tool, LongTale exposes a flexible policy interface through

which an analyst queries the system for anomaly diagnosis. The

role of Policy Materializer is to materialize a user-submitted policy

into the corresponding trace data set that will be fed into machine

learning analysis. An example policy is to compare Spans shorter

than 10%-percentile with those longer than 98%-percentile for a

particular service.

Our experience with real-world trace data is that if we apply

our machine learning algorithms to individual Span instances, they

often fail to yield a valid result especially when Spans are active

for a very short period of time (e.g., on order of milliseconds). This

is because each short-lived Span only has few stack trace samples

associated with it, from which no significant runtime context can

be learned. Only when we accumulate an enough amount of stack

trace samples across time, can the machine learning algorithms

learn the statistical characteristics of host-wide CPU allocation, and

properly infer a given Span’s runtime context.

Drawing on this observation, Policy Materializer, in response to

a user-submitted policy, instantiates a set of randomly chosen Span

instances that satisfy the policy (denoted as spanID set). It ensures
that the number of instances in the spanID set is enough that the

corresponding stack trace samples in aggregate cover at least 10

second duration. Policy Materializer repeats this step to generate

𝑀 different spanID sets for machine learning analysis. In case of

the above example policy, Policy Materializer prepares a pair of 𝑀

spanID sets, one for 10%-percentile and the other for 98% percentile.

LongTale supports other policies for different types of diagnoses.

We detail them further in Section 6.

4.3.5 Reassembler. The role of Reassembler is to convert the spanID

sets prepared by Policy Materializer into the vector-formatted fea-

ture sets to be consumed by the machine learning analysis. Specifi-

cally, for each spanID set, it puts together all the stack trace samples

that are associated with the set and counts the number of times

Session 1: Service and Cloud Computing ICPE ’22, April 9–13, 2022, Bejing, China

9

Table 1: Feature set example generated by Reassembly.

Vectors Feature 1 Feature 2 . . . Label
vector-1 0.23 0.31 . . . 8.5ms

vector-2 0.33 0.21 . . . 9.7ms

vector-3 0.24 0.29 . . . 9.1ms

.

each function appears at a particular depth of the stack traces. Af-

ter counting, it normalizes the counts and turns the data into a

vector, e.g., [𝑓 𝑢𝑛𝑐𝐴: 0.23, 𝑓 𝑢𝑛𝑐𝐵 : 0.31, . . .]. With 𝑀 spanID sets,

Reassembler generates𝑀 corresponding vectors.

One design decision during this conversion step iswhich depth of
stack traces should be used as features. The deeper a given stack is,

the more functions will be available as features to select and learn.

Too many features may lead to the data sets being too noisy and the

machine learning models becoming less accurate on prediction and

explanation. An analyst can either choose the bottommost stack

frames or focus on those at a specific depth. Either choice has its

own benefit. Utilizing the bottommost stack frames summarizes

process-level CPU allocation, while deeper layers into the stack can

capture relative CPU allocations of particular functions within a

process.

LongTale provides an interface for an analyst to explore both

scenarios. By default, LongTale will pick the bottommost stack

frames to pinpoint which processes are the culprit for a given per-

formance slowdown. By doing that, LongTale excludes many noisy

features so that the culprit can stand out from the features clearly.

If an analyst needs to dive deeper to identify which functional mod-

ule or subsystem of a chosen process contributes the most to the

slowdown, he or she can pick a depth into the stacks to repeat the

analysis.

Reassembler labels each vector with the average duration of all

the Spans belonging to the original spanID set. This label will be

used for linear regression and feature selection in the later stage.

The final output generated by Reassembler is in the form of a matrix

of numbers, as shown in Table 1.

4.3.6 Explanation Using Machine Learning. The ultimate goal of

LongTale is to find out the most contributing factor(s) for a given

performance slowdown. Achieving this goal really boils down to

identifying the most distinguishing feature(s) between the two

vector sets generated from the previous stage. This problem can

be formulated as a feature selection problem in predictive modeling,

which can be solved by traditional machine learning algorithms.

LongTale uses ElasticNet to perform the feature selection task.

As a regularization regression method, ElasticNet combines the

properties of both Ridge Regression and LASSO regression so that

it can make an automatic variable selection and continuous shrink-

age while preserving the sparsity of representation [46]. Feature

selection aims to filter out irrelevant or redundant features, re-

sulting in a trimmed set of relevant features. ElasticNet performs

feature selection automatically as part of learning the model, which

is also known as intrinsic feature selection method. As a linear

regression model, the output of ElasticNet model training contains

the coefficient of each feature, of which the sign represents how the

feature is correlated to the target variable, positively or negatively,

and the scale the strength of the correlation.

In this stage, we feed the ElasticNet algorithmwith the generated

vector sets and labels for the model to learn the coefficients of each

feature. If an anomaly introduces any discrepancy in the vector

sets, the learned coefficients associated with the elements in the

vector will be sparse, i.e., most coefficients are zero or close to zero,

and the coefficients of the culprit can be the largest. On the other

hand, if there is no performance anomaly, and the long tail latency

simply originates from natural queuing delay, the algorithm will

not find any dominant feature with a coefficient that is positively

correlated to the Span duration. We consider those coefficients with

low standard deviation as anomaly-free, and those with high stan-

dard deviation anomalous. In LongTale, we use the 99% confidence

interval as a threshold metric for identifying culprits.

4.3.7 Visualization. Effective visualization is important for diag-

nosing large-scale distributed systems [21]. LongTale provides

histogram-based diagrams that represent the importance of fea-

tures in causing a given performance anomaly, a heatmap-based

visualization to demonstrate when and where the anomalies have

occurred across different time periods and hosts (Figure 7), as well

as aggregated flame graphs for comparative analysis (Section 6.5.2).

5 IMPLEMENTATION
As a proof of concept, we develop a prototype of LongTale. In the

following, we highlight a few important details of the prototype.

We deploy Jaeger [3] (v1.16.0) for application-layer tracing, and

utilize the perf tool (v4.15.18) for stack trace collection. While

application-layer tracing is enabled all the time, host-based tracing

is activated on demand when a user submits a policy for trou-

bleshooting (e.g., with a particular service/Span). Upon policy sub-

mission, the s-collector running on the hosts where the target

service/Span is active will invoke perf for stack trace collection.

By default, stack traces are collected for 10 minutes. Once the de-

fault round of stack trace collection is completed, stack traces are

sanitized locally on individual hosts, and uploaded to the analysis

node, which will trigger the rest of LongTale’s workflow pipeline.

Span selection is performed on the analysis node by using the

existing Jaeger query API against the Traces and Spans collected by

the app-agent (realized with Jaeger agent). Due to the API’s limit

on the amount of Traces being retrieved each time, the Traces are

retrieved in smaller chunks. Once Traces are ready, Span slicing

and stitching steps get started. While stitching is performed once

on the available data, the stitched data needs to be accessed many

times for the subsequent machine learning analysis (for generating

multiple random instances of spanID sets). Thus, the stitched traces

are stored in a separate key-value store, where the key is each

Span’s unique ID and the value is the information associated with

the Span, including its application-layer metadata and combined

stack trace samples.

An alternative implementation is to offload the stitching opera-

tion to individual hosts. That is, the Jaeger agent could be modified

to perform slicing and stitching on collected trace data and push the

processed result to the analysis node. While that would make trace

processing scale naturally with the growing number of microser-

vices, it could introduce unduly significant performance penalty to

Session 1: Service and Cloud Computing ICPE ’22, April 9–13, 2022, Bejing, China

10

the deployed microservices. Besides, such approach would restrict

the type of stitching operations performed by LongTale. Decoupling

trace collection (done on end hosts) and trace stitching (performed

on the analysis node) makes stitchingmuchmore flexible and allows

LongTale to be easily extended to incorporate different type of sys-

tem metrics beyond stack traces when troubleshooting production

systems.

We use sklearn [5] (v0.23.1) with default parameterization to

implement ElasticNet-based learning and feature selection.

Our prototype consists of 2,800 lines of Python code for the

entire LongTale processing pipeline, and 1,600 lines of Shell code

for host-based stack trace collection and sanitization. We plan to

release the source code of the prototype in the near future.

6 EVALUATION
We evaluate the LongTale prototype by testing its ability to diagnose

performance anomalies. In this evaluation, we focus on answering

three questions. First, can LongTale automatically explain the abnor-
mal tail latency in microservices, which is caused by a performance
interference event (§6.2)? According to our experiment, the answer

is yes: LongTale accurately pinpoints the root cause for the perfor-

mance slowdown through stitching and learning on the collected

trace data. We also demonstrate what the explanation result would

look like when there is no anomaly to be detected, as well as when

there are multiple anomaly factors involved in the slowdown. We

show how LongTale can visualize analysis results to help an analyst

understand when and where anomalies are happening in a given

application deployment. Second, is LongTale general enough to work
for different types of microservices developed in different languages
without any domain-specific knowledge (§6.3)? The answer is yes:
LongTale works with every service we experimented with that is

part of a real-world e-commerce application. These services are

developed in Java, Node.js and Go. Third, what is the performance of
the LongTale’s processing pipeline (§6.4)? We provide a breakdown

of completion time of its pipeline processing including data col-

lection, preprocessing, and learning. Our experiments show that

LongTale can complete an explanation task within reasonable time.

Finally, we demonstrate two other use cases of LongTale to show

its versatility (§6.5).

6.1 Experimental Setup
We deploy the LongTale prototype and run our experiments on a

testbed consisting of six Dell PowerEdge R430 servers, each with

two 2.4GHz Intel Xeon E5-2630v3 8-core CPUs and 64GB RAM.

The testbed is provisioned within CloudLab [32].

On this testbed, we set up a cloud platform using OpenStack
(Stein release) for VM provisioning, and Kubernetes (v1.18.3) for
microservice creation and orchestration within VMs. A total of 22

VMs are instantiated by OpenStack on the testbed. Among them,

one VM is used as a Kubernetes controller node, another as the

Jaeger trace collector node, and the remaining 20 are used as com-

pute nodes to deploy container-based microservices. The VMs used

as compute nodes are each provisioned with one vCPU and 2GB

RAM. All physical machines and VMs are running Ubuntu 18.04.

We turn off turbo boost mode on every physical machine. We also

Table 2: Microburst configurations.

Config Microburst description Collection STD
config-1 No microburst injected 10 min 4.69

config-2 5-sec duration every 1 min 10 min 166.14

config-3 3-sec duration every 1 min 10 min 61.21

config-4 5-sec duration every 3 min 20 min 63.55

config-5 3-sec duration every 3 min 20 min 27.48

config-6 5-sec duration every 5 min 30 min 52.89

config-7 3-sec duration every 5 min 30 min 138.12

config-8
Random spikes every 1-5 min

with 3-5 sec duration
30 min 66.37

0 5 10 15 20 25 30
Sorted features

−103

−102

−101

−100

0

100

101

102

103

C
oe

ffi
ci

en
t

(l
og

sc
al

e)
config-1

config-2

config-3

config-4

config-5

config-6

config-7

config-8
−1000

−500

0

500

1000

C
oe

ffi
ci

en
t

(l
in

ea
r

sc
al

e)

CI 99 183.77

config-1 linear scale

config-2 linear scale

Figure 6: ElasticNet’s feature selection results.

set the CPUFreq “governor” as “performance” to make the CPU run

at its rated frequency 2.4 GHz.

On top of a Kubernetes cluster, we deploy an e-commerce ap-

plication called Sock Shop [39], which is composed of 14 different

types of microservices developed in multiple languages. As a de-

fault configuration, six services among them (user, catalogue, carts,

shipping, payment and orders) have application-layer tracing en-

abled. We scale up each service to five replica instances. We use

locust (v1.0.2) as a workload generator for Sock Shop.

6.2 Anomaly Explanation
It is almost impossible to exactly reproduce documented real-world

performance anomalies in our testbed environment due to the signif-

icant differences in microservice implementation and infrastructure

settings. Instead, we inject artificial performance anomalies with a

similar net effect.

First, we re-create the motivating scenario described in Section 3,

where abnormal long tail latency is induced by microbursts of CPU

saturation. Here we simulate the microbursts using stress-ng, a
tool designed to stress a system in highly configurable fashions. We

choose the user service that handles user account logins in Sock

Shop as a target service, and explore the LongTale’s capability to

detect and explain the long-tail latency exhibited by the service

when the intensity and duration of the injected microbursts are

varied. For the experiment, we generate a synthetic workload for

the service, that comprises 5,000 requests per second.

Session 1: Service and Cloud Computing ICPE ’22, April 9–13, 2022, Bejing, China

11

Figure 7: Heat-map visualization for scattered performance
anomalies.

Table 2 shows eight different configurations of injectedmicrobursts

as well as trace collection time. Config-1 is the base line normal

case without any anomaly. Figure 6 shows the ElasticNet’s feature

selection results for each of these configurations. The STD column

shows the standard deviation for the feature coefficients computed

by ElasticNet. We can see that the anomaly-free case (config-1) has

a much lower standard deviation than any other configurations, i.e.,

its curve is almost flat in linear scale, shown as the blue solid line.

We perform ten experiments in the anomaly-free case to compute

their standard deviations. The average standard deviation among

the ten cases is 4.69 with maximum of 7.23. We pick the standard

deviation of ten as our threshold to decide whether an explanation

result contains anomalies. We later show that the standard devia-

tion of 10 works mostly well with different types of services with

reasonably low false positive rate.

In Figure 6, features are sorted on the 𝑥-axis in an increasing

order of their coefficients. We exclude all the features with zero

coefficient, which correspond to 100 or so background processes

running on the host. The ElasticNet algorithm considers these

zero-coefficient features neither positive nor negatively correlated

with the Span duration. A positive coefficient means positively

correlated with the latency, and vice versa for negative coefficients.

For example, in all these experiments, the most negative coefficient

is associated with the user task process that serves the user login

requests. This is because the more CPU quota is allocated to this

process, the lower latency it will exhibit. Across all the anomaly

cases (from config-2 to config-8), the stress-ng task process is

assigned the largest positive coefficient.

To highlight different feature selections among seven different

microburst scenarios, we use two different 𝑦-axes, plotting the

results in log scale in the 𝑦-axis on the left-hand side, and in linear

scale in the 𝑦-axis on the right-hand side. We can see that, when

there is any dominating coefficient, the decline of the line is much

sharper than the case without it which is almost flat. The horizontal

red line marks the 99% upper bound confidence interval of config-2,

which separates the outlier component from the other features

clearly. LongTale explains correctly even when the microbursts

happen only 1% of the time (config-7) and also the case when they

are randomly scattered (config-8).

To help an analyst better understand when and where the mi-

crobursts are occurring, LongTale, based on ElasticNet feature se-

lection, automatically generates a heatmap-based visualization as

shown in Figure 7. In this example, host-2, 9, 12, 13 and 19 are the

ones that run the user services. Our microburst injection script

randomly selects a half of the 20 VMs, and in each of the chosen

VM, injects randomized microbursts according to config-8. All these

randomized microburst behaviors and their severity are clearly visu-

alized from the plot. We can see that not all user service instances

are affected by the microbursts (e.g., host-2 did not experience any

anomaly). The identified anomalous processes also appear on the

VMs that do not run the user services, which means that these

microbursts may affect some of other services and their tail latency

as well.

Actions can be taken after understanding why, when, and where

the anomaly happens. System administrators can have different

ways to act on this knowledge to relieve the abnormal long tail.

Most microburst-induced anomalies are benign although they slow

down some of the requests. Simply killing them is not a practical

option especially if they are unavoidable (e.g., maintenance tasks).

One possible way is to make the Kubernetes scheduler aware of a

potential slow down on a specific instance, so that it can avoid redi-

recting traffic to the instance. Since microservices instantiated by

Kubernetes typically run behind its built-in service discovery and

load balancing mechanism, the load balancer can be easily notified

to dynamically adjust load distribution. This is in fact commonly

adopted best practice for cloud infrastructures to improve their

availability and latency [12]. Similarly, we can automatically con-

figure the Kubernetes load balancer to deactivate load distribution

on the instance before the execution of an anomalous process (e.g.,

off-path maintenance events), thereby avoiding the long latency

induced by the anomaly. When the anomalous process completes

its work, we can lift the pause action on the instance. We leave

detailed exploration on automatic mediation on abnormal long tail

latency as future work.

6.3 Service-Agnostic Anomaly Diagnosis
A performance diagnosis tool should be general enough to work

with different types of services implemented in different languages.

To demonstrate the service-agnostic diagnosis capability of Long-

Tale, we now perform experiments with six other services in Sock

Shop. Three of these services are developed in Go, and the others in

Java. We inject microburst events to each of these service with the

severity of config-2 in Table 2. In each service, we repeat feature

selection experiments 10 times to compute an average standard

deviation for ElasticNet coefficients. We also obtain false positive

rate (FP%) and false negative rate (FN%) of anomaly detection when

the 99% upper bound confidence interval is used as a threshold. The

results are summarized in Table 3.

According to the table, all tested services have zero false nega-

tive rate except for the payment service. The high false negative

rate of payment is linked to its relatively low standard deviation.

The RPC of the payment service is implemented as a simple stub

function that merely echoes whatever is sent by the client. Such

simple design of the service is so lightweight that the injected CPU

microburst events can barely affect its latency performance. As a

result, the behavior of the service, even with microbursts, is almost

identical to that of an anomaly-free deployment, and the Elastic-

Net algorithm does not produce dominant-enough coefficients that

Session 1: Service and Cloud Computing ICPE ’22, April 9–13, 2022, Bejing, China

12

Table 3: Anomaly explanation results across different ser-
vices.

Service Lang. Span STD FP% FN%
carts Java get-items 785.5 0.28% 0

shipping Java post-shipping 1553.9 0.39% 0

order Java get-collection-resource 830.1 0.19% 0

user Go login 136.4 0.0% 0

catalogue Go GET /catalogue/{id} 156.6 0.49% 0

payment Go POST /paymentAuth 12.2 0.34% 60%

Table 4: LongTale pipeline performance breakdown.

Stage Process time
Trace Sanitizer 4.13 min

Span Selector 37.55 min

· Trace loading 4.18 min

· Span loading/filtering 33.37 min

Stitcher 1.69 min

Vector Generation (20K) 25.69 min

Explanation 2.83 sec

Total 69.11 min

capture the anomaly. This result is in fact in line with the observa-

tion made in MicroRCA [41]. Nevertheless, LongTale’s explanation

result still considers stress-ng as one of the most positively cor-

related features, and its coefficient always ranks among the two

biggest coefficients.

The false positive rate is reasonably low across all the services.

Another metric (not shown in the table) is the precision, which is

the number of true positives divided by the number of true posi-

tives plus the number of false positives. This metric is important

as it gauges the amount of extra effort required for anomaly inves-

tigation. Across all the services, we observe the precision above

80–90%, except for the payment service (25%). In terms of the ab-

solute number of false-positive detections, there have never been

more than two false positives across all services including payment.
This means that LongTale does help an analyst narrow the can-

didate set of more than a hundred active processes to investigate

down to just two or three suspicious processes, which significantly

shrinks the hypothesis space that needs to be explored.

6.4 Diagnosis Performance Breakdown
Table 4 shows the breakdown of completion time for the diagno-

sis of a microburst-induced performance anomaly (config-2). We

can see that the time required for machine learning explanation is

very short (order of seconds). Note that the rather slow completion

time of other steps is an artifact of our prototype implementa-

tion (e.g., single-threaded chunk-based download of Trace data via

Jaeger APIs). Each of these steps can easily be expedited with multi-

threaded processing. It is also important to note that, even with

a large-scale real-world cloud application built with a large num-

ber of microservices, typical Traces/Spans traverse only a limited
number of service instances. Thus, we do not expect the LongTale’s

pipeline execution time to grow significantly.

Performance overhead added by LongTale for deployed microser-

vices comes from both application-layer tracing and host-based

stack tracing. These types of tracing have been designed to intro-

duce acceptable performance overhead with a reasonable sampling

strategy. Application-layer tracing has already been proven to be

unobtrusive in production systems [35], and even the overhead

of instrumenting every single request is considered modest [43].

Similarly for stack tracing by perf, we use an acceptable sampling

rate of 999Hz, which is widely used in industrial production sys-

tems [24].

6.5 Other Use Cases
The motivating scenario is a demonstration of what LongTale can

do to solve a tricky problem that other tools cannot. LongTale can

also do more. In this section, we describe two additional use cases

to show what else can LongTale do and its potential to push the

limits of the state-of-the-art automatic performance-diagnosing

tools.

6.5.1 Different Performance Interference Factors. As a highly dis-

tributed system, a microservices application may suffer from multi-

ple, different performance issues at different levels of severity—but

how much is a single source of interference contributing to the

slow down? In other words, can we quantitatively show how likely

it is that a particular performance interference factor is slowing

down the request, and how severe it is? To answer this question,

we extend the aforementioned regression method to cover factors

that are beyond the single factor that contributes most to the ab-

normal long tail. We perform regression throughout the whole

population of the requests, instead of picking the head and the

tail. We divide the whole CDF into 20 buckets of latency segments:

≤ 5%, 5–10%, 10–15%, etc. In terms of implementation, the only

parameter changed from the previous scenario is in the policy
materializer: we generate spanID sets for each of the 20 buckets,

instead of two.

In this experiment, we inject 5 different kinds of anomalies, one

anomaly on each of five VMs. Table 5 shows how we deploy the

anomalies. We perform two experiments with different anomaly

severities, using “kernel decompression” (No. 1) as a reference (i.e.,

not changing it). We intentionally tune down the intensity of No. 2

and No. 3 while tuning up No. 4 and No. 5. Figure 8 shows the

importance of each interference factor in the two experiments. It

shows the top six features of each explanation result, with their

coefficient values normalized to between the greatest coefficient

and the one immediately less than the 6th-biggest coefficient. The

coefficient change for each anomaly between the two experiments

matches our operational behavior of tuning up or down the anom-

alies’ severity. We can see in experiment a that kernel compilation

is considered to be the factor with the highest impact as it executes

all the time. But in experiment b, the kernel decompression (gzip)
takes the top place. It also shows that, with the same pace of web

traffic load, apache2 impacts service latency more severely than

nginx in both cases, which is in line with our perception of the

lightweight nature of nginx server.

6.5.2 Assistance for In-depth Analysis. Sometimes, a diagnostician

may want to discover which subsystem in an application has the

Session 1: Service and Cloud Computing ICPE ’22, April 9–13, 2022, Bejing, China

13

Table 5: Different performance interference factors: 𝐷𝑎 and
𝐷𝑏 indicate the duration of the anomaly; 𝐼𝑎 and 𝐼𝑏 are the
interval of each microburst.

ID Process Deployment 𝐷𝑎 𝐼𝑎 𝐷𝑏 𝐼𝑏
1 tar/gzip kernel decompression 12s 20s 12s 20s

2 stress-ng CPU saturation 5s 20s 5s 40s

3 cc1 kernel compilation all 0s 10s 10s

4 apache2 ab w/ 1k users 5s 20s 5s 10s

5 nginx ab w/ 1k users 5s 20s 5s 10s

cc1

gzipstress-ng-matrix

tar

apache2 nginx

0.2
0.4

0.6
0.8

1.0

Figure 8: Severity of different kinds of performance interfer-
ence factors: the green solid line shows experiment a, and
the red dotted line shows experiment b.

most influence on a slowdown. In this experiment, we inject an

anomaly that happens on the execution path itself. We simulate

a real-world scenario that happened in the Google Gmail back

end [11], in which bursty function calls on the path of an RPC satu-

rate the CPU, leading to performance regression. In our experiment,

we inject a compute-intense function, stressMatrix (multiplying

two 100×100 matrices), that is occasionally called on the path of

the login span in the user service. The burst happens every 100

seconds with duration of 5 seconds. To explain which function in a

process contributes the most to the slowdown, LongTale narrows

the scope to expand stacks only for the process of interest. We pick

20 as the stack depth for this experiment, which covers most of the

function calls. After going through the data-processing pipeline

of LongTale and using the vectors of the expanded stacks as fea-

tures, LongTale correctly highlights stressMatrix as the greatest

contributor to the slowdown.

To better help the analyst understand how the anomalous func-

tion was called, LongTale can generate a flame graph [21] to visual-

ize the aggregated call stacks. A flame graph represents a collection

of stack traces. The bars at the “top” of the flame show the functions

that were executing when the various stack traces were captured.

The underlying bars show the functions in the captured call stacks.

The width of bar reflects the fraction of the time that a given call

stack (the bar’s function, and the calling functions under that bar)

appears in the sampled stack traces.

Figure 9: Re-aggregated flame graph for fast spans.

Figure 10: Re-aggregated flame graph for slow spans.

Figures 9 and 10 are flame graphs generated for the 98%-percentile-

up and the 20%-percentile-down spans using the flame graph gen-

eration tool [21]. The blue box in the middle of Figure 10 highlights

stressMatrix. It takes 42.16% of the CPU. The blue box in the mid-

dle of Figure 9 also highlights the stressMatrix function (the bar

is too short to show the function name), and it takes only 1.58% of

the CPU. This difference in key contributing features between the

re-aggregated slow and fast stack traces is the reason why LongTale

can pinpoint the culprit by running linear regression over randomly

generated vectors. Through the flame graph, an analyst can see

how stressMatrix was called. A de facto practice in industry is

to generate a flame graph when a new version of software is de-

ployed [25], so that when a performance regression occurs, analysts

can revisit the flame graphs of previous versions. The generation of

flame graphs in LongTale both (1) supports this best practice and

(2) pushes the state of the art by recording both fast and slow spans

in a highly distributed setting, instead of just for a single host.

7 RELATEDWORK
There are various performance analysis tools and tracing systems

attempting to mitigate performance issues. We categorize them in

three groups and clarify how LongTale differentiates itself from

these state-of-the-art proposals.

End-to-end application-layer tracing. This is the most mature

performance debugging technology for distributed applications.

X-Trace [18] and Dapper [35] are the earliest proposals pioneer-

ing the concept of Traces and Spans for distributed tracing. Pivot

Tracing [20] extends these early works with the “happened-before

join” operator to incorporate causal tracing in end-to-end anal-

ysis. Canopy [26] enhances traditional application-layer tracing

by decoupling tracing components and a pipeline of tracing data

transformation. All these works on distributed tracing focus on

userspace activities that happen on the execution path of applica-

tions, but not analyze the whole system state across applications

and the underlying operating system. This limits their applicability

for off-path event analysis.

Session 1: Service and Cloud Computing ICPE ’22, April 9–13, 2022, Bejing, China

14

Table 6: Comparison of root cause analysis approaches for microservices.

System
Localization

granularity

Detectable

anomaly

duration

No tracing in-

strumentation

Execution state

analysis

Fine-grained

root cause

explanation

MicroRCA [41] service-level seconds ✓ ✗ ✗

MicroCause [29] service-level seconds ✗ ✗ ✗

ε-Diagnosis [33] service-level seconds ✓ ✗ ✗

Wang et al.[37] service-level seconds ✓ ✗ ✗

LongTale function-level milliseconds ✓ ✓ ✓

Cross-layer tracing. Lacking visibility into the kernel and other

external factors impedes distributed system analysis from solving

trickier performance interference problems induced outside of the

services under examination. To improve system-level visibility in

performance troubleshooting, there have been efforts to incorporate

kernel behaviors in the analysis. Ardelean et al. [11] propose “verti-

cal context injection” by passing application context information to

the kernel via the getpid’s system call arguments. Sheth et al. [34]

rely on a custom kernel module to incorporate system call infor-

mation as a new layer of tracing within application-level tracing.

Zeno [43] collects network packets leaving and arriving at a node to

facilitate temporal causality analysis for off-path events. Seer [19]

relies on multiple kernel metrics combined with application-layer

tracing to relieve resource saturation problems in microservices. All

these works require modifications on either the operating system

kernel or an application-layer tracing framework to collect specific

types of traces to enable cross-layer tracing, which has both se-

curity and performance implication. LongTale, on the other hand,

takes a purely data-oriented approach, where cross-layer traces are

collected and stitched for informative troubleshooting without any
modification on the kernel subsystems or an application-layer trac-

ing framework. This very data-oriented nature enables LongTale to

be easily extended to stitch different types of performance metrics

beyond stack traces.

Host-based performance profiling. There are numerous system-

level performance profiling and tracing tools [2, 6–9, 17] used for

performance troubleshooting. Coupled with effective visualization

aids such as flame graphs [21], they enable an analyst to inter-

pret the lower-level execution state of a given host or a particu-

lar process, and conduct comparative analysis for different (nor-

mal/abnormal) periods. The limitation of such approach, however, is

that it only represents a host-centric view, and at a coarse-grained

time granularity, Real-world microservice deployments may ex-

perience abnormal long-tail latency caused by sparsely scattered

microbursts in resource usage. These types of anomalies cannot

easily be analyzed by conventional methods such as flame graph-

like data visualization as the microburst events will not stand out in

the visualization. LongTale builds on the fine-grained observability

of the existing host-centric profiling tools and advances interpre-

tation of the collected data by combining them with end-to-end

application-layer tracing and machine learning driven analysis.

Root cause localization inmicroservices. There are manyworks

on root cause analysis for failures and security incidents in dis-

tributed systems [27, 42, 44, 45]. Few of them are dedicated to

pinpointing the root cause of performance problems in microser-

vices. The most recent and closely related works are MicroRCA [41],

MicroCause [29], ε-Diagnosis [33], and Wang et al. [37]. In these

works, the authors identify causality relationships between key

performance indicators and relevant system resource metrics (e.g.,

CPU/memory utilization). Ultimately, the resource metrics that are

highly correlated with abnormal microservice performance are pre-

sented as a possible explanation for the anomaly. There are two

limitations in such approaches. First, due to the coarse-grained mea-

surement period of resource metrics (e.g., seconds), their causality

analysis cannot diagnose the kind of short-lived microbursts cap-

tured by LongTale. The usefulness of their anomaly explanation is

also limited; without any execution state analysis, resource metrics

alone do not provide any further detail on actual culprits. LongTale,

on the other hand, can point an analyst directly to a culprit (e.g.,

responsible process or kernel component), as well as provide an

intuitive visual aid for the analyst to navigate the temporal and

spatial distribution of the anomaly, making its diagnosis results

immediately useful. Table 6 summarizes the feature comparison

among them. Besides the advanced research works in academia,

there are also many Application Performance Monitoring (APM)

products that can perform root cause analysis to an extent, e.g.,

Dynatrace [15], Datadog [14], Elastic [16], and AppDynamics [10].

They are mainly built upon graph analysis over the dependency of

services at container level to provide diagnostic insights, which is

coarse grained. So far, none of them can perform automatic expla-

nation for millisecond-level sporadic microbursts of performance

anomalies.

8 DISCUSSION
Not all performance anomalies reflect their behaviors in stack traces

that LongTale relies on. Below, we discuss what types of perfor-

mance anomalies LongTale can and cannot diagnose.

Applicable scenarios. At least four types of abnormal behaviors

can be reflected in the stack traces: (i) CPU intensive incidents,

either in user space or in kernel space, that interfere with the perfor-

mance of critical tasks; (ii) anomalies induced by high I/O activities,

whose behaviors can be characterized by the user and kernel threads

handling disk and network I/O interrupts; (iii) memory-intensive

anomalies, where the kernel swapping routine frequently kicks in

for memory paging; and (iv) hardware failures that force the kernel

or user-space threads to retry failed operations until success. All

these scenarios activate the CPU to perform additional tasks as a

Session 1: Service and Cloud Computing ICPE ’22, April 9–13, 2022, Bejing, China

15

response, which will be captured by LongTale as dominant features

during root cause explanation.

Inapplicable scenarios. There are many performance incidents

rooted in external component failures. The behavior of these exter-

nal components is not captured by the stack traces, and thus not

analyzable by LongTale. For example, external networking issues

(e.g., network hardware failure or misconfiguration) will not show

any traces in cross-layer stitching. As another example, a crashed

DNS server failing to resolve domain name will introduce abnormal

long latency. Yet, because DNS queries are relatively rare, this kind

of repeated queries may not be captured and will not stand out in

stack traces. Also, the type of anomalies that manifest themselves

slowly over time cannot be diagnosed by LongTale. For example, a

long-lasting daemon process may suffer from a memory leak with-

out being detected because memory leaks slowly over time, and

the daemon may not be actively occupying the CPU. In that case,

their function symbols will unlikely be captured in sampled stack

traces, and thus will not be highlighted by LongTale.

9 CONCLUSION
As the microservices-based architecture enables high scalability,

modularity, and flexibility for cloud-based applications, perfor-

mance diagnosing tools should evolve to support better observ-

ability and debuggability. LongTale combines two widely adopted

application- and system-level tracing to enable automatic perfor-

mance explanation. Experiments show that LongTale can pinpoint

different anomalies in an application-agnostic, immediately deploy-

able fashion.

ACKNOWLEDGMENTS
We thank the anonymous reviewers for their valuable comments

and help in improving this paper. This material is based upon work

supported in part by the National Science Foundation under Grant

Numbers 1642158 and 1743363.

REFERENCES
[1] 2015. Adopting Microservices at Netflix: Lessons for Team and Process De-

sign. https://www.nginx.com/blog/adopting-microservices-at-netflix-lessons-

for-team-and-process-design/.

[2] 2017. ktap. https://github.com/ktap/ktap.

[3] 2019. Jaeger. https://jaegertracing.io.

[4] 2019. OpenZipkin. https://zipkin.io.

[5] 2019. sklearn.linear_model.ElasticNet. https://scikit-learn.org/stable/modules/

generated/sklearn.linear_model.ElasticNet.html.

[6] 2020. bpftrace. https://github.com/iovisor/bpftrace.

[7] 2020. Intel VTune Profiler. https://software.intel.com/content/www/us/en/

develop/tools/vtune-profiler.html.

[8] 2020. LTTng. https://lttng.org.

[9] 2020. SystemTap Wiki. https://sourceware.org/systemtap/wiki.

[10] AppDynamics. 2022. AppDynamics: The world’s #1 APM solution. https://www.

appdynamics.com/.

[11] Dan Ardelean, Amer Diwan, and Chandra Erdman. 2018. Performance Analysis

of Cloud Applications. In Proc. USENIX NSDI.
[12] Wensley Bart. 2019. Mark pods as not ready when host goes offline. https://

opendev.org/starlingx/nfv/commit/cdd6c334d9d1d6c0f4de344fff8ef2af28c76e56.

[13] Melanie Cebula. 2017. Airbnb, From Monolith to Microservices: How to Scale

Your Architecture. FutureStack17.

[14] Datadog. 2022. Datadog: Cloud Monitoring as a Service. https://www.datadoghq.

com/.

[15] Dynatrace. 2022. Dynatrace: The Leader in Automatic and Intelligent Observ-

ability. https://www.dynatrace.com/.

[16] Elasticsearch B.V. . 2022. Elastic APM. https://www.elastic.co/guide/en/apm/

index.html.

[17] Stephane Eranian. 2019. Linux kernel profiling with perf. https://perf.wiki.kernel.

org/index.php/Tutorial.

[18] Rodrigo Fonseca, George Porter, Randy H Katz, Scott Shenker, and Ion Stoica.

2007. X-trace: A Pervasive Network Tracing Framework. In Proc. USENIX NSDI.
[19] Yu Gan, Yanqi Zhang, Kelvin Hu, Dailun Cheng, Yuan He, Meghna Pancholi, and

Christina Delimitrou. 2019. Seer: Leveraging Big Data to Navigate the Complexity

of Performance Debugging in Cloud Microservices. In Proc. ACM ASPLOS.
[20] Mohamad Gebai and Michel R. Dagenais. 2018. Survey and Analysis of Kernel

and Userspace Tracers on Linux: Design, Implementation, and Overhead. Comput.
Surveys 51, 2 (2018).

[21] Brendan Gregg. 2016. The Flame Graph. Commun. ACM 59, 6 (2016).

[22] Brendan Gregg. 2018. Linux Extended BPF (eBPF) Tracing Tools. http://www.

brendangregg.com/ebpf.html.

[23] Brendan Gregg. 2019. BPF Performance Tools. Addison-Wesley Professional.

[24] Brendan Gregg. 2019. perf Examples. http://www.brendangregg.com/perf.html.

[25] Brendan Gregg. 2019. USENIX ATC 2017 Invited Talk: Visualizing Performance

with Flame Graphs. https://youtu.be/D53T1Ejig1Q.

[26] Jonathan Kaldor, Jonathan Mace, Michał Bejda, Edison Gao, Wiktor Kuropatwa,

Joe O’Neill, Kian Win Ong, Bill Schaller, Pingjia Shan, Brendan Viscomi, Vinod

Venkataraman, Kaushik Veeraraghavan, and Yee Jiun Song. 2017. Canopy: An

End-to-End Performance Tracing and Analysis System. In Proc. ACM SOSP.
[27] Yushan Liu, Mu Zhang, Ding Li, Kangkook Jee, Zhichun Li, Zhenyu Wu, Jungh-

wan Rhee, and Prateek Mittal. 2018. Towards a Timely Causality Analysis for

Enterprise Security.. In Proc. NDSS Symposium.

[28] Jonathan Mace, Ryan Roelke, and Rodrigo Fonseca. 2018. Pivot Tracing: Dynamic

Causal Monitoring for Distributed Systems. ACM Transactions on Computer
Systems (TOCS) 35, 4 (2018), 11.

[29] Yuan Meng, Shenglin Zhang, Yongqian Sun, Ruru Zhang, Zhilong Hu, Yiyin

Zhang, Chenyang Jia, Zhaogang Wang, and Dan Pei. 2020. Localizing Failure

Root Causes in a Microservice through Causality Inference. In Proc. IEEE/ACM
International Symposium on Quality of Service.

[30] Sam Newman. 2015. Building Microservices: Designing Fine-Grained Systems.
O’Reilly Media, Inc.

[31] Matt Ranney. 2016. What I Wish I Had Known before Scaling Uber to 1,000. In

Proc. GOTO Conference Chicago.
[32] Robert Ricci, Eric Eide, and the CloudLab Team. 2014. Introducing CloudLab:

Scientific infrastructure for advancing cloud architectures and applications. ;
login: 39, 6 (2014), 36–38.

[33] Huasong Shan, Yuan Chen, Haifeng Liu, Yunpeng Zhang, Xiao Xiao, Xiaofeng He,

Min Li, and Wei Ding. 2019. ε-Ddiagnosis: Unsupervised and real-time diagnosis

of small-window long-tail latency in large-scale microservice platforms. In The
World Wide Web Conference. 3215–3222.

[34] Harshal Sheth and Andrew Sun. 2018. Skua: Extending Distributed Tracing

Vertically into the Linux Kernel. In Proc. DevConf.
[35] Benjamin H. Sigelman, Luiz André Barroso, Mike Burrows, Manoj Plakal,

Donald Beaver, Saul Jaspan, and Chandan Shanbhag. 2010. Dapper, a Large-
Scale Distributed Systems Tracing Infrastructure. Technical Report. Google, Inc.
https://ai.google/research/pubs/pub36356

[36] TheOpenTelemetry Authors. 2022. OpenTelemetry: High-quality, ubiquitous, and

portable telemetry to enable effective observability. https://opentelemetry.io/.

[37] Lingzhi Wang, Nengwen Zhao, Junjie Chen, Pinnong Li, Wenchi Zhang, and

Kaixin Sui. 2020. Root-cause metric location for microservice systems via log

anomaly detection. In 2020 IEEE International Conference on Web Services (ICWS).
IEEE, 142–150.

[38] Qingyang Wang, Yasuhiko Kanemasa, Jack Li, Deepal Jayasinghe, Toshihiro

Shimizu, MasazumiMatsubara, Motoyuki Kawaba, and Calton Pu. 2013. Detecting

transient bottlenecks in N-tier applications through fine-grained analysis. In

Proc. IEEE ICDCS.
[39] Weaveworks, Inc. 2018. Sock Shop – A Microservice Demo Application. https:

//microservices-demo.github.io.

[40] Daniel Weibel. 2019. How to autoscale apps on Kubernetes with custom metrics.

https://learnk8s.io/autoscaling-apps-kubernetes.

[41] Li Wu, Johan Tordsson, Erik Elmroth, and Odej Kao. 2020. MicroRCA: Root Cause

Localization of Performance Issues in Microservices. In Proc. IEEE/IFIP NOMS.
[42] Yang Wu, Ang Chen, Andreas Haeberlen, Wenchao Zhou, and Boon Thau Loo.

2017. Automated Bug Removal for Software-Defined Networks. In Proc. USENIX
NSDI.

[43] Yang Wu, Ang Chen, and Linh Thi Xuan Phan. 2019. Zeno: Diagnosing Perfor-

mance Problems with Temporal Provenance. In Proc. USENIX NSDI.
[44] Wenchao Zhou, Qiong Fei, Arjun Narayan, Andreas Haeberlen, Boon Thau Loo,

and Micah Sherr. 2011. Secure Network Provenance. In Proc. ACM SOSP.
[45] Wenchao Zhou, Suyog Mapara, Yiqing Ren, Yang Li, Andreas Haeberlen, Zachary

Ives, Boon Thau Loo, and Micah Sherr. 2012. Distributed Time-aware Provenance.

Proceedings of the VLDB Endowment 6, 2 (2012), 49–60.
[46] Hui Zou and Trevor Hastie. 2005. Regularization and variable selection via the

elastic net. Journal of the Royal Statistical Society: series B (Statistical Methodology)
67, 2 (2005).

Session 1: Service and Cloud Computing ICPE ’22, April 9–13, 2022, Bejing, China

16

https://www.nginx.com/blog/adopting-microservices-at-netflix-lessons-for-team-and-process-design/
https://www.nginx.com/blog/adopting-microservices-at-netflix-lessons-for-team-and-process-design/
https://github.com/ktap/ktap
https://jaegertracing.io
https://zipkin.io
_
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.ElasticNet.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.ElasticNet.html
https://github.com/iovisor/bpftrace
https://software.intel.com/content/www/us/en/develop/tools/vtune-profiler.html
https://software.intel.com/content/www/us/en/develop/tools/vtune-profiler.html
https://lttng.org
https://sourceware.org/systemtap/wiki
https://www.appdynamics.com/
https://www.appdynamics.com/
https://opendev.org/starlingx/nfv/commit/cdd6c334d9d1d6c0f4de344fff8ef2af28c76e56
https://opendev.org/starlingx/nfv/commit/cdd6c334d9d1d6c0f4de344fff8ef2af28c76e56
https://www.datadoghq.com/
https://www.datadoghq.com/
https://www.dynatrace.com/
https://www.elastic.co/guide/en/apm/index.html
https://www.elastic.co/guide/en/apm/index.html
https://perf.wiki.kernel.org/index.php/Tutorial
https://perf.wiki.kernel.org/index.php/Tutorial
http://www.brendangregg.com/ebpf.html
http://www.brendangregg.com/ebpf.html
http://www.brendangregg.com/perf.html
https://ai.google/research/pubs/pub36356
https://opentelemetry.io/
https://microservices-demo.github.io
https://microservices-demo.github.io
https://learnk8s.io/autoscaling-apps-kubernetes

	Abstract
	1 Introduction
	2 Background
	3 Motivating Scenario
	4 System Design
	4.1 Design Goals
	4.2 Architecture Overview
	4.3 End-to-end Workflow

	5 Implementation
	6 Evaluation
	6.1 Experimental Setup
	6.2 Anomaly Explanation
	6.3 Service-Agnostic Anomaly Diagnosis
	6.4 Diagnosis Performance Breakdown
	6.5 Other Use Cases

	7 Related Work
	8 Discussion
	9 Conclusion
	Acknowledgments
	References

