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ABSTRACT

Driven by the need to find alternative accelerators which can viably
replace graphics processing units (GPUs) in next-generation Super-
computing systems, this paper proposes a methodology to enable
agile application/hardware co-design. The application-first method-
ology provides the ability to come up with design of accelerators
while working with real-world workloads, available accelerators,
and system software. The iterative design process targets a set of
kernels in a workload for performance estimates that can prune the
design space for later phases of detailed architectural evaluations.
To this effect, in this paper, a novel data-parallel device model
is introduced that simulates the latency of performance-sensitive
operations in an accelerator including data transfers and kernel
computation using multi-core CPUs. The use of off-the-shelf simula-
tors, such as pre-RTL simulator Aladdin or multiple tools available
for exploring the design of deep neural network accelerators (e.g.,
Timeloop) is demonstrated for evaluation of various accelerator de-
signs using applications with realistic inputs. Examples of multiple
device configurations that are instantiable in a system are explored
to evaluate the performance benefit of deploying novel accelerators.
The proposed device is integrated with a programming model and
system software to potentially explore the impacts of high-level pro-
gramming languages/compilers and low-level effects such as task
scheduling on multiple accelerators. We analyze our methodology
for a set of applications that represent high-performance computing
(HPC) and graph analytics. The applications include a computa-
tional chemistry kernel realized using tensor contractions, triangle
counting, GraphSAGE and Breadth-first Search. These applications
include kernels such as dense matrix-dense matrix multiplication,
sparse matrix-spare matrix multiplication, and sparse matrix-dense
vector multiplication. Our results indicate potential performance
benefits and insights for system design by including accelerators
that realize these kernels along-side general purpose accelerators.
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1 INTRODUCTION

The need of processing and analyzing extremely large amount of
data with performance and power/energy constraints has motivated
the development of many highly-specialized and energy-efficient
computing systems. This trend is evident in embedded systems,
such as mobile phones or smart sensors, where systems contain
a myriad of small, specialized application-specific integrated cir-
cuit (ASIC) processors. Large-scale high-performance computing
(HPC) systems have also embraced heterogeneous devices to speed
up computation while maintaining a strict power budget. Look-
ing forward, one can imagine that more application-specific accel-
erators will be incorporated into System on Chip (SoC) designs,
which will contain general-purpose computing elements, such as
central processing unit (CPU) and graphics processing unit (GPU)
cores, application-specific accelerators (e.g., generalized matrix-
multiplication (GEMM)), and semi-programmable coarse-grain re-
configurable devices. Designing such increasingly complex devices
for future systems is becoming an incredibly difficult task.

To further increase this complexity, it has become evident that
novel hardware concepts alone do not necessarily provide the re-
quired performance and energy efficiency increase and that, to take
full advantage of emerging architectures, novel system software
and algorithms also need to be co-developed in a tight, agile, and it-
erative co-design cycle [12]. Since both applications/algorithms and
processing architectures are becoming increasingly complex, there
is a need to develop agile, composable, and flexible methodologies
for hardware/software co-design.

State-of-the-art design space exploration (DSE) tools mostly fo-
cus on the design of stand-alone accelerators [13]. While several
tools exist that allow integration of custom processing elements in
a SoC [10], they mostly provide an interface with the rest of the SoC
but leave the actual design and DSE to external tools and do not gen-
erally tackle the co-development of system software and algorithms.
Traditional DSE is still too slow to allow an agile hardware/software
co-design cycle, which is not only a problem for those domains
under strict time-to-market expectation but also for domains, such
as scientific computing using artificial intelligence (AI), in which
the hardware/software co-design space is too large and complex to
be explored with traditional methodologies. A promising direction
is represented by novel tools that enable fast, pre-RTL simulations
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of hardware concepts, such as Aladdin [18], Structural Simulator
Toolkit (SST) [11], and SST/Macro. However, these tools still focus
mostly on the hardware side and do not provide an easy way to
incorporate novel algorithms and system software.

In this work, we identify three primary challenges: (1) devel-
opment of methodologies and tools that allow execution of full
applications with realistic input set on novel hardware concepts;
(2) development of composable methodologies that allow new hard-
ware designs to be integrated with existing hardware components
and other simulated accelerators; (3) development of agile method-
ologies and tools that provide fairly accurate solutions within a
short term (pre-RTL) and greatly reduce the design space to be
explored in a later phase. To solve these challenges, we proposed
novel, agile, accurate, and composble methodologies and tools for
true hardware/software co-design. Our methodology allows (1)
new hardware concepts to be evaluated with a full, state-of-the-
art software stack, (2) fast and accurate pre-RTL evaluation, (3)
inter-operability with existing and trusted tools for hardware de-
velopment, (4) full-system integration with existing hardware, such
as GPU and deep learning (DL) accelerators.

Our hardware/software co-design methodology is based on an
asynchronous task-based programming model and runtime for ex-
tremely heterogeneous systems, namely Minos Computing Library
(MCL) [6], integrated with a hardware abstraction layer to incor-
porate novel hardware concepts modeled with third-party off-the-
shelf simulators and emulators. The iterative design methodology
is demonstrated in Figure 1. The advantages of our methodology is
twofold. On one side, MCL runtime software allows the execution
of full applications with representative input sets on modern het-
erogeneous systems. On the other, the hardware abstraction layer
provides an easy and clean interface to include output parameters
from most modern simulators and emulators without requiring
any modification to those tools. The hardware abstraction layer
provides a system-level view of the simulated devices, which can
be queried with existing command line tools. We call our simulated
device as Proteus (named with reference to Greek mythology). With
the proposed Proteus device, the final result is a set of tools that en-
able true hardware/software co-design of applications/algorithms
and architectural concepts. The new hardware designs can be inte-
grated in existing heterogeneous systems while the MCL runtime
will seamlessly execute or emulate tasks on either real or simu-
lated devices. Also note that both MCL runtime and Proteus device
can be used separately and/or in combination with other tools,
which might be important for existing development cycles. To the
best of our knowledge, our methodology is the first that allows
studying new hardware designs next to existing heterogeneous
devices, while executing full modern task-based applications, and
transparently integrating third-party hardware development tools.

To demonstrate the effectiveness of our methodology, we first
provide a set of sensitivity studies in which we integrate sev-
eral external hardware development tools, namely Aladdin [18],
Timeloop [13] and Accelergy [22], Sparseloop [23], MAESTRO [9],
and Scale-Sim [15] using representative kernels from HPC, graph
and Al domains. Next, we show how the selected hardware tools
can be seamlessly integrated with existing heterogeneous devices in
amulti-GPU system. Finally, we demonstrate how the MCL runtime
scheduler can effectively employ all available resources to achieve
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Figure 1: Design space exploration using Proteus: An itera-
tive process to explore the design of domain-specific accel-
erators using hardware design tools for application perfor-
mance engineers. The proposed methodology enables agile
design space exploration for a workload of interest.

higher performance. Our results demonstrate orders of magnitude
performance benefit by employing custom accelerators, especially
for an application that employs dense computation kernels.

In summary, this paper makes the following broad contributions:

o A novel methodology for true, agile, and composable hard-
ware/software co-design.

o A set of tools to support such co-design methodology and
that allows execution of existing complex applications.

e Several co-design studies of novel hardware accelerators for
HPC, graph analytics, and Al domains.

o A full performance and power evaluation of both the novel
accelerators and the full integrated system.

The rest of this paper is structured in the following way. Sec-
tion 2 summarizes existing knowledge and related work. Section 3
describes our novel methodology. Section 4 introduces the hard-
ware abstraction layer. Section 5 shows our experimental evaluation.
Finally, section 6 concludes this work.

2 RELATED WORK

Simulation is widely utilized to predict the performance of computer
architectures before hardware is produced. It provides a platform
to validate ideas before the expensive path of producing hardware
is pursued. Emulation is also utilized for the same purpose. How-
ever, it limits exposure to observable system states and does not
expose the internal state of the system in simulation. Therefore,
simulations can be time consuming based on the level of accuracy
and detail required. Both can correctly predict the performance of
an application on an emerging architecture or system.

Cycle-level simulators such as Gemb5 [3] are widely used in the
industry to design next-generation processor architectures. Micro-
architectural simulators model different functional units, register



Session 2: GPUs and Heterogeneous Platforms

Table 1: Summarized descriptions of hardware design exploration tools used in this work.
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‘ Simulator

Approach

Kernels

Design Space

Metrics

Aladdin [18]

pre-RTL simulation of
dynamic traces

arbitrary functions
expressed in

loop unrolling,
pipelining, data

number of cycles,
area and power for 45

Timeloop [13]

high-level program partitioning nm
exhaustive search number of eveles
(mapper) to find an dense computation . yees,
architecture area and energy for

efficient mapping given
a problem onto specified
accelerator architecture

expressed through
bounded loops

hierarchy and tiling

16nm, 40 nm and 65
nm [22]

Sparseloop [23]

exhaustive search to
find an efficient
mapping given a
problem onto specified
accelerator architecture

sparse computation
expressed through
bounded loops

architecture
hierarchy, tiling,
sparse input format

number of cycles,
area and energy for

and sparse 16 nm, 40 nm and 65
optimization nm [22]
(skipping and gating)

analytical tool for
modeling and
evaluating the
performance of different
mappings of a problem
onto parametered
architecture

MAESTRO [9]

limited set of
operators included
within the tool

tiling factors and
parameters of fixed
architecture

number of cycles,
area and power, etc.

cycle level memory
trace and utilization for
evaluating the
performance of different
mappings of a CNN
onto a systolic array

Scale-Sim [15]

limited set of
convolution-based
operators to support
CNNs

Parameters of fixed
systolic architecture,
dataflow mapping
strategy (weight,
input, output)

number of cycles,
bandwidth
requirements,
utilization, etc.

files, load/store queues, pre-fetching logic, and the timing infor-
mation for various micro-operations. To assess the impact of an
micro-architectural level change such as increased instruction win-
dow, or a reliability mechanism, each and every instruction of a
program is executed, whereby providing the opportunity to analyze
the state of the micro-architecture (architectural state) at each cycle.
This level of detail can be prohibitive and does not make it feasible
to run large workloads.

Cycle-approximate simulators [19, 24] have been proposed to
limit the complexity associated with cycle-accurate simulators
while being faster and nearly as accurate using techniques such as
statistical simulation, sampling, and generation of synthetic bench-
marks. Simulation time can be reduced significantly at the expense
of reduced accuracy or not getting the complete picture of micro-
architectural state. For example, Zsim [17] reports up to a 24%
difference in Instructions per cycle for a multi-core processor.

However, cycle-approximate simulators do not have the ability
to execute operating system code. Whereas, full system emulators
such as AMD SimNow [2] have the support to execute the complete
software stack. Virtualization is used to emulate target system on
a host processor. Only a functional representation of the system
that ensures correctness of an executing application is maintained
and timing or internal state of the system can not be provided.
Therefore, different simulators are coupled together to gather cycle-
accurate timing information for some fancy executed instruction
and this information is utilized in the later phases of the emulation.
Manifold [21] (QEMU/KVM and a cycle-accurate simulator) is an
example of a coupled framework.

Our proposed work is along the lines of coupling capabilities of
multiple frameworks to help with the design of next-generation
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computing nodes in systems that are expected to do well in the era
of convergence of HPC, graph analytics and data analytics. Driven
by these needs, we investigate the benefit of employing spatial
accelerators whose hardware is not available. The characteristics
of accelerators are defined by running stand-alone simulations.
Frameworks such as Timeloop [13] and MAESTRO [9] are inspired
by the wide interest in deep neural network acceleration. We utilize
these tools in our work to accelerate kernels such as dense general
matrix multiplication. The simulation frameworks utilized in our
work are discussed in Section 3.3 and summarized in Table 1. We
employ the outputs produced by these tools in our framework
as a hybrid simulation capability by emulating these devices on
existing CPUs along with other hardware accelerators in the system
all while running state-of-the-art system software and operating
system. This provides the opportunity to investigate system-level
design issues and assess the benefit to real-world workloads with
almost same speed as if the accelerator hardware is available.

3 METHODOLOGY

To solve the challenges listed earlier, we propose a novel agile, flexi-
ble, and composable hardware/software co-design methodology. We
assume a SoC in which multiple computing elements co-exist. Some
of these computing elements are general purpose, programmable
devices (e.g., GPU cores) while others are highly-specialized, power-
efficient accelerators designed for specific tasks. These may include,
among others, accelerators for tensor algebra computations, Al ac-
celerators (such as NVIDIA Deep-Learning Accelerator (NVDLA)),
and/or graph analytics. Figure 2 shows our reference SoC design,
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Figure 2: Our reference SoC design. An SoC is envisioned in
which general purpose and programmable devices, such as
CPU and GPU cores are placed next to highly-specialized
computing elements designed, for example, to accelerate
tensor algebra computation, Al, and/or graph analytics.

where the “sea of accelerators” represents the highly-specialized
computing elements that could execute different functions.

We also assume that some of the computing elements are known
or understood, while other represent new hardware designs that
need to be integrated with the rest of the system. The objective
of our methodology is to provide an agile and flexible simulation
environment in which the part of the application that runs on
the known computing elements is executed at native speed (with
little insights on the execution unless specific instrumentation is
employed) while the part of the application that executes on the
novel hardware concepts is executed on hardware simulators that
provide detailed information about the execution timing and power
consumption. We refer to the two phases of this hybrid simulation
environment as “Fast Path” and “Detailed Path”

Our methodology is based on three main components: (1) a
modern task-based runtime based on MCL programming model and
runtime (Section 3.1), (2) an interface to seamlessly plug in and out
new hardware designs based on the Portable Computing Language
(POCL) library (Section 4), and (3) a set of hardware development
tools that provide detailed timing and power information, including
Aladdin [18], and Accelergy [22] (Section 3.3). We start by factoring
the application in computational tasks, which could be sequential or
data parallel. Tasks that execute on known devices (i.e., on the fast
path) are performed at native speed on the actual device. Tasks that
execute on the novel accelerators (i.e., on the detailed path), instead,
are modeled or simulated. Thus, for example, GEMM and spMV
operations could be scheduled on novel accelerators while all other
tasks could be scheduled on GPU devices. Users can easily adapt
their algorithms to take advantage of the new hardware designs,
e.g., by tiling large GEMMs or tensor contractions in a way that fits
the new GEMM accelerator.

Our approach has several advantages: (1) The overall simula-
tion is much faster than using cycle-accurate or cycle-approximate
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simulators. This, in turn, makes it possible to execute full applica-
tions or application workflows with realistic input sets, which is
generally prohibitive on cycle-accurate simulators, during the DSE
phase. Moreover, the increased speed enables an agile development
cycle and potentially allows to explore a larger co-design space. (2)
The proposed methodology is flexible and enables users to quickly
plug devices in and out without modifying the application. For
example, the system can be easily configured with varying num-
ber of GEMM accelerators to support convolution operation in Al
workloads or with larger CONV accelerators. (3) Our methodology
is composable. Different development tools can be integrated and
used concurrently, including hardware simulators, performance
models, or field-programmable gate array (FPGA) emulation. This
allows hardware developers to continue using their trusted tools
and still interact with the rest of the system when executing a
full application. Overall, our novel methodology enables true hard-
ware/software co-design and provides a valuable tool to design next-
generation computing systems through the possibility of exploring
a larger space in which both hardware concepts and algorithms
can change simultaneously, along with the ability to execute large
input sets.

3.1

The Minos Computing Library (MCL) [6] is an asynchronous task-
based programming model and runtime for extremely heteroge-
neous systems. MCL enables true portability across a wide range of
heterogeneous devices, including CPU and GPU devices, FPGA and
AT accelerators. The current MCL release supports all major GPU
vendors, Xilinx and Altera FPGAs, and NVDLA. MCL consists of
two main components: a system-level scheduler and one or more ap-
plications. MCL applications are factored into computational tasks,
units of work that are generally executed on data-parallel devices.
The tasks submitted by applications are executed asynchronously,
which allows overlapping data transfer and task execution. Each
application submits its request to a system-level scheduler, which se-
lects the best available device to execute the task based on a variety
of scheduling algorithms. Several schedulers are made available in
MCL, including throughput-oriented, power-aware, locality-aware,
and hybrid (locality-aware combined with throughput-oriented).

MCL has the ability to manage multiple classes of heterogeneous
devices at the same time. Users can specify the device class on
which they wish to execute a task but not the specific device. This
design feature allows MCL to execute programs on systems that are
very different from the one on which the application was originally
developed. For example, applications developed on a laptop (e.g.,
single Intel GPU) can be executed on a NVIDIA DGX system (e.g.,
eight NVIDIA GPUs) without any modification. MCL will automati-
cally manage the multiple GPUs, exploit data locality, perform load
balancing, and manage asynchronous task execution.

In this work, we extend MCL to support a“simulated device”
This include a new device class (MCL_TASK_PROTEUS) and a new
kernel format. The former is a natural extension of the standard flags
(MCL_TASK_CPU, MCL_TASK_GPU, MCL _TASK_NVDLA, MCL_TASK_FPGA)
and allows users to indicate that certain tasks should be executed
on a simulated device. Note that these flags can be combined,
hence users can indicate more than one device class or all of them

Minos Computing Library
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(MCL_TASK_ALL), giving the MCL scheduler the flexibility to choose
the best device based on contingent situation. The latter is required
to support fixed-function accelerators. Since fixed-function acceler-
ators are not programmable, we introduced the new kernel format
MCL_KERNEL_VOID to indicate that the kernel is implemented in
the accelerator and hence does not require the user to provide any
kernel code. When MCL encounters one of such kernels, it will not
attempt to compile it for a programmable device, as it is the case
for OpenCL kernel code or SPIR-V. Instead, as for binary formats,
MCL associates the kernel with only a specific device. Note that
it is still necessary to specify which kernel a task executes even
for fixed-function accelerators. In fact, similar to other formats, an
accelerator may implement different kernels (e.g., single-precision
GEMM, double-precision GEMM, SpMV, etc.), thus users need to
indicate which functional unit they intend to use for a task.

3.2 Portable Computing Language

The Portable Computing Language (POCL) [8] is a multi-architecture,
open-source OpenCL implementation based on the Low Level Vir-
tual Machine (LLVM) framework and the clang C interface. POCL
supports OpenCL 1.2 standard and many features from the 2.0
standard, including support for SPIR-V and shared virtual buffers.
Currently, POCL supports various architectures, including various
CPU models (with a “basic” and “pthread” OpenCL implementation),
NVIDIA and AMD GPUs, through CUDA and HSA, respectively. Ad-
ditionally, POCL implements “fixed-function” accelerators through
CL_DEVICE_TYPE_CUSTOM, which provides an interface for devel-
opers to attach new hardware designs to POCL. The fixed-function
accelerators appear on the system as any other OpenCL device, thus
tools that generally work with OpenCL libraries (such as clinfo)
can also see these accelerators. We leverage this interface to seam-
lessly include simulated devices among the list of OpenCL devices
so that MCL can automatically detect the simulated devices. This
goes beyond MCL and one can also write an OpenCL program to
access the Proteus devices.

3.3 Simulation Frameworks

Aladdin. Aladdin [18], is a pre-register-transfer level (RTL) sim-
ulation framework that gives the ability to quickly explore the de-
sign of data parallel accelerators. This design philosophy aligns
strongly with our work. Aladdin takes a high-level program as
input in place of the kernel that needs to be accelerated and ex-
tracts a dynamic data dependence graph (DDDG) describing the
accelerator. With this initial unconstrained graph, optimizations
and hardware-related constraints are applied to create a model of
accelerators’ activity, essentially mapping an application dataflow
graph onto preset set of hardware resources. Some architectural
optimizations that can be applied during the mapping phase are
loop unrolling (parallelization factor), loop pipelining and the num-
ber of memory ports available for the datapath to connect to the
nearest memory hierarchy. Power and performance is estimated
using dynamic traces obtained from a driver program. Cycle-level
resource activity is tracked and is provided as input to the power
model. Area estimation is done using pre-populated lookup tables
corresponding to each resource in the DDDG. Validation of the
Aladdin framework has been done against RTL simulators. Use of
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Aladdin eases exploration of various flavors of hardware acceler-
ators beyond what is possible with other simulators used in this
work. This makes Aladdin a valuable tool in our work.

Timeloop/Sparseloop. Timeloop [13] is a framework to enable
design space exploration of arbitrary deep neural network accelera-
tor designs. The workload is represented via nested loops with fixed
bounds and linear indexing, and loop bodies that can be reordered.
The architecture must be specified including number and type of
processing elements, number and type of memory levels and the
data types and widths, whereas the interconnection topology is
automatically inferred by the tool. Mapspace exploration is the
main facet of the Timeloop framework and involves coming up
with a configuration of the accelerator that provides the best en-
ergy and performance efficiency. An efficient mapping is one that
schedules operations and gets the best utilization of the available
resources and moves data to/from the accelerator while achieving
data re-use for a given input. Since there are many different possibil-
ities, a heuristic-based search of possible mappings is done to meet
user-defined criteria. To assist with this search, a model is used
to quantify the quality of each mapping in terms of performance
and energy utilization. The model uses Accelergy [22] for energy
estimations.

Sparseloop [23] is an extension of Timeloop framework that
models design space exploration of sparse tensor accelerators. To
support sparse computations, the Timeloop framework is extended
with the ability to specify the overheads related to metadata stor-
age (associated with compressed storage formats), the probability
distribution of the sparse inputs, and optimizations used in the hard-
ware to support sparse computation (such as skipping and gating).
Given this information, Sparseloop starts with the assumption that
computation is dense, subsequently it starts to filter out ineffectual
computations (zero results) and other metrics such as reduced num-
ber of memory accesses due to sparsity, etc. In a manner similar to
Timeloop, Sparseloop can automatically search the potential map-
ping space given a workload and an architecture. The performance,
area and energy numbers are reported after the analysis.

MAESTRO. Modeling Accelerator Efficiency via Spatio-Temporal
Resource Occupancy (MAESTRO) is another tool to explore the
design space of deep neural network accelerators [9]. It is an ana-
lytical modeling tool to find efficient loop tilings and orderings, and
spatio-temporal mapping of data onto compute units. Only built-in
kernels or operations are supported by MAESTRO and there is
no generic way to specify the problem as in Aladdin or to some
extent in Timeloop (albeit, only loops). Also, the architecture is
fixed. Different parameters of the architecture can be varied, e.g.,
number of processing elements, size of L1 and L2 caches, network-
on-chip bandwidth, and off-chip bandwidth. MAESTRO operates in
a similar manner to Timeloop and does different analyses including
re-use of data elements spatially and temporally. A cost model is
used to quantify the quality of each mapping. Activity counts are
obtained during the analysis and used for energy estimations using
look-up tables (based off of 28nm technology). The performance,
area and power numbers are reported after the analysis.

Scale-Sim. Scale-Sim [15] is a tool for exploring the design space
of convolutional neural network accelerator that has a systolic
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Figure 3: Proteus offload compute model: Proteus device
models a data-parallel array of compute units with each be-
ing able to execute one work-group (according to OpenCL
specification). Each compute unit is a collection of PEs as
obtained through hardware design exploration tools. For ex-
ample, each compute unit can perform 64x64 GEMM.

architecture. It provides cycle accurate estimates of number of
compute and stall cycles, resource utilization, on-chip SRAM cache
and off-chip DRAM memory bandwidth requirements. Memory
traces are generated at each cycle of the simulation. One can vary
different parameters of the systolic architecture such as the height
and width of the systolic array, the size of the on-chip caches and the
dataflow (e.g., weight or output stationary). The number of cycles
at the end of the simulation are used to estimate the performance of
executing a kernel. In our work, we utilized the Scale-Sim simulator
to do a GEMM operation on the systolic array. The tool does not
report area and power information unlike other tools utilized in this
work. Therefore, we used Aladdin to obtain area information for
accelerators designed using Scale-Sim for some of our experiments.

Most tools are feasible for designing accelerators for dense com-
putations, whereas only a few design tools provide the opportunity
to explore sparse computations. In this work, for sparse computa-
tions, we used Aladdin and Sparseloop; whereas, Aladdin, Timeloop,
MAESTRO, and Scale-Sim were used for dense compute kernels. A
summary of all simulators used in this work is provided in Table 1.

4 PROTEUS EMULATOR

Proteus device models a data-parallel device with multiple compute
units as shown in Figure 3. Each compute unit contains multiple pro-
cessing elements (PEs) as obtained through the pre-hardware simu-
lators. The Proteus device is emulated on a multi-core CPU and im-
plemented using the POCL framework. The POCL framework pro-
vides all the basic functionality to realize a new OpenCL device. It
handles all the boiler-plate code to realize the OpenCL standard. For
example, the ability to check the legitimacy of arguments provided
to an OpenCL function call and return appropriate code to the caller.
Using this framework, a new device is implemented to realize the
Proteus device. The Proteus device does not utilize the LLVM-based
compilation framework inside POCL since it uses builtin kernels
(i.e., using OpenCL’s c1CreateProgramWithBuiltInKernels).

At initialization phase of the Proteus device, each device is indi-
vidually configurable to have different number of compute units,
amount of device memory, the different kernels it supports and
latency of various operations. This is done through the use of en-
vironment variables and configuration files. They are also used to
instantiate multiple devices. For example, POCL_DEVICES can be
used to instantiate multiple Proteus devices. Each device can im-
plement different functions and is parameterizable through the use
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Platform #@: Portable Computing Language
PROTEUS Dense Matrix Multiplic
D PROTEUS Dense Matrix Multiplication Kernel
NVIDIA CUDA
#0: NVIDIA Tesla

Platform #1:
+-- Device
+-- Device
+-- Device

- Device

#2: NVIDIA Tesla
#3: NVIDIA Tesla

Figure 4: System level view with Proteus devices. POCL’s
OpenCL implementation lists CPU and 2 Proteus devices
supporting GEMM kernels on a single platform. NVIDIA’s
OpenCL implementation lists the available NVIDIA GPU’s
on a separate platform. OCL-ICD is utilized to list devices
from both the implementations.

of environment variables, e.g., POCL_PROTEUS@_PARAMETERS corre-
sponds to the configuration file that is used to configure the first
Proteus device. Changing the number of devices does not require
re-compilation of application code or the POCL framework and
can occur seamlessly. The Proteus device can co-exist with other
backends supported by POCL. Also, one does not have to restrict to
POCL’s OpenCL implementation for using other devices in the sys-
tem and vendor libraries can be used, e.g., by using the installable
client driver. In our experiments, we use POCL’s OpenCL implemen-
tation alongside NVIDIA’s OpenCL implementation. A system-level
view of this configuration is presented in Figure 4. It includes two
platforms with POCL’s OpenCL implementation listing a CPU and
two Proteus devices, and NVIDIA’s OpenCL implementation listing
the V100 GPUs.

The Proteus device uses off-line simulations to populate the
various parameters of the device through configuration files. Off-
line simulations were performed instead of dynamically loading
hardware simulators to avoid the problem of the simulation taking
longer than the time to execute a kernel. A long-running simulation
can result in in-accurate performance estimates as the scheduler
may not select the Proteus device for future invocation of kernels.
A scheduler keeps track of available resources on a device and,
if assigned tasks are still pending, then future work is not sched-
uled resulting in deteriorating performance. Therefore, this design
choice of performing off-line simulations is adopted in this work.

Implementation. The data parallelism in the Proteus device is
modeled through parallel threads. Based on the user configurable
parameter of number of compute units, a pool of threads is formed
at initialization time. These threads operating in parallel are used
later on to perform work assigned to the device. Having multiple
threads gives the ability to execute a kernel with multiple work-
groups in a data-parallel manner. The work is pushed to the device
when a kernel is enqueued for invocation from the application
side. Queues manage the work sent to the device. In particular, two
queues are used. One to enqueue all pending kernels that are ready
to be executed on the compute units and the other is used to manage
the decomposition of each kernel invocation into individual work-
groups. A work-group is the minimum unit of work that will execute
on a compute unit. The available compute units on the device get
chunks of work-groups from the queue to perform computation on.
Getting chunks of work-groups is equivalent to getting portions of
a data array. The compute unit then simulates the occurrence of this
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computation, i.e., no actual work is done. Essentially, the compute
unit delays the execution of each work-group as specified during
initialization of the device. Once the compute unit has finished the
assigned work, it gets the next set of available work. If there is no
work in the work-group or kernel queues, then the worker threads
go into a waiting state. Upon completion of a kernel invocation, an
OpenCL compatible signal is sent to mark the completion of a task.

The notion of simulating the work performed by a device may
not be feasible for applications that require decisions to be made
based on computed values. For example, deciding to take a certain
execution path versus another path. There are alternative methods
in which one may tackle this, e.g., by using pre-computed execution
paths. But, it is to be expected that this may not work for every
application, e.g., due to size of workload making pre-computation
in-tractable. As with any other simulation-based framework, this is
a limitation of proposed work.

Similar to kernel invocations, data transfer to/from the device is
done through queues. Once the application initiates a read or write
command, the Proteus device simulates the latency of these opera-
tions based on user-specified data-transfer rates during the initial-
ization phase of the device. The data transfers can take place inde-
pendently of the kernel invocations that take place asynchronously.
The delays at the device side are based on the amount of data
transferred and fixed overhead for each transfer.

The support for built-in kernels by a Proteus device requires one
to define the inputs and outputs of the kernel. These are described
using the configuration file. At runtime, when the application cre-
ates a kernel to run on a specific device, our implementation checks
whether the programmer provided the correct kernel arguments.
One can query the Proteus devices on an existing system to know
which built-in kernels are supported. Additionally, it is possible to
query the device to get information about the work-group size, i.e.,
the smallest unit of work performed by each compute unit. This
provides a flexible and OpenCL compliant programming interface.

Design Flow. A typical flow to explore the design space of ac-
celerators using the proposed setup is shown in Figure 1. The initial
step is to identify the set of applications that need to be targeted for
performance optimization. A common set of performance critical
kernels is identified across all the applications. Then, hardware
simulators are used to explore various architectural design options
of the accelerators for desired kernels. For example, if one decides
to design an accelerator with the GEMM accelerators; the next step
is to devise the smallest amount of work to be performed by each
compute unit on the accelerator. This determination is not rigid
and can be refined iteratively in line with the goals of the proposed
framework. Based on this design choice that may be dictated by
some characteristic of the application, the hardware design space
of accelerators is explored. The hardware design space itself has
tradeoffs and one has to balance between power and performance
efficiency goals. This can be dictated by end usage of the accel-
erators, e.g., HPC platforms require high performance, whereas,
mobile computing platforms require high energy efficiency.

The available simulators are used to obtain key metrics such as
performance and power numbers for kernels of interest and various
configuration files are populated for Proteus devices based on the
requirements of the experiments. At this step, one needs to decide
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the number of compute units to include on a single device among
other parameters. This may again be dictated by application char-
acteristics. For example, an application may realize tiled GEMMs
with each tile being of dimensions 512x512. Then to perform these
GEMMs efficiently on an accelerator where each compute unit is
able to execute 64x64 GEMMs, a total of 64 compute units may
be included on a single device. This gives the ability to perform a
GEMM of dimensions 512x512 within similar time period as that
required to perform one unit of work on a single compute unit.

Next, the configuration files are utilized to setup various systems
with varying number of devices. The MCL'’s runtime environment
is then setup and the task scheduler is initialized. Applications are
now executed and metrics of interest are measured. The perfor-
mance estimates are then used to refine the accelerator designs and
system setups as desired. Here, one has multiple paths forward if
performance and power goals have not been met. It may include
trying varying number of devices, or devices with varying number
of compute units. This can all be done at the MCL level. To further
refine the design of individual compute units, one can go back and
try different optimizations at the architectural exploration phase.
This may include trying different unit of work performed by each
compute unit and/or using more area (number of PEs) to decrease
the latency. The next section highlights the design flow in more
detail with some applications.

5 EXPERIMENTS AND RESULTS

We design our experiments to evaluate the performance benefit of
having specialized accelerators for a set of kernels that have broad
applicability across multiple domains. We demonstrate a typical
design flow that would be followed to explore the use of novel
accelerators as highlighted in Figure 1 and discussed in Section 4.
The experiments start with design space exploration for these ker-
nels and getting power/performance metrics by using off-the-shelf
simulators (Section 3.3). After this phase, various configurations
of Proteus devices are instantiated and the end-to-end execution
runtime (performance) of various applications in hybrid setup with
simulated Proteus devices and GPUs devices is quantified.

5.1 Experimental Setup

We use NVIDIA DGX-V system with 8 Tesla V100 GPUs and Intel
Xeon E5-2698 CPUs as our baseline in the experiments. The CPUs
are used for the Proteus devices. In all of our experiments, speedup
as compared to a pure GPU-based system is presented. Moreover, to
ensure a fair application-level comparison, both Proteus and GPU
devices use the same application code (i.e., OpenCL). It is possible
to obtain better performance from the GPUs using CUDA instead
of OpenCL, however, at the expense of reduced portability. The
Proteus device has been added to POCL version 1.6. MCL version
0.5 is used as a baseline to which minor changes are made to detect
and schedule tasks onto Proteus devices. We use OpenCL Installable
Client Driver (OCL-ICD) [20] in our experiments to list devices si-
multaneously from the POCL-based OpenCL and NVIDIA’s OpenCL
implementations. The OCL-ICD was slightly modified to list the
Proteus devices first so that the MCL scheduler is able to utilize
these devices first for tasks that can be run on both the Proteus
devices and the GPU devices.
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Figure 5: Performance/Area tradeoff for dGEMM kernel us-
ing multiple simulators. Each design point is obtained by
searching wide range of mappings possible on a fixed archi-
tecture. Optimal design consumes least area and provides
highest performance (y and x-axes: lower is better).

5.2 Accelerator Design Space Exploration

In our work, we target applications with both dense and sparse
computation kernels to evaluate the efficacy of using specialized
accelerators. The kernels as enumerated below are widely used in
various application domains, including HPC, Al and graph. We also
highlight the simulators that were used to explore the accelerator
design for each kernel below.

o dGEMM: dense general matrix-matrix multiplication, this
involves the multiplication of two dense matrices. We use
the single-precision floating point representation for data el-
ements. dGEMM is a widely utilized kernel in HPC and Al ap-
plications. With particular interest due to the deep learning
community for design of novel deep learning accelerators,
there is a wide variety of tools that allow early design explo-
ration. In this work, we use Timeloop [13], MAESTRO [9],
Scale-Sim [15] and generic pre-RTL simulator Aladdin [18]
for the design of dGEMM compute units.

e spMV: sparse matrix-vector multiplication, this involves the
multiplication of a sparse matrix with a dense vector. We use
compressed storage format to represent the sparse matrix
elements. spMV is utilized in HPC (e.g., linear solvers) and
graph applications. We explore the accelerator design for
this kernel using Aladdin and Sparseloop [23].

e spMspM: sparse matrix-sparse matrix multiplication, this
involves the multiplication of two sparse matrices. Again,
compressed storage format is used to represent the sparse
matrix elements. The accelerator for this kernel is also de-
signed using Aladdin and Sparseloop, both of which utilize
the Gustavson’s Algorithm for implementation [25].

Figures 5 and 6 show design space exploration of dGEMM using
simulators Aladdin, Timeloop and MAESTRO. In the figures, differ-
ent data points represent different design points that were explored.
The designs obtained through each simulator are normalized by
the design with the slowest execution time. Each design point is
an optimal design obtained through the simulator. For example,
Timeloop uses a heuristic-based search to come up with an optimal

54

ICPE °22, April 9-13, 2022, Bejing, China

Performance / Power Design Space

-@-Aladdin

1 Timeloop
MAESTRO
0.8

0.6

0.4

Power (Normalized)

Performance / Number of Cycles (Normalized)

Figure 6: Performance/Power tradeoff for A GEMM kernel us-
ing multiple simulators. The design points have one-to-one
correspondence with design points in Figure 5.

Table 2: Performance and area estimates for dGEMM acceler-
ators obtained through simulators. Number of Proteus devs
represents the iso-area equivalent of NVIDIA V100 GPU.

Simulator | Unit Latency | Number of | Total Compute
(Cycles) Proteus devs Units
Aladdin 34274 17 1062
Timeloop 256 1 53
MAESTRO 4242 1 39
Timeloop 640 1 59

design out of all possible mappings. As parallelism is increased
through the addition of more PEs and/or more memory capacity at
various levels, the designs consume more power/area and becomes
more performant. At some point, the designs start to saturate and
there is no noticeable performance gain obtained by increasing par-
allelization factors available in the simulators. Also, the power and
area consumption may become prohibitive for some application
domains, especially, as one looks to include more or more compute
units on a single accelerator.

One can appropriately choose a design for their application by
the work proposed in this paper. This may involve a back and forth
process to come up with an optimal design as discussed earlier. For
our work, we choose an arbitrary design point on pareto front of
the performance/area curve in Figure 5, i.e., a design point with
minimal possible area and highest performance.

To assess the benefit of using specialized dGEMM accelerators
in an application, we setup a system with as many accelerators
that can replace a single NVIDIA V100 GPU with same area. This
is representative of a strategy that may be employed to design a
computing system. Since designs produced by different simulators
have varying degrees of area estimates, one tends to get a wide
variation in number of compute units available. In our experiments,
the lowest area estimates are produced by Aladdin, whereas the
highest area estimates are produced by MAESTRO. The design
points used for each simulator are shown in Table 2 and corresponds
to the capability to perform a dGEMM of dimensions 64x64 on a
single compute unit. We have bounded the number of compute units



Session 2: GPUs and Heterogeneous Platforms

Aladdin m Timeloop MAESTRO ScaleSim

Speedup
° - ~ w IS

T

1

1

Number of Tasks

Figure 7: Iso-area end-to-end execution time comparison for
a dGEMM kernel with different sized-inputs. The reported
speedup is using specialized accelerators designed using Al-
addin, Timeloop, MAESTRO and Scale-Sim as compared to
a single NVIDIA V100 GPU. Higher speedup is better.

on a single Proteus device to 64. Results, later on, show diminishing
returns by adding more and more compute units on a single device.
With the above setup, we quantify the performance benefit of
invoking large-sized dGEMM on the accelerators. The input di-
mensions used are: 32768x32768, 45056x45056, 53248x53248, and
65536x65536. The computations are done using single-precision
floating point values. On the application side, tiles of dimensions
1024x1024 are created and sent as tasks to be executed on the de-
vices (discussed later). The MCL scheduler was set up to use the
least number of devices possible to complete the computation, i.e.,
only handful of Aladdin Proteus devices are used. Figure 7 shows
the speedup achieved by using the specialized accelerators as com-
pared to executing dGEMM on a single GPU device. These runtime
measurements were done at the host side and corresponds to run-
ning a complete application from start to finish, including the serial
portion. Therefore, a performance improvement bound is expected
based on Amdahl’s Law. That said, Figure 7 shows comparable
speedups obtained by using accelerators designed using various
accelerators. One anomaly is the accelerators based on MAESTRO,
which indicates that there is some optimal number of compute units
that should be available on a device to get best performance. In
next subsection, we assess the performance benefits of using the
accelerators in different applications and highlight various tradeoffs
that can be investigated while designing an accelerated system.

5.3 Application/Hardware Co-Design

We target four different applications from HPC and graph analytics
domains for our co-design study. One application has a dense com-
putation kernel, whereas the remaining have sparse computation
kernels. A synopsis of each application is included below:

e CCSD(T)-proxy: NWChem [1] is a widely used computa-
tional chemistry HPC application that uses the couple clus-
ter CCSD(T) method [14]. CCSD(T) is a tensor contraction
operation. Since tensor contractions are computationally ex-
pensive, their acceleration is beneficial to many HPC applica-
tions. A common way that is also adopted in this work is to
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decompose the tensor contraction into transpose-transpose-
GEMM-transpose (TTGT). TTGT performs transposes of the
input tensors followed by a GEMM and a final transpose of
the output. We mimic this computation. In our implementa-
tion, the transposes are launched on the GPUs, and once the
transposes are complete. The GEMMs are launched onto the
specialized accelerators. Once the GEMMs are complete, the
final transposes are launched on the GPUs. The main time
consuming kernel is the dGEMM in this application.
e Triangle Counting: This is a popular graph algorithm used
for community detection, among other applications [4]. It
involves counting the number of triangles in a graph. A
triangle is a sub-graph that is composed of three mutually
adjacent nodes in a graph. There are multiple algorithms to
count the number of triangles in a graph. In this work, we use
the approach proposed in [4] and highlighted as Algorithm
2 in [16]. This algorithm only uses the adjacency matrix
of a graph. In our implementation, the adjacency matrix is
stored in compressed format, i.e., compressed sparse row
representation. The main time consuming computation in
this algorithm is a spMspM, whereby the adjacency matrix is
multiplied with itself. The acceleration of spMspM kernel is
considered in our work. After the matrix multiplication, an
element-wise multiplication is performed with the adjacency
matrix. Upon completion of the element-wise multiplication,
a reduction operation is performed to obtain the final result.
Breadth-First Search (BFS): This is another popular graph
algorithm with wide variety of uses. In this work, we realize
linear algebra based implementation of BFS [5]. To perform
search on a graph, a vector with a unit value in the index
from where search is desired can be multiplied with the
sparse graph matrix. One such iteration performs one step
of the search. To perform multiple searches from multiple
vertices in parallel and to increase data re-use, this problem
can be formulated as a spMspM by having the second matrix
as a concatenation of multiple vectors.
GraphSAGE-proxy: GraphSAGE algorithm [7] produces
low-dimensional embeddings of nodes in a large graph. These
embeddings can be used for machine learning tasks such
as classification and clustering. The GraphSAGE algorithm
is designed to work well with evolving Graphs (with un-
seen nodes) as compared to other algorithms. Given rich
feature information at each node of the graph, embeddings
at each node are generated by aggregating feature vectors
of adjacent nodes and scaling using weight matrices. In our
implementation, the graph is represented as an adjacency
list to ease with the search of neighboring nodes. Feature
vectors of neighboring nodes are aggregated on each node
with a cut-off factor as defined in the algorithm. The weight
matrices are hyper-parameters of the algorithm. The main
computational kernel in this algorithm is a spMV operation
for multiplication of the sparse weight matrix with a dense
aggregated feature vector.

Given these applications, we identified the common set of ker-
nels as part of our design flow. Once the metrics of interest for
accelerator designs are measured using the simulators and final
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Figure 8: Speedups obtained for applications with varying
input sizes as compared to a system with 8 NVIDIA V100
GPUs. The designed system is setup to have 50%-50% break-
down among the specialized accelerators and GPUs (i.e., 4
Proteus devices and 4 GPUs). The scheduler uses the Proteus
devices first when scheduling tasks that can execute on both
the Proteus and GPU devices.

selections are made, we continue to set up the system. We use
three different setups for our applications corresponding to the
three computational kernels. A common setup is used for Trian-
gle Counting and BFS applications since both need acceleration
of the spMspM kernel. In each setup, 50%-50% breakdown of spe-
cialized accelerators and general purpose GPUs is done. Therefore,
we utilize 4 Proteus devices and 4 GPU devices in each setup. Our
baseline is a 8-GPU NVIDIA DGX system. In our experiments, the
MCL scheduler is setup to utilize the Proteus devices first and the
GPUs only if resources on the Proteus devices have been exhausted.
This is a power-efficient setup as opposed to using all the available
resources in an equitable manner. At the same time, some tasks
can only be run on the GPUs, e.g., transposes in CCSD(T) proxy
and element-wise multiplication in Triangle Counting. This system
setup represents a typical usage scenario whereby specialized ac-
celerators work in conjunction with general-purpose accelerators.

Figure 8 shows the speedup achieved for applications as com-
pared to the system with 8 GPU devices. The CCSD(T)-proxy appli-
cation uses dGEMM accelerators designed using Aladdin, Timeloop,
MAESTRO and Scale-Sim. Triangle counting and BFS use spM-
spM accelerators designed using Aladdin and Sparseloop. Lastly,
GraphSAGE uses a spMV accelerator designed using Aladdin and
Sparseloop. To re-iterate, an accelerator designed using a specific
simulator means that the latency of executing one work-group in a
kernel is assessed through simulations. The total number of com-
pute units to include on a single device is another design parameter
as discussed later. Four different input sizes are used in each case. In
case of CCSD(T)-proxy application, dense input of up to dimensions
65536x65536 is evaluated; in case of graph applications, graphs of
sizes up to 262K are evaluated (with sparsity level of about 95%). The
total number of tasks sent to the devices is shown on the x-axis cor-
responding to each application. The total number of computational
tasks generated by the applications range between 23.7K and 6.5M.
This is dependent on the tiling factor used at the application side.
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Figure 9: Impact of varying number of compute units on a
Proteus device. The speedup plot is for the CCSD(T)-proxy
application as compared to a GPU-based system. The plot
shows that there is an optimal number of compute units that
can be included on a Proteus device.

For example, with input dimensions of 32768x32768 and a tiling
factor of 1024x1024 in CCSD(T) proxy application, the total number
of transpose tasks generated by the application are: 32768/1024
* 32768/1024 * 3; whereas, the total number of GEMM tasks are:
32768/1024 * 32768/1024 * 32768/1024. Some important factors to
determine the tiling factor at the application side are: the number of
available resources on a single device (to avoid over-subscription),
finding the right balance between data transfer overheads and com-
putation time, and the number of tasks to be managed by the MCL
scheduler based on available resources on the host side (more tasks
is equal to more work for MCL runtime).

In our experiments, we find that the number of compute units
available on a single Proteus device can impact overall application
performance. This is one of the highlights of our work, since early
rapid exploration is made possible. Figure 9 shows that there is
an optimal number for the CCSD(T)-proxy application. Too few
compute units can hurt performance as well as having a large
number of compute units. Achievable performance starts to saturate
after too many compute units are included, something that may
also not be possible due to the thermal design limit. Part of this is
due to emulation of the Proteus device taking place on a CPU with
limited capability to scale the number of parallel threads. The work
queues on the device side also play a role in the limited scalability.
In a real device, these queues are implemented in hardware but
are size limited. Based on this experiment, we choose to limit the
number of compute units on each Proteus device to 64 for dGEMM
kernel. Similarly, the number of compute units for each kernel are
tweaked to get optimal performance from the Proteus device for
the other applications/kernels.

Figure 9 also shows the effect of varying the number of MCL
workers that are parallel threads created by the runtime to manage
execution of tasks for things such as task offloading to assigned
resource, status checking and returning error code to the sched-
uler upon task completion [6]. The number of workers to use is a
design-time parameter and can affect performance since too many
worker threads can have high overhead but not have enough work
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Figure 10: System Utilization broken down across Timeloop-
based Proteus devices and GPU devices. The highest utiliza-
tion for Proteus devices is 50% across the system, meaning
all four Proteus devices are in use. Similarly, a 100% utiliza-
tion means that all eight devices including the four GPUs in
the system are being utilized.

to do and vice versa. We choose to use 4 MCL workers in our ex-
periments based on the average number of used resources across
all applications and the number of available tasks to manage.

The utilization of devices in the system for each application is
given in Figure 10. These results only include the system based
on Timeloop-based Proteus devices. The utilization profile across
systems based on other Proteus devices is similar. Only up to half of
available Proteus devices are utilized in Triangle Counting and BFS
applications, whereas only a single GPU device is utilized to do work
other than spMspM in Triangle Counting application. Similarly,
GraphSAGE utilizes between 2 to 3 Proteus devices based on the
input size. Looking at other results in Figure 10, one can observe
that the system is fully utilized only in the case of CCSD(T)-proxy
application, whereas the system is partially utilized in all other
cases. In majority of the cases, all of the available Proteus devices
are not utilized, meaning system is over-provisioned and there is
room for improvement. Once again, this points to the importance
of quickly trying different system configurations before pursuing
the path of a fixed architecture.

Discussion. The performance benefit obtained through Proteus
devices in case of CCSD(T)-proxy application with dense compute
kernel is significantly higher than the rest of the applications using
sparse kernels (CCSD(T)-proxy highest speedup is 2.8 compared
to about 1.8 obtained for BFS). We attribute this to the overhead of
doing the data transfers over-weighing the benefit obtained due to
kernel acceleration as assessed through our profiling experiments.
Table 3 shows the average data transfer in each application. It can
be noticed that the amount of data transfer is significantly higher
in each data transfer request for the CCSD(T)-proxy application
as compared to the remaining applications using sparse kernels.
The number of data transfer requests also tends to be higher for
applications using sparse kernels. This is amplified due to the high
overhead to do the data transfers in case of Proteus devices modeled
off the PCle 3.0 bus as compared to the GPU devices with propri-
etary high-speed data bus (i.e., NVLink). Our work thus shows the
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Figure 11: Performance per Watt (OPS/W) due to Proteus de-
vices (Aladdin) as compared to the GPU-based system.

Table 3: Average data transfer amount between host and de-
vices for investigated applications.

Application | Bytes/Transfer
CCSD(T)-proxy 4 MB
Triangle Counting 19.36 KB
BFS 19.2 KB
GraphSAGE 32.4KB

importance of overall system design, not just that of a stand-alone
accelerator.

We also compared the Performance/Watt benefit of using the
accelerators with results shown in Figure 11. These results are
obtained by calculating the number of tasks submitted at the appli-
cation side and the time to perform the kernel computation. It is
possible to do these measurements at the device side, e.g., by using
hardware performance counters on the GPU. A similar mechanism
can easily be developed for the Proteus device, but the limitation
is the capability of OpenCL programming model to report these
events. Currently, there is no such support in the OpenCL standard.
This is part of our future work. Moreover, the power estimates
obtained by the simulators are under-estimates to say the least. We
have used the nvidia-smi utility to report GPU power that includes
the power consumed by all the electronics on the GPU board. That
said, the benefit of using the Proteus devices especially for applica-
tions with sparse kernels is evident (e.g., in majority of cases, more
than or close to 100X performance/watt advantage is obtained as
compared to the GPU devices). The accelerators designed for sparse
kernels tend to consume less area and hence are less power-hungry
when compared to their dense kernel counterparts.

Future Work. We have already discussed some of the directions
this work may take in the future. We highlight these points below:

o Enabling low-level design-space exploration using domain-
specific languages: there is a need to include Proteus device
as a backend in one of the popular compiler frameworks
to enable automated utilization of novel accelerators. The
compiler can assist with tiling of code to most efficiently
utilize underlying devices, among other things. This is part
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of a broader effort to ease the adoption of accelerators for
high-level programmers.

e GPU as an emulation device: we noticed throughput issues
with CPU-based Proteus emulation framework. Although,
there is a limit to the number of accelerators that may be
included in a single chip, but we feel some of the through-
put related issues can be resolved if the GPU is used as an
emulation platform.

o Inclusion of Network-on-Chip (NoC) effects: a limitation of our
work is that we do not include the impact of the interconnect
needed for multiple compute units and other components
on a single Proteus device. The NoC may lead to contention
issues when too much traffic is generated in the system
leading to degraded performance. We consider an ideal NoC
in our work; i.e., no congestion or zero-latency to do the data
transfers to the individual compute units once the data is on
the device. Work is in progress to consider such delays in
our device by using the SST architectural simulator [11].

e Performance counters for profiling: measuring various metrics
of interest on the Proteus device is a relatively easy and
low overhead task to gain an understanding of the various
bottlenecks in the overall system. The main hindrance to
realizing this is due to the communication issue with the
host side using the OpenCL programming model. We plan
to tackle this in future work through either a stand-alone
interface or proposing extensions to the OpenCL API.

6 CONCLUSIONS

We proposed a coupled simulation methodology that gives the abil-
ity to explore the architectural design space of domain-specific
hardware accelerators driven through the needs of applications
in an agile and composable manner. We demonstrated the design
and use of the Proteus device model as an emulation platform for
assessing the performance advantage gained for multiple appli-
cations running realistic workloads. The utilization of a portable
programming model enables hardware/software co-design for do-
mains ranging from embedded to high-performance computing. In
this work, our experiments demonstrated the successful integra-
tion of Proteus devices with GPU devices for kernel acceleration
in HPC and graph applications along with the complete system
software stack. Our results highlighted the importance of consid-
ering system-level effects such as overheads of data transfers and
not just the stand-alone design of an individual accelerator. Overall,
we demonstrated the capability of our methodology to do agile
co-design of applications along with multiple accelerator designs.
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