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ABSTRACT
Public clouds are rapidly moving to support Non-Volatile Mem-
ory Express (NVMe) based storage to meet the ever-increasing I/O
throughput and latency demands of modern workloads. They pro-
vide NVMe storage through virtual machines (VMs) where multiple
VMs running on a host may share a physical NVMe device. The
virtualization method used to share the NVMe capability has impor-
tant performance, usability and security implications. In this paper,
we propose three NVMe storage virtualization methods: PCI device
passthrough, virtual block device method, and Storage Performance
Development Kit (SPDK) virtual host target method.

We evaluate these virtualization methods in terms of perfor-
mance, scalability, CPU overhead, technology maturity, security,
and availability to use one or more of these methods in IBM public
cloud.

CCS CONCEPTS
• Information systems → Storage virtualization; Information
lifecyclemanagement; •Computer systems organization→Cloud
computing; • Security and privacy → File system security.

KEYWORDS
qemu, kvm, virtio, NVMe namespaces, data privacy
ACM Reference Format:
Lixiang Luo, I-Hsin Chung,, Seetharami Seelam, Ming-hung Chen and Yun
Joon Soh. 2022. NVMe Virtualization for Cloud Virtual Machines. In Pro-
ceedings of the 2022 ACM/SPEC International Conference on Performance
Engineering (ICPE ’22), April 9–13, 2022, Bejing, China. ACM, New York, NY,
USA, 10 pages. https://doi.org/10.1145/3489525.3511688

1 INTRODUCTION
Performance and latency requirements on storage continue to in-
crease, driven by increased data needs of modern workloads such
as databases, high performance computing, and artificial intelli-
gence (AI) training [15, 20]. NVMe-based storage offers superior
price-performance compared to serial ATA (SATA) and serial at-
tached SCSI (SAS) solid-state drives (SSDs) and hard disk drives
(HDDs). Major public cloud providers such as IBM Cloud, Amazon
Web Service (AWS), Microsoft Azure, and Google Cloud provide
NVMe-based storage for selected system profiles. At the start of
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this work in 2019, IBM and AWS offer NVMe storage with their
selected bare-metal offerings, AWS, Azure, and Google offer the
NVMe storage as part of their virtual machine offerings.

NVMe devices can be virtualized and shared among the multiple
virtual machines running on a host system. The host operating sys-
tem (Linux), together with the virtual machine manager (KVM [5]),
acts as the hypervisor, which handles the virtualization and shar-
ing of NVMe and other devices with hardware assistance. The
hypervisor must ensure the requirements such as the performance,
isolation, data security, and quality of service (QoS) are met.

Since different virtualization methods may have different charac-
teristics, we propose and investigate three virtualization methods
for a locally attached NVMe device, i.e., PCI device passthrough,
virtual block device (backed by either NVMe namespaces or image
files), and SPDK [10] virtual host targets.

We evaluate these virtualization methods in terms of perfor-
mance, scalability, CPU overhead, technology maturity, security,
and availability, to enable NVMe storage in virtual machines of
IBM’s virtual private cloud (VPC) offering. In a public cloud, the
cloud provider is responsible for the host operating system and
the resources necessary at the host level to safely provide the most
performant and isolated capability into the virtual machines, while
the end user is responsible for effective use of the resource to feed
their applications.

So, in this paper, we answer the following two questions: What
are the implications of the different virtualization methods for the
public cloud infrastructure provider? How can end users get the
best NVMe performance for applications in virtual machines?

We will start with a description of the different NVMe virtual-
ization options.

2 NVME VIRTUALIZATION OPTIONS
Host attached NVMe storage can be provided to virtual machines
using different methods. Figure 1 shows three common models of
NVMe virtualization. Table 1 provides a comparison of these dif-
ferent models across different dimensions. Different sharing mech-
anism allows different number of VMs sharing the same NVMe
device. This also affects the performance such as the CPU consump-
tion, bandwidth utilization, and QoS control. Additional features
including security, resource flexibility (e.g., elastic scaling and live
migration) may need to be taken into consideration when deploying
the NVMe virtualization. These sharing mechanisms are described
in the subsections below.

2.1 PCI device passthrough
Full disk PCI device passthrough (DP) is a mechanism to give a virtual
machine direct control over a PCI device from the host machine. As
shown in Figure 1 with the title “Full disk passthrough”, it allows
the VM to have exclusive access to the PCI device, which behaves
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Figure 1: Three models of NVMe virtualization in VM clouds

Considerations Disk passthrough Namespace as block SPDK Vhost target
VMs per disk 1 VM per disk 1 per namespace Unlimited
Performance Best (Native) Limited Close to native
Elastic scaling N/A Possible Possible
Live migration No Yes Possible
CPU Consumption None 1 CPU per VM 1 CPU per drive
Security full control DoD-3 erase DoD-3 erase
QoS N/A Virtio Virtio
Maturity mature mature but limited not as mature

Table 1: Comparison of NVMe options under different considerations

as if it is physically attached to the VM. Linux VFIO allows this
disk passthrough with support from hardware (such as VT-d in
Intel) [22].

When a PCI device is controlled by the assigned VM, the device
is not accessible either from another VM or from the hypervisor.
The number of PCI devices is limited by the VM system architecture.
For example, for Red Hat Enterprise Linux (RHEL) [9], each VM
can enumerate up to 32 PCI devices and each device may have up
to eight physical functions [8].

With hardware-assisted virtualization, device passthrough can
provide the best throughput with the lowest latency, but sharing
among multiple VMs is not possible and live migration is very
hard to realize. Since the device is exposed to the customers, the
customers have the full control over the device and they can access
all the features of the device, such as crypto erase before returning
to the cloud provider. This technology has been around for a while
and it is mature and used widely by several cloud providers. The
main drawback of this method is that it is not possible to share a
single device across guest VMs, limiting the cloud provider’s ability
to provide fast storage to multiple tenants.

SR-IOV (Single-Root Input/Output Virtualization) is hardware
virtualization feature of the devices that allows sharing devices
across guest VMs. SR-IOV allows a single device to provide multiple
virtual functions (VFs), each of which can be assigned to a different
VM. As this is a hardware-enabled sharing, it has low performance
overhead (similar to full device passthrough) while providing most
of the hardware features. While experimental versions of SR-IOV
enabled NVMe drives are available, they are not yet available for
the broader market at the time of this writing. We do expect SR-IOV

enabled NVMe drives to be broadly available in the year of 2022-
2023 time frame and expect cloud providers to provision NVMe
storage via SR-IOV VFs as an alternative.

2.2 Virtual block device mechanisms
This class of virtualization methods includes the traditional file-
backed virtual block devices (qcow2) and a more recent option
which is backed by NVMe namespaces. Image file-backed storage is
one or more files that are stored on the host physical machines file
system which acts as virtualized hard drives for the virtual machine.
QEMU can emulate file-based storage as many different types of
virtual block device interfaces, such as SCSI, NVMe, and virtio-blk.
We choose qcow2-backed virtio-blk in this study, because it provides
good performance and is the default and the most commonly used.

The NVMe specification [6] allows an NVMe storage device to
be divided into one or more namespaces. An NVMe namespace is
a part of NVMe device that consists of logical blocks. The NVMe
controller manages the namespaces such as creation, deletion and
access control. The NVMe protocol provides access to namespaces
through multiple controllers. Multiple controllers can provide ac-
cess to the same namespace. Namespaces are commonly supported
by enterprise-grade NVMe drives. Namespace-backed virtio-blk in
QEMU [7], as shown in Figure 1 with “Partition disk passthrough”,
is realized by the same virtio block device emulation (virtio-blk)
used for SSD/HDD partition passthrough.

As shown in Table 1, virtio-blk provides limited performance
compared to device passthrough, with added consumption of CPU
cycles for device emulation. However, it allows QoS control and
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elastic scaling so the storage space can grow as needed. However,
hardware-based crypto erase is not possible inside the VM instance,
as the VM only sees a block device.

2.3 SPDK vhost target
SPDK is a collection of libraries and tools that enable users to write
high performance, user-mode, scalable storage services. SPDK by-
passes the kernel and reduces the path length so applications can
fully exploit the high performance characteristics of devices like
NVMe. Instead of waiting for the device to interrupt upon I/O com-
pletion, SPDK actively polls the device from user space for the
progress of I/O operations to minimize or avoid all locks in the I/O
path.

SPDK vhost-user is an inter-process communication protocol for
device access. Its implementation relies on the vhost-user library in-
troduced in Data Plane Development Kit (DPDK) [3], which exposes
a Unix socket so QEMU can communicate to it and offload the tasks
of a specific virtio device to an external vhost process. Moreover, by
using data structures compatible to QEMU virtio devices and shared
hugepage memory, virtio-vhost-user kernel drivers inside the VM
can translate I/O requests into direct memory access (DMA) to the
SPDK vhost device, largely removing QEMU from the critical path.
While configuration and I/O completion still need to be processed
through QEMU, the overall performance is expected to be much
better than traditional virtio methods. Note that when using SPDK
vhost devices with QEMU, the I/O operations on the host is handled
by the vhost process using exactly the same polling mechanism as
bare-metal SPDK. As indicated in Table 1, this technology is not
yet mature and it pegs at least 1 CPU core fully utilized for polling.

2.4 Data security considerations
Data privacy and security are important factors for enterprise ten-
ants, as they do not want to run the risk of leaking business secrets.
Since NVMe controllers contiguously re-arrange the logic address
mapping to physical memory block to extend the device lifetime,
the standards such as DoD 5220.22-M [1] and NIST SP 800-88 [2]
for wiping spinning disks are no longer applicable.

Linux Unified Key Setup (LUKS) [13] is the standard software-
based solution on Linux to encrypt the partitions and devices with
external keys. It allows the tenants to ensure that their data is no
longer readable simply by destroying the encryption key. However,
since LUKS uses host CPU for encryption, it may introduce sig-
nificant CPU load in a multi-tenant environment and the NVMe
performance may be limited by the CPU performance.

To address the security compliance issues effectively without
computing overhead, the cloud provider may rely on new tech-
nologies such as NVMe Self-Encrypting Drive (SED) and Trusted
Computing Group (TCG) Storage Opal Security Subsystem Class
(SSC) feature set for SEDs [12].

SED solves the performance issue by adding an encryption en-
gine to the NVMe controller, which also manages the keys. An
NVMe secure erase can wipe all data simply by discarding the cur-
rent key. Note that the device and namespaces are automatically
decrypted once the NVMe controller is ready. Depending on the
required security-level, SED may or may not fulfill the security
compliance requirement. However, for the environment that only

requires to securely wipe the data, which is common for most cloud
providers, SED should be sufficient.

TCG Opal SSC for SEDs takes an external key to encrypt the de-
vice and its Configurable Namespace Locking (CNL) feature set [11]
further adds the per-namespace encryption support. This enables
the possibility to use tenants’ keys to encrypt their NVMe storage.
TCG Opal SSC ensures the device is not accessible once it is closed
or powered off, but the device will be readable to everyone after
it is powered on and unlocked. Therefore, it is still necessary to
implement strict isolation to protect the data. However, at the time
of writing, we did not note any product in the market supports
CNL feature set and only a small portion of NVMe devices support
TCG Opal SSC.

3 PERFORMANCE EVALUATION
The tests are conducted on a SuperMicro SYS-4029GP-TVRT server,
with two Xeon Gold 6148 @ 2.4GHz CPUs and 768GB of DDR4
RAM. The NVMe drive used is Samsung 1725 in a HHHL PCIe
Gen3 x8 card form factor, with theoretical peaks of 6.2GB/s sequen-
tial read and 2.6GB/s sequential write. We use Flexible I/O tester
(FIO) [4] v3.17 on Ubuntu 18.04 with QEMU v4.2.0 to measure the
performance numbers with different block sizes, read/write ratios,
number of parallel jobs (j) and queue depths. The libaio engine
with direct access is used unless indicated otherwise. Block sizes of
4KB, 16KB, 64KB, 128KB, 1MB, 16MB are used. Our analysis shows
that the performance difference between these methods is inversely
correlated to the block size, i.e., 4k requests have the biggest per-
formance difference and 16MB requests experience much smaller
difference. Due to the limitation of space, we will focus on random
4KB read bandwidth (GB/s) in this paper. Note that IOPS is mostly
proportional to bandwidth in 4KB random access tests, so we choose
to only present bandwidth in the figures to avoid redundancy.

3.1 PCI device passthrough
In this section, we investigate twomethods of using device passthrough.
The first one is to use the default “nvme” kernel driver, and the
second is to use the SPDK user space driver. Because of its near
bare-metal (BM) performance, device passthrough also serves as
the baseline for comparison with other sharing mechanisms.

A comparison of bandwidth between bare-metal and device
passthrough is given in Figure 2a. With the mixture of read/write
operations the NVMe bandwidth utilization saturates around 4GB/s
when using 4 I/O processes. Device passthrough curves closely fol-
low those of bare-metal, with roughly a 10% performance penalty
on throughout. Figure 2b shows CPU load, as measured from the
host, for both bare-metal and device passthrough. CPU load is the
number of processes being executed and waiting to be executed by
the CPU. The curves of bare-metal closely follow the trend of the
bandwidth curves, as CPU usage for both user application (FIO) and
the kernel is driven by the completion rate. On the other hand, the
curves of device passthrough observed from the host, stay mostly
constant at the value near the number of FIO jobs. Note that all
CPU activities are reported as user time for the host CPU. As long
as an FIO job is active, the host sees roughly one CPU occupied.
Hence, while the performance is similar, executing in a VM results
in marginally higher CPU utilization compared to executing the
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same workload on bare-metal. We believe this CPU load increase is
due to the handling of interrupts coming to VM.
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Figure 2: Scaling comparison between bare-metal and device
passthrough
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Figure 3: CPU load vs. number of FIO jobs for device
passthrough. QD stands for queue depth.

Figure 3 shows the device passthrough’s CPU load versus the
number of FIO jobs and queue depths. The CPU load grows linearly

with respect to the number of jobs, while the queue depth has little
impact on CPU load. This is because tasks inside each queue are
scheduled sequentially, and scheduling each request is a lightweight
task.

It is possible to close the gap between device passthrough and
bare-metal by using SPDK inside VM on top of device passthrough.
In this scenario, which we call DP-SPDK, a special FIO engine pro-
vided by SPDK is used, so that SPDK runs as a part of the user-space
FIO process, directly polling the NVMe hardware (as a contrast to
the interrupt mechanism). Figure 4a shows how overall bandwidth
scales with the queue depth and the number of threads, where it
shows that DP-SPDK manages to scale almost linearly until it gets
close to the device limit. High concurrency is required to achieve
the best overall performance, which can be a serious limitation for
the applications that cannot provide enough concurrent I/O tasks.
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Figure 4: Scaling comparison between device passthrough
and DP-SPDK

DP-SPDK requires CPU resources to actively poll the NVMe
device for completion status, as shown in Figure 4b. SPDK will
consume user-space resources. We can observe that polling imposes
a mostly fixed additional cost, about 2 in terms of host CPU load.
An implication of using SPDK in this manner is that the user codes
must be programmed to use the SPDK application programming
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interface (API) directly. It is therefore non-trivial to migrate an
application from using traditional system calls to using SPDK. In
the following sections, other sharing mechanisms are considered
which do not require explicit source code changes.

3.2 Virtual block device mechanisms
As described in section 2.2, this class of virtualization methods
includes the traditional file-backed virtual block devices (qcow2)
and a more recent option which is backed by NVMe namespaces. As
shown in Figure 5a, these two backend options (qcow2 and NVMe
namespaces) provide similar performance for scenarios with low
concurrency (synchronous I/O and asynchronous I/O with shallow
queues), but they diverge for scenarios with high concurrency, as
qcow2 outperforms namespace by up to 40% for very deep queues,
qcow2 also incurs slightly less CPU load, as shown in Figure 5b.
Such results are likely due to additional host-side caching in qcow2.
However, we choose to focus on the namespace option due to its
built-in security capabilities, where namespaces can be erased by
removing the key so it can be re-provisioned from one user to
another quickly (in a few seconds) where as qcow2 image files
require the DoD-3 pass erase process that not only takes a long
time (∼40 minutes for a 1TB drive) but also adversely impacts the
lifespan of the drive. In the following discussions, “virtio-blk” and
“NS” (only in figures) are used interchangeably to represent virtual
block devices backed by NVMe namespaces.

Figure 6a shows a comparison of the performance with virtio-blk
and device passthrough options. Overall, device passthrough has a
clear advantage for moderate-to-high concurrency scenarios, but
virtio-blk is better for low-concurrency scenarios due to additional
caching by both the guest-side block device layer and virtio-blk. The
flip side is that host CPU load for virtio-blk is constantly higher than
the device passthrough due to the involvement of additional soft-
ware layers. The additional layers also severely limit the maximal
throughput in high-concurrency regimes, where the performance
is dominated by submission latency. Fortunately, as the number
of FIO jobs increases, the difference remains at about 1 to 2 CPU
cores. Hence, if the workload inside the VM does not provide high
concurrency, virtio-blk can provide better performance at a price
of roughly 1 host CPU core.

To achieve the best performance for random access, we turn on
the “writethrough” caching by QEMU. For 4K block sizes, RAM
requirement for caching is manageable. As the block size increases,
more cache memory is needed for high-concurrency scenarios.
However, well-behaved applications should avoid such scenarios
as NVMe quickly reach peak throughput for larger block sizes even
with moderate/low concurrency.

For 4KB high-concurrency scenarios, however, a substantial per-
formance gap persists between device passthrough and virtio-blk,
as shown in Figure 6a. Given that SPDK can improve performance
earlier, could this improve virtio-blk performance? This is the topic
of the next section.

3.3 SPDK vhost targets
SPDK vhost provides another option to pass the NVMe namespaces
to VM instances which could achieve better performance for heavy
I/O workloads. SPDK supports three types of vhost targets for
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Figure 5: Scaling comparison betweenNVMenamespace and
qcow2 backends of virtual block devices

QEMU, i.e., NVMe (vhost-user-nvme), SCSI (vhost-user-scsi) and
virtual block devices (vhost-user-blk). A performance comparison
is conducted to evaluate which type of vhost target can provide
better performance.

Table 2: Bandwidth (MiB/s) comparison of three sharing
mechanisms (vhost-user-xxx)

FIO test nvme scsi blk
randread 764 963 940
randwrite 405 421 415
rand5050 294 302 280

The results are shown in Table 2, where 32-job FIO runs are
conducted for various read/write ratios using the default psync
engine. Currently, as shown in Table 2, vhost-user-scsi remains
the best overall choice for using the SPDK vhost target. Note that
there is no fundamental performance limitation for the vhost-user-
nvme, compared to vhost-user-scsi. The performance difference
is likely due to software maturity in the current implementations.
Further references to “vhost” imply vhost-user-scsi, unless indicated
otherwise.
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Figure 6: Scaling comparison between device passthrough
and virtio-blk

Bandwidth curves in Figure 7a show that vhost is similar to the
passthrough for shorter queues, with the former performing much
better in high-concurrency scenarios. However, in low concurrency
scenarios, SPDK vhost targets do not have a clear advantage over
virtio-blk, considering vhost requires similar host CPU loads as
virtio-blk, as shown in Figure 7b.

Since vhost requires shared hugepage memory for DMA to the
devices, its efficiency is limited by available memory capacity. To
the best of our knowledge, although vhost may achieve better
performance, it has not been adopted by any public cloud provider.

3.4 Completion latency comparison
Completion latency is another commonly used metric to quantify
the overall I/O performance. Completion latency is defined as the
round-trip time from quest submission until its completion, which is
a good indicator of overall overheads. A comparison of completion
latency is given in Figure. 8.

Completion latency generally increases as the queue gets deeper.
Bare-metal and device passthrough give very close numbers, as
device passthrough only adds marginal overheads. Read latency is
always larger than write latency, because for NVMe random writes
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Figure 7: Scaling comparison between device passthrough
and vhost
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are very well buffered at the hardware level, while random reads are
much harder to be buffered. The difference is less pronounced for
deeper queues. virtio-blk generally gives much larger completion
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latency numbers, which is expected as virtio-blk adds significant
overheads due to device emulation. A notable exception in this trend
can be found for very shallow queue depth (<10), where virtio-blk
read latency is smaller than bare-metal and device passthrough,
mostly due to host caching, which is consistent with the bandwidth
observations.

3.5 Multi-VM and multi-NVMe scenarios
In the real cloud data center, due to the resource consumption re-
quirement, it is common to share one NVMe among multiple VMs
as well as having one VM using multiple NVMe devices. To show
the performance overhead of sharing a physical NVMe device be-
tween the VMs, we compare the FIO and RocksDB performance in
multi-VMmulti-device. In both scenarios, we compare the virtio-blk
and vhost against the bare-metal performance. To make a fair com-
parison, when measuring the bare-metal performance, we perform
our best-effort to match the resource available as in the NVMe vir-
tualization methods. We evenly distribute VMs to multiple NVMe
devices and report the aggregated bandwidth and CPU load.

3.5.1 FIO performance in multi-VM multi-device. In Figure 9, we
show the aggregated bandwidth and CPU load while varying the
number of total NVMe devices. The overall performance is similar
to scaling concurrent FIO threads on the single VM. As we increase
the number of multiple devices, we observe the virtualization over-
head shown as the gap between the bare-metal and the others. For
VMs sharing 2 NVMe devices (Figure 9a), we observed that with
enough concurrency on the device, virtualization overhead becomes
negligible from the performance perspective. This motivated us to
run the FIO with multiple threads (Figure 9b). In these experiments,
we observed that vhost outperformed bare-metal. With further in-
vestigation, we observed that the total number of interrupts was
smaller for vhost than the bare-metal, suggesting that the hypervi-
sor selectively passes on the intercepted hardware interrupt to the
targeted VM.

3.5.2 RocksDB performance in multi-VM multi-device. While FIO
allows us to examine a large parameter space with convenience,
we also run a more realistic workload, RocksDB, while varying the
number of shared NVMe devices.Widely adopted for key-value data
management, RocksDB readily provides a set of built-in benchmarks
which can be used for our performance assessment purposes [14].
Particularly, we run the “bulkload” test to quickly establish a test
database using 8 billion randomly generated key-value pairs, which
occupy roughly 3TB of disk space. Then, we run the “readwhile-
merging” test on multiple VMs using the newly generated test
database, which simulates a read-dominated workload with occa-
sional merging operations, during which I/O bandwidth and other
performance metrics are measured.

Vhost provides similar performance as the bare-metal for sin-
gle threaded benchmark (Figure 10a), but throttles for a single
NVMe device when multiple threads running inside the VM (Fig-
ure 10b). A single RocksDB instance, even with optimal resource
availability, requires a relatively small I/O throughput (<600MB/s
per instance). Each NVMe drive should be able to accommodate
several concurrent RocksDB instances, either within the same VM
or across multiple VMs. Figure 10a shows that scaling to multiple

VM has a mild impact on per-VM performance, as long as the aggre-
gated throughput is kept inside the upper limit of the NVMe drive.
Since one NVMe drive can already support 16 VMs (each running
one RockDB instance), spreading the workload across more NVMe
drives does not improve the per-VM performance. In Figure 10b,
the number of concurrent RocksDB instances is increased to 4. As
one NVMe drive can no longer provide enough throughput for
higher concurrency, the per-VM throughput drops much faster as
the number of VMs increases. Note that RocksDB benchmarks such
as “readwhilemerging” require heavy CPU involvement, so that the
CPU load of the system during the benchmark is always high. For
this reason, CPU load is not shown in the figures.

We can see that, unlike FIO results, bare-metal and virtio-blk
outperformed vhost in most scenarios. Vhost suffers much worse
performance variance than bare-metal and virtio-blk, especially
in higher concurrency regimes, as shown in the second row of
Figure 10, which gives the throughput difference between best and
the worst performing RocksDB instances. Such results suggest a
serious resource contention (CPU cores for polling) and/or a lack of
a robust load balancing mechanism in the current implementation.

4 CLOUD IMPLEMENTATION
CONSIDERATIONS

Different NVMe configurations require different handling mecha-
nisms to maintain the lifecycle in the cloud system software. When
allocating the NVMe storage resource, the cloud system software
will work with the control plane software running on the compute
node to find an appropriate node with sufficient residual NVMe
resource. The NVMe namespace or virtio block storage is then
created by the node-level control plane software, so the cloud sys-
tem software can initialize the instance with the requested NVMe
storage.

When a tenant releases an NVMe storage resource, the cloud
system software should always guarantee the data from the pre-
vious tenant is securely and fully wiped when reclaiming storage
resource. This can be done in seconds via the secure erase feature,
which is available on most of the modern data center NVMe de-
vices. However, so far as we know, many NVMe devices may stop
responding to all requests when the secure erase is in progress. The
cloud system software should be able to take care of this behavior
to avoid unexpected failure.

From the Section 3, we can see that in the virtualized environ-
ment, device passthrough provides the whole NVMe device to the
VM and achieves close to bare-metal bandwidth utilization. This
fits the needs for performance-driven applications (e.g., High Per-
formance Computing workloads). For data intensive workloads, the
SPDK provides a viable solution to achieve even higher bandwidth
utilization by trading system computation resources (e.g, CPU).

When sharing of NVMe is desired (e.g., cost-driven), qcow2
option achieves better bandwidth utilization (due to caching) com-
pared to the namespace-backed option. However, NVMe namespace
provides built-in security capabilities. Standard-compliant erase
of qcow2 files will take a much longer time than simply dropping
encryption keys.

With SPDK, the vhost target using a virtual SCSI interface pro-
vides up to 26% bandwidth throughput compared to NVMe and blk
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(b) Highly concurrent workload (j=32)

Figure 9: FIO result, multiple-VMs sharing devices

options. SPDK vhost target efficiency is limited to memory capacity
as it requires hugepage for DMA. This also increases the HOST
CPU load.

5 RELATEDWORK
The [17] studies the Directly-Attached NVMe Arrays in database
systems. They find the arrays (4∼16) PCI-attached SSDs offer high
capacity at low prices with a bandwidth comparable to DRAM. Our
work focused on the sharing mechanism of the NVMe device for
multiple VMs.

The paper [18] proposes a new I/O architecture in KVM that
optimizes the I/O path by eliminating the overhead of user-level
threads, bypassing unnecessary I/O routines and reducing the in-
terrupt delivery delay. Our work starts to look at NS and SR-IOV.

The work [19] evaluates the 800GB ultra-low latency (ULL) SSD
prototypes and characterizes their behaviors with I/O path param-
eters. It also discusses the interrupting, polling modes and SPDK.
Our methodology is similar in these aspects but the target is the
NVMe device sharing by the VMs.

In [23], it presents a hybrid framework "H-NVMe" to utilize
NVMe in the large cloud computing data centers. The H-NVMe
offers two modes to deploy VMs, both of which require extensive
modifications to the kernel and device emulators. Our work is
trying to adopt evolving technologies and to configure NVMe device
properly for sharing.

The work [21] investigates CPU utilization behavior with regard
to host and guest machines. With hardware assistance and applica-
tion tuning (e.g., a small number with large chunks of I/O requests),
the performance impact of the overhead can be minimized.

NVMe over Fabrics (NVMe-oF) performance characterization
(e.g., [16]) profile the overheads of NVMe disaggregation. The work
reports negligible performance degradation with NVMe-oF both
when using stress-tests as well as with a more realistic key-value
store workload. When we are currently focusing on locally attached
NVMe storage devices, NVMe-oF is the continuous work we will
be focusing on.

6 CONCLUSION
In this paper, we study different NVMe virtualization mechanisms
with comparisons aiming to deploy NVMe at the cloud server scale.

NVMe storage can be provisioned via different mechanisms to
virtual machines such as PCI passthrough of the entire device,
namespace passthrough, and SPDK virtual host method. While PCI
passthrough provides the best performance, it does not allow the
host to share the device among multiple VMs. NVMe namespace
passthrough allows device sharing among VMs up to the number
of namespaces supported by the device. SPDK vhost targets also
allow the sharing of the device among virtually unlimited numbers
of virtual machines. In addition to the differences in sharing, each
of these methods results in different performance characteristics,
isolation, security and imposes different overheads on the host and
guest CPUs. DP is essentially the same as BM, but lacks of any
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(a) Single-threaded workload

(b) Multi-threaded workload (4 threads)

Figure 10: Rocksdb result, multiple-VMs sharing devices

sharing and security mechanism. NS manages to achieve 60% or
more of peak BM performance at low-to-medium concurrency sce-
narios, while providing flexible sharing and security options. SPDK
vhost achieves nearly 100% of peak performance at the expense of
dedicated CPU resources for polling.

In all methods, applications could achieve near bare-metal perfor-
mance with minimal changes with optimizations such as increasing
concurrency of I/O accesses, polling for I/O instead of interrupt-
driven I/O and coalescing I/O requests into larger block sizes.

Data security is critical in a cloud environment. While NVMe
devices can be securely shared among users using conventional
software-based encryption technologies, emergingNVMe standards
such as TCG Opal SSC are expected to provide similar security
without the overhead.

As NVMe technology matures, we expect increased adoptions
of NVMe in the public cloud and we hope that this paper addressed
some of the key trade-offs in this emerging space.
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