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ABSTRACT 
HPC (high performance computing) applications come with a variety 

of requirements for computation, communication, and storage; and 

many of these requirements can be met with commodity technology 

available in public clouds.  In this article, we report on results for 

several well-known HPC applications on IBM public cloud, and we 

describe best practices for running such applications on cloud 

systems in general. Our results show that public clouds are not only 

ready for HPC workloads, but they can provide performance 

comparable to, and in some cases better than, current 

supercomputers.    
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1 Introduction 
The widespread availability of public cloud systems is having an 
impact on many realms of computing, including traditional High-
Performance Computing (HPC) [1-3].  In this article, we report on 
results for several well-known HPC applications on IBM public 

cloud, and we describe best practices for running such applications 
on cloud systems in general.  We discuss some of the key factors 
that HPC cloud users need to consider, including the selection of 
basic building blocks or virtual-machine instances.  Measurements 
on cloud systems provide insight into how to get the most benefit 
from compute and network resources, including how to manage 
multiple network interfaces, and what to do about hyper-threading. 
While we report results from IBM Cloud, our observations are 
applicable to public clouds in general. We take the point of view of 
a traditional computational scientist and address the challenges of 
public cloud adoption for their HPC workloads. We will use a broad 
collection of HPC workloads that vary in scale, with different 
compute, memory, network, and scalability characteristics to 
describe the best practices. 

2 Use a single large instance or many small 
ones? 
One of the first choices a cloud user is faced with is selection of an 
“instance type” to be used as a building block, analogous to a “node” 
in traditional HPC clusters.  Most public clouds offer a wide variety 
of instance types, with varying amounts of memory, CPU resources, 
some specified limits on network connectivity, and a collection of 
storage and file system options.  In traditional HPC data centers, 
typically users have a fixed node configuration, so the application is 
tuned to best use the resources of the node. In contrast, cloud 
provides a large collection of node configurations so the users can 
tweak the cloud to fit their application needs.  
In this article we use generic names for virtual machines, where the 
number of virtual cpus follows after the letter “v”, and the number 
of GBytes of memory follows the letter “m”.  For example, a virtual 
machine with 128 virtual cpus and 256 GB memory will be listed as 
v128m256.   
 

The most cost-effective network solutions use Ethernet with TCP 
protocol, which comes with significant latency for communication 
between nodes or virtual machines, and with bandwidth limits in 
order to provide some guaranteed level of service.  Current MPI 
(message-passing interface) implementations provide very efficient 
communication between processes on the same node or virtual-
machine via shared memory.  In fact, the latency for shared memory 
communication can be as much as ~100x lower than Ethernet with 
TCP protocol.   
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An example of this is illustrated in Figure 1, which shows the 
measured MPI latency, defined as the average value of half the 
round-trip time to exchange messages using MPI_Send followed by 
MPI_Recv, on a current cloud system.  Shared memory is used to 
communicate between two processes on the same virtual machine, 
while TCP protocol and Ethernet, with virtio-net as the network 
virtualization software, is used to communicate between processes 
on different virtual machines.  The data below was measured using 
mpich-3.4.2 built with the “ch4:ucx” device.  Similar trends are 
observed with other MPI implementations.  The network 
virtualization method is a key factor.  Measurements in this article 
were made with virtio-net, which provides flexible control of 
network bandwidth, but adds significant latency.   
 

Figure 1.  MPI latency is shown as a function of message size, 
using either shared memory (lower curve) or TCP protocol 
over Ethernet (upper curve) on a public cloud. 
 
 

Latency sensitive applications that can fit in a large shared-memory 
system are best deployed on a single virtual machine with many 
cores and plenty of main memory.  For example, on IBM public 
cloud there is a family of instance types with 128 virtual cpus (64 
processor cores) and memory configurations of 256, 512, or 1024 GB. 
Other clouds have similar instance types. This is sufficient for many 
HPC use cases, including computational fluid dynamics with grids 
of order 10^7 cells or less and metropolitan area weather forecasts.   
 

We investigated the performance of the weather model WRF [4,21] 
used by the Deep Thunder team in IBM [5].  Their test case used a 
sequence of four nested grids, where each grid contained 100x100 
points in the lateral dimensions with resolutions of 18 km, 6 km, 2 
km, and 0.667 km, and 51 vertical levels, and with history file 
outputs every 10 forecast minutes.  The objective of this test case 
was to complete a 72-hour forecast in less than 3 wall-clock hours.  
Table 1 shows the measured run times on IBM cloud using either a 
single virtual machine with 64 cores (128 vcpus), 256 GB memory, 
with communication via shared memory (type v128m256), or a set 
of 12 virtual machines with 8 cores (16 vcpus) each (type v16m64) 
connected via Ethernet.  The shared-memory configuration proved 
to be faster, even though there are significantly fewer cores. 
 

Cost is another consideration.  On our test cloud platform, cost was 
almost identical for configurations with the same total number of 
virtual cpus and the same aggregate amount of memory.  For this 
local-area WRF case, it is more cost efficient to choose the large 
shared-memory instance type, because that provides better 
performance using fewer virtual cpus. 
 
Table 1. Run times are shown for a 72-hour metropolitan 
area weather forecast using WRF on the cloud. 
Instance type #VMs cores Messaging Run time 
v16m64 12 96 Ethernet TCP 2.72 hrs 
v128m256 1 64 shared mem 2.40 hrs 
 
WRF is mainly Fortran code, and best performance was obtained 
using the Intel Fortran compiler, with options set for current 
generation Intel CPUs.  Using a single large virtual machine in a 
cloud environment is essentially equivalent to using a dedicated x86 
server with an equivalent configuration of cores and memory.  
 

We also examined computational fluid dynamics (CFD) using 
OpenFOAM [6,22] and the motorbike steady-state flow tutorial.  
The key parameter in CFD simulations is the number of grid cells.  
Problems with up to ~50 M grid cells can fit within the memory 
available on a single large virtual machine.  A comparison of run 
times for the motorbike tutorial is shown in the table 2, using 64 
cores on the cloud from either (a) a single virtual machine of type 
v128m256, or (b) four virtual machines of type v32m128 connected 
via Ethernet.  For grids with ~1 M cells and a total of 64 MPI ranks 
(one rank per physical core), communication is very important, and 
the single virtual machine is significantly faster.  Communication 
via shared memory remains advantageous for larger grids, but the 
timing difference becomes less significant as the simulation 
becomes more compute bound.  Again, cost is basically the same for 
configurations with the same number of virtual cpus and the same 
amount of memory, and so the large shared-memory system is more 
cost effective.   
 

When the number of grid cells is ~10 M or greater, it may be 
desirable to scale out to larger core counts in order to reduce the 
time to solution.  On Cloud systems that use TCP with virtio-net, it 
is best to limit scaling and keep the number of grid cells per core 
larger than ~10^5, otherwise latency in the Ethernet network 
becomes a substantial bottleneck.  Cloud systems that provide lower 
latency networks can scale out further.   
 
 
Table 2. Elapsed times for the simpleFoam motorbike 
tutorial are shown for different grid sizes using either a 
single virtual machine of type v128m256 or four instances of 
type v32m128 connected by Ethernet. 

 

#Cells v128m256 Four of v32m128 

0.91 M 48.7 sec 88.1 sec 

2.63 M 155.3 sec 195.4 sec 

5.41 M 351.0 sec 420.6 sec 
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3 Managing Hyper-threading and using 
physical cores 
Cloud instances usually expose virtual cpus (vcpus), which map to 
hyper-threads on the underlying server.  Many HPC applications 
gain little if any benefit from hyper-threading, and so it is common 
practice to bind applications to just one hyper-thread per physical 
core or to turn it off at the guest virtual machine [20].  With virtio-
net for network virtualization and TCP protocol [11] there is 
another reason to use just one hyper-thread per core.  Messages are 
copied from the guest operating system in the user’s VM to the 
operating system on the host, via “vhost” threads [7].  The “vhost” 
threads are active within the host operating system.  In addition, 
there are kernel threads that service interrupts, both on the host 
operating system, and for the guest virtual machine.  When network 
traffic is heavy, these threads need free slots for execution.  If the 
user has tied up all the hyper-threads with computational work, the 
kernel threads will contend with user threads for execution slots, 
and messaging performance will suffer.  We have conducted 
detailed experiments showing that this mechanism is a major factor 
that limits scaling and contributes to performance variability on 
cloud systems that use virtio-net.    
 

Sources of performance variability can be identified using simple 
tests[28,29,30], including measurements of the memory bandwidth 
and core frequencies for every virtual machine.  We have observed 
that virtual machines with 16 vcpus (8 cores) can be located on the 
underlying server hardware in multiple ways : some VMs fit inside 
one numa domain while others span two numa domains.  In 
addition, there may be more than one VM allocated to the same 
numa domain, resulting in contention for memory bandwidth.  This 
form of heterogeneity can result in job to job performance 
variations because different VMs of the same type have different 
performance characteristics, and the assignment of MPI ranks to 
VMs can vary from job to job.  It is useful to make quantitative 
measurements of timing variability, using an artificial parallel 
application with carefully calibrated units of computation work 
combined with a simple communication pattern following 
completion of each work unit [28].  With such tests, one can map 
out the parallel efficiency as a function of the frequency and volume 
of communication between the ranks.  Additional insight can be 
obtained by visualization of MPI time lines, which can show the 
delays in completion of the work unit caused by CPU cycle-stealing 
by competing processes.  TCP communication results in significant 
CPU activity.  One can manage activity by the guest operating 
system in the VM to some degree by carefully managing IRQ 
affinity assignments.  However, with virtio-net as the network 
virtualization layer, there is also significant CPU activity in the host 
operating system, which is outside the realm of control by a cloud 
user.  Our measurements show that CPU hot-spots resulting from 
message processing by the host OS constitutes a major source of  
timing variability and can limit scaling on cloud systems. 
 

A dramatic example of this contention for CPU resources is 
provided by a high-resolution weather forecasting case, using a mix 
of MPI and OpenMP as described in a later section.  When OpenMP 
threads are limited to one thread per physical core, the average time 

per time-step was ~0.28 seconds at 1536 cores.  Doubling the number 
of OpenMP threads so that every hyper-thread was busy with 
OpenMP work resulted in an average time per step of ~3.2 seconds, 
or more than a 10x slow-down.  Detailed performance analysis 
showed that the excess time is caused by delays in messaging.  We 
have observed similar effects in many HPC applications. This 
problem can be avoided by either of two methods: (1) bind the 
application’s threads to just one hyper-thread per physical core, or 
(2) disable hyper-threading inside the user’s VM [20].  In both cases, 
all hyper-threads remain available to the host operating system, and 
so the “vhost” threads continue to have free slots for execution.  Our 
measurements indicate that these two options provide equivalent 
performance.  Normally we prefer to keep hyper-threading enabled 
inside the VM and take care to bind one user thread or process to 
each physical core, leaving half the vcpus free.  The issue of host 
kernel threads contending with application threads for CPU 
resources does not arise when using only shared memory for 
communication, or when using methods that directly expose the 
network devices to the virtual machine. 

4 Selecting instances and network 
interfaces for scaling out to large core counts 
When scaling to large numbers of virtual machines and cores, the 
selection of an appropriate instance type depends on the available 
network options, which in turn depend on the number of virtual 
cpus in the instance.  Our reference public cloud system uses virtio-
net for network virtualization, where each virtual Ethernet interface 
can provide at most 16 Gbps bandwidth (single flow, unidirectional). 
Other public clouds follow similar patterns [23,24,25,26]. Depending 
on the number of virtual cpus in the instance, users can create 
additional Ethernet interfaces and obtain up to 80 Gbps bandwidth 
[26].  However, managing multiple interfaces adds complexity, and 
it is often not possible to realize the full potential benefit.  Many 
HPC applications are rather loosely synchronous and have medium 
to small messages that do not benefit from striping across multiple 
adapters.  In such cases, there is typically not much contention for 
shared adapter resources, and communication performance is not 
likely to improve with the addition of multiple Ethernet interfaces.  
 

Our experience has been that those instances with ~16 vcpus and 
one or two Ethernet interfaces provide a good starting choice when 
scaling beyond the number of cores available in a single large VM.  
With 16 vcpus, there are 8 physical cores, which is normally enough 
to get some benefit from communication via shared memory, and 
the core count is small enough to ensure good network bandwidth 
per core for the messages that must go over Ethernet.  These 
network considerations are unique to cloud systems, which offer 
many different instance types and network options.  On traditional 
HPC clusters, users have full access to the hardware on each server, 
and all servers normally have identical configurations.   
 

Many cloud providers use Ethernet with TCP protocol for 
networking, and there are tunable parameters that affect 
performance.  We have noticed improved messaging performance 
on the cloud by setting the MTU to 9000 for the Ethernet interfaces, 
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and by using the options shown in the table 3, set in each virtual 
machine.  Some of these parameters, such as the maximum number 
of socket connections, may need adjustment, depending on the scale 
of the parallel job.  Similar TCP tuning parameters are suggested in 
the OpenMPI frequently asked questions [8], and in the 
performance tuning guides for Mellanox network adapters.  Our 
experience has been that the increased TCP memory buffers reduce 
packet drops and re-transmits when the network load is heavy.  
These choices tend to help performance using any number of TCP 
interfaces. 
 

The choice of MPI implementation can also make a difference, 
particularly when it comes to support for multiple Ethernet 
interfaces.  The approach that we prefer uses MPI built on top of 
UCX [9].  UCX provides a convenient environment variable, 
UCX_NET_DEVICES, that can be used to select one or more 
network interfaces.  The UCX layer is automatically included in 
recent releases of MPICH.  We have tested mpich-3.4.2 configured 
with the built-in “ch4:ucx” device.  One can also incorporate UCX 
into OpenMPI, and we have tested openmpi-4.1.1 built with ucx-
1.11.1.  Both MPI implementations can provide good performance 
and flexible control over multiple interfaces.  The basic point-to-
point messaging behavior is very similar in these implementations, 
because overhead is mostly in the TCP software layers, and not in 
MPI or UCX.  Differences tend to arise in some of the collective 
communication operations, and so the best choice of MPI 
implementation is application dependent.   
 
Table 3.  TCP tuning parameters 
 

net.ipv4.tcp_low_latency 1 

net.ipv4.tcp_adv_win_scale 1 

net.ipv4.tcp_timestamps 0 

net.ipv4.tcp_sack 1 

net.core.netdev_max_backlog 250000 

net.core.rmem_max 16777216 

net.core.wmem_max 16777216 

net.core.rmem_default 16777216 

net.core.wmem_default 16777216 

net.core.optmem_max 4194304 

net.ipv4.tcp_rmem 4096 87380 16777216 

net.ipv4.tcp_wmem 4096 65536 16777216 

net.core.netdev_budget 1200 

net.core.somaxconn 2048 

 
 
The exchange bandwidth between two virtual machines is shown 
in the figure 2, as a function of message size, using one or two 
Ethernet interfaces.  These measurements were made using 
openmpi-4.1.1 built with ucx-1.11.1, with 8 MPI ranks per VM, and 

v32m64 instances (32 vcpus, 64 GB memory) on the cloud.  To use 
just one of the two Ethernet interfaces, we set 
UCX_NET_DEVICES=eth0 for all MPI ranks, and the exchange 
bandwidth reaches a plateau at ~4 GB/sec (32 Gbps) for large 
messages (curve “ucx-1” in the Figure 2).   
 

By setting UCX_NET_DEVICES=eth0,eth1 for all MPI ranks, large 
messages are striped across both virtual adapters, and the exchange 
bandwidth reaches a plateau at ~8 GB/sec (64 Gbps) (curve “ucx-
striped”).  Striping is effective only for rather large messages.  For 
many purposes it is better to launch MPI jobs with a helper script 
that sets UCX_NET_DEVICES to eth0 for half of the ranks on each 
VM, and to eth1 for the other half.  This results in the curve labeled 
“ucx-2”, which reaches a plateau at ~8 GB/sec and provides better 
exchange bandwidth for medium sized messages.  The same 
mechanism, setting UCX_NET_DEVICES, applies to MPICH 
versions that are configured with the “ch4:ucx” device. 
 

With OpenMPI, one can alternatively select the built-in “ob1” point-
to-point messaging layer (--mca pml ob1).  One can specify a single 
Ethernet interface (--mca btl_tcp_if_include eth0), or request 
striping over two interfaces (--mca btl_tcp_if_include eth0,eth1).  
The performance characteristics are similar with either “ob1” or 
“ucx” for the point-to-point messaging layer; and again, striping is 
effective only for large messages. 
 

For an example where multiple Ethernet interfaces can help, 
consider a large parallel 3D FFT.  We used the P3DFFT package for 
these measurements [10], with an MPI-only build (no OpenMP).  
The P3DFFT package uses a 2D pencil decomposition, where the 
main communication pattern is MPI_Alltoallv or MPI_Alltoall on 
process rows or columns.     
 
 

Figure 2.  The measured exchange bandwidth between two 
virtual machines (8 MPI ranks per VM) is shown as a function 
of message size, using either one Ethernet interface (ucx-1), 
striping across two Ethernet interfaces (ucx-striped), or 
assigning half the ranks to use one interface while the other 
half use a different interface (ucx-2).   
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The entire data set is transposed multiple times in order to 
successively collect each dimension for 1D FFT transforms, keeping 
the other two dimensions distributed.  The transposition method 
relies on network bandwidth when using large data sets.  The data 
shown in the figure 3 is for a 3D FFT on a grid with 3072^3 points, 
distributed over 1536 MPI ranks, with one rank per physical core.  
We used 192 VMs of type v16m32 for these measurements, 
configured with two Ethernet interfaces, thus enabling the 
maximum available network bandwidth per core. We used 
openmpi-4.1.1 built on top of ucx-1.11.1, setting the environment 
variable UCX_NET_DEVICES to assign Ethernet interfaces.  For 
simplicity, we chose to analyze one of the sample programs, 
test_rand_f.x, which uses random numbers on the 3D grid.  We 
instrumented the code to roughly partition time into “messaging” 
and “computation” components.  The figure 3 shows timing data for 
10 iterations of the forward and backward 3D FFT, using either just 
one Ethernet interface (the left-most bar), or using a helper script 
set UCX_NET_DEVICES to eth0 for even numbered ranks and to 
eth1 for odd numbered ranks (the bar in the middle), or we request 
striping over both interfaces by setting 
UCX_NET_DEVICES=eth0,eth1 (the right-most bar).  At this scale, 
message sizes in MPI_Alltoallv were ~3-5 MBytes, performance is 
limited by network bandwidth, and the messages are large enough 
to benefit from striping, as shown in our earlier Figure 2.  Using two 
Ethernet interfaces clearly reduces the time associated with 
messaging, but not by a factor of two, and the two different methods 
for using both network interfaces provide roughly equivalent 
performance.  
 
 

Figure 3.  The effect of using two Ethernet interfaces is shown 
for 10 iterations of forward and backward 3D FFTs on a grid 
with 3072^3 points distributed over 1536 MPI ranks on the 
cloud.   
 
We have examined the impact of enabling two Ethernet interfaces 
on a substantial number of HPC applications, and in most cases the 
performance improvement is minimal.  There are exceptions, for 
example when performance depends critically on collective 
communication with quite large messages, as in the 3D FFT 
example. 

5 HPC workloads on Cloud vs a 
Supercomputer 
A high-resolution weather forecast model provides an interesting 
test case.  We made extensive measurements using WRF version 
4.1.5 and a grid covering the continental US at 2.5 km resolution.  
WRF is an explicit time-stepping code, where the main 
communication pattern is boundary exchange with nearest 
neighbors on a 2D Cartesian grid.  There are no globally 
synchronizing functions in the main time-step loop.  WRF uses a 
very effective method to pack and unpack message buffers.  This 
results in message sizes of ~10 KB to ~500 KB in the relevant parts 
of the scaling curve.  As a result, this high-resolution weather model 
is not very sensitive to latency in the network, and it is well suited 
for cost effective Ethernet networks using TCP protocol on public 
cloud systems.  One can achieve simulation speeds of ~50 forecast 
hours per elapsed hour using ~1500 cores on the cloud, with the 
standard single-interface Ethernet configuration, as shown in the 
scaling curve in Figure 4.  We used v16m32 instances (16 vcpus, 32 
GB memory), and a mix of MPI plus OpenMP: four MPI ranks per 
VM, with two OpenMP threads, taking care to bind just one 
OpenMP thread per physical core.   
 

The scaling curve for the same test case on the Summit 
supercomputer at Oak Ridge National Laboratory is shown in 
Figure 4 for comparison.   
 

 
Figure 4. Scaling curves are shown for WRF 4.1.5 using a grid 
covering the continental US at 2.5 km resolution.  The upper 
curve is for the cloud using v16m32 instance types with a 
single 16 Gbps Ethernet interface, and the lower curve shows 
data from the Summit supercomputing system at Oak Ridge. 
 
The Summit system has two EDR Infiniband adapters per node and 
includes a very low noise environment to ensure excellent scaling.  
This WRF model used only CPUs (not GPUs), and the current x86 
processors on the cloud provide higher performance per core 
compared to the IBM Power 9 processors on Summit.  Our 
measurements on the cloud show no improvement for this WRF test 
case when enabling two Ethernet interfaces.  In fact, best 
performance was with OpenMPI and the “ob1” point-to-point 
messaging layer, using just one Ethernet interface.  This is 
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consistent with expectation because the messages are too small to 
benefit from striping, and WRF has plenty of load imbalance, which 
tends to reduce contention for access to shared network adapters.  
As mentioned earlier in this article, it is essential to bind just one 
OpenMP thread to each physical core on the cloud system.  If 
OpenMP threads are bound to every virtual cpu, there will be 
contention for execution slots between user threads and kernel 
threads in the guest and host operating systems, resulting in 
communication delays and ~10x lower performance at scale.  This 
type of contention occurs with virtio-net as the network 
virtualization layer.  Different behavior is expected for different 
methods of network virtualization (such as SR-IOV).    
 

SNAP is a well-known HPC benchmark used by U.S. Dept. of 
Energy Labs as a proxy for solution of deterministic Boltzmann 
transport models for neutral particles.  We investigated the SNAP 
benchmark used to evaluate “Commodity Technology Systems” 
[12].  The test case has constant work per MPI rank (weak scaling), 
using a local domain with dimensions of 640x4x4 grid cells.  This is 
a very communication intensive benchmark, because most of the 
grid cells are on domain boundaries, so the ratio of communication 
to local computation is relatively high. Measurements for SNAP are 
shown in figure 5, comparing a public cloud system with the 
Summit supercomputing system at Oak Ridge, using only the CPUs 
for computation (not GPUs).   

 
Figure 5.  Weak-scaling curves are shown for the SNAP 
benchmark, using a local domain with 640x4x4 grid cells per 
MPI rank.  The upper curve is for the cloud using v16m32 
instance types with two 16 Gbps Ethernet interfaces, and the 
lower curve shows data from the Summit supercomputing 
system at Oak Ridge. 
 
The cloud system was using virtual machines with 16 vcpus (8 
cores) and two ethernet interfaces per VM.  The Summit system has 
42 cores and two EDR Infiniband adapters per node.  Figure 5 shows 
the performance metric (figure of merit)  per MPI rank, so linear 
scaling would appear as a flat line.  This is another case where the 
performance per core is higher on the public cloud system.  SNAP 
has one main “hot” routine, and the x86 processors used by the 
cloud system benefit more from SIMD instructions, and thus 
provide more performance per core.  The scaling behavior is very 

similar on both systems: there is a slight reduction in parallel 
efficiency as one scales out beyond ~1000 cores.  On the public cloud 
system, using two Ethernet interfaces per VM resulted in a ~10-15% 
performance improvement, relative to using a single Ethernet 
interface.    
 

We have investigated other well-known HPC applications 
including the molecular dynamics package LAMMPS [13].  The 
performance characteristics of LAMMPS depend on the force field, 
and we selected solid copper with embedded-atom forces for this 
study.  On the public cloud system, we limited our measurements 
to CPUs, but on the Summit supercomputing system, we made 
measurements using (1) just the Power 9 CPUs, or (2) the NVIDIA 
V100 GPUs enabled with the Kokkos package [14].  In order to 
compare CPU and GPU systems, we show performance versus the 
number of compute units, where a compute unit is either a CPU 
socket, or a GPU device, and we used weak scaling, with a constant 
number of copper atoms per compute unit (~4*10^5 atoms).  On 
Summit, each CPU socket has 21 Power 9 cores, and there are six 
V100 GPUs and two EDR Infiniband adapters per node.  On the 
public cloud system, we used virtual machines with 16 vcpus (8 
cores) and just one 16 Gbps Ethernet interface, and for purposes of 
comparison, we assume that each “compute unit” on the cloud 
contains 24 cores, as expected for the underlying x86 servers.   

Figure 6.  Weak-scaling curves are shown for LAMMPS using 
embedded-atom forces for solid copper.  The x-axis indicates 
the number of compute units, which represent either a GPU 
or a CPU socket.  The V100 GPUs on Summit, top curve, 
provide the best performance per compute unit.  The two 
lower curves indicate performance using CPUs on the cloud 
(middle curve) or on Summit (lower curve). 
 
The measured performance per compute unit is shown in figure 6, 
with data extending to ~1500 cores for the CPU cases.  Perfect linear 
scaling would appear as a flat line in the figure.  With these 
parameters, the Summit system using Power 9 CPUs provides very 
close to the ideal scaling behavior.  On the public cloud system, we 
used the Intel package [15], which exploits SIMD instructions 
available for the x86 processors.  This results in better performance 
per core (and per compute unit) compared to the Power 9 processors 
on Summit.  On the cloud system, performance per compute unit 
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decreases by a modest amount, indicating less efficient scaling.  The 
NVIDIA V100 GPUs provide significantly more performance per 
compute unit, as shown in the top curve.  However, scaling is less 
than ideal in the GPU case because it takes less time to do the 
computation per time step, and there is more overhead in the 
messaging layers.  To get the most benefit from GPUs, a cloud 
system would need good support for messaging using RDMA from 
GPU memory.             

6 Discussion 
In this paper, we reported best practices for compute, memory and 
network intensive workloads with moderate requirements for 
storage in applications such as WRF checkpoints. Public clouds offer 
a collection of storage and file system technologies such as host 
attached storage, network attached block storage, NFS file systems 
and parallel HPC file systems. For I/O intensive HPC workloads, 
careful evaluation with the different storage and file systems in 
cloud will be necessary to leverage cloud economically and to 
achieve scalable performance.  

7 Conclusion 
Many cloud providers use Ethernet with TCP protocol for 
networking [16,17,18,19], which comes with high latency, whereas 
shared memory provides very efficient communication.  As a result, 
it is often best to choose a single large virtual machine if the HPC 
workload fits.  When scaling to large numbers of cores, a good 
starting choice is to use virtual machine instances with ~16 virtual 
cpus and one or two Ethernet interfaces.  Multiple network 
interfaces offer marginal performance improvement when 
messages are relatively small and application behavior is loosely 
synchronous, but applications that rely on collective 
communication with large messages can benefit.  With careful 
choices for managing the compute and networking resources, 
current public clouds can handle many HPC workloads, and provide 
performance comparable to, and sometimes better than, current 
supercomputing systems.  
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