
Best Practices for HPC Workloads on Public Cloud Platforms
A guide for computational scientists to use public cloud for HPC workloads

Robert Walkup, Seetharami R. Seelam, Sophia Wen
IBM T. J. Watson Research Center
Yorktown Heights, NY 10514, USA

{walkup, sseelam, hfwen}@us.ibm.com

ABSTRACT
HPC (high performance computing) applications come with a variety

of requirements for computation, communication, and storage; and

many of these requirements can be met with commodity technology

available in public clouds. In this article, we report on results for

several well-known HPC applications on IBM public cloud, and we

describe best practices for running such applications on cloud

systems in general. Our results show that public clouds are not only

ready for HPC workloads, but they can provide performance

comparable to, and in some cases better than, current

supercomputers.

CCS CONCEPTS
• High Performance Computing • Cloud • Distributed computing

KEYWORDS
HPC, Cloud, distributed computing, MPI

ACM Reference format:

Robert Walkup, Seetharami R. Seelam, and Sophia Wen. 2022. Best Practices
for HPC Workloads on Public Cloud Platforms: A guide for computational
scientists to use public cloud for HPC workloads. In Proceedings of the 2022
ACM/SPEC International Conference on Performance Engineering (ICPE'22),
April 9–13, 2022, Bejing, China. ACM, New York, NY, USA. 7 pages.
https://doi.org/10.1145/3489525.3511693

1 Introduction
The widespread availability of public cloud systems is having an
impact on many realms of computing, including traditional High-
Performance Computing (HPC) [1-3]. In this article, we report on
results for several well-known HPC applications on IBM public

cloud, and we describe best practices for running such applications
on cloud systems in general. We discuss some of the key factors
that HPC cloud users need to consider, including the selection of
basic building blocks or virtual-machine instances. Measurements
on cloud systems provide insight into how to get the most benefit
from compute and network resources, including how to manage
multiple network interfaces, and what to do about hyper-threading.
While we report results from IBM Cloud, our observations are
applicable to public clouds in general. We take the point of view of
a traditional computational scientist and address the challenges of
public cloud adoption for their HPC workloads. We will use a broad
collection of HPC workloads that vary in scale, with different
compute, memory, network, and scalability characteristics to
describe the best practices.

2 Use a single large instance or many small
ones?
One of the first choices a cloud user is faced with is selection of an
“instance type” to be used as a building block, analogous to a “node”
in traditional HPC clusters. Most public clouds offer a wide variety
of instance types, with varying amounts of memory, CPU resources,
some specified limits on network connectivity, and a collection of
storage and file system options. In traditional HPC data centers,
typically users have a fixed node configuration, so the application is
tuned to best use the resources of the node. In contrast, cloud
provides a large collection of node configurations so the users can
tweak the cloud to fit their application needs.
In this article we use generic names for virtual machines, where the
number of virtual cpus follows after the letter “v”, and the number
of GBytes of memory follows the letter “m”. For example, a virtual
machine with 128 virtual cpus and 256 GB memory will be listed as
v128m256.

The most cost-effective network solutions use Ethernet with TCP
protocol, which comes with significant latency for communication
between nodes or virtual machines, and with bandwidth limits in
order to provide some guaranteed level of service. Current MPI
(message-passing interface) implementations provide very efficient
communication between processes on the same node or virtual-
machine via shared memory. In fact, the latency for shared memory
communication can be as much as ~100x lower than Ethernet with
TCP protocol.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
ICPE '22, April 9–13, 2022, Bejing, China
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9143-6/22/04...$15.00
DOI: https://doi.org/10.1145/3489525.3511693

Session 1: Service and Cloud Computing ICPE ’22, April 9–13, 2022, Bejing, China

29

https://doi.org/10.1145/3489525.3511693

An example of this is illustrated in Figure 1, which shows the
measured MPI latency, defined as the average value of half the
round-trip time to exchange messages using MPI_Send followed by
MPI_Recv, on a current cloud system. Shared memory is used to
communicate between two processes on the same virtual machine,
while TCP protocol and Ethernet, with virtio-net as the network
virtualization software, is used to communicate between processes
on different virtual machines. The data below was measured using
mpich-3.4.2 built with the “ch4:ucx” device. Similar trends are
observed with other MPI implementations. The network
virtualization method is a key factor. Measurements in this article
were made with virtio-net, which provides flexible control of
network bandwidth, but adds significant latency.

Figure 1. MPI latency is shown as a function of message size,
using either shared memory (lower curve) or TCP protocol
over Ethernet (upper curve) on a public cloud.

Latency sensitive applications that can fit in a large shared-memory
system are best deployed on a single virtual machine with many
cores and plenty of main memory. For example, on IBM public
cloud there is a family of instance types with 128 virtual cpus (64
processor cores) and memory configurations of 256, 512, or 1024 GB.
Other clouds have similar instance types. This is sufficient for many
HPC use cases, including computational fluid dynamics with grids
of order 10^7 cells or less and metropolitan area weather forecasts.

We investigated the performance of the weather model WRF [4,21]
used by the Deep Thunder team in IBM [5]. Their test case used a
sequence of four nested grids, where each grid contained 100x100
points in the lateral dimensions with resolutions of 18 km, 6 km, 2
km, and 0.667 km, and 51 vertical levels, and with history file
outputs every 10 forecast minutes. The objective of this test case
was to complete a 72-hour forecast in less than 3 wall-clock hours.
Table 1 shows the measured run times on IBM cloud using either a
single virtual machine with 64 cores (128 vcpus), 256 GB memory,
with communication via shared memory (type v128m256), or a set
of 12 virtual machines with 8 cores (16 vcpus) each (type v16m64)
connected via Ethernet. The shared-memory configuration proved
to be faster, even though there are significantly fewer cores.

Cost is another consideration. On our test cloud platform, cost was
almost identical for configurations with the same total number of
virtual cpus and the same aggregate amount of memory. For this
local-area WRF case, it is more cost efficient to choose the large
shared-memory instance type, because that provides better
performance using fewer virtual cpus.

Table 1. Run times are shown for a 72-hour metropolitan
area weather forecast using WRF on the cloud.
Instance type #VMs cores Messaging Run time
v16m64 12 96 Ethernet TCP 2.72 hrs
v128m256 1 64 shared mem 2.40 hrs

WRF is mainly Fortran code, and best performance was obtained
using the Intel Fortran compiler, with options set for current
generation Intel CPUs. Using a single large virtual machine in a
cloud environment is essentially equivalent to using a dedicated x86
server with an equivalent configuration of cores and memory.

We also examined computational fluid dynamics (CFD) using
OpenFOAM [6,22] and the motorbike steady-state flow tutorial.
The key parameter in CFD simulations is the number of grid cells.
Problems with up to ~50 M grid cells can fit within the memory
available on a single large virtual machine. A comparison of run
times for the motorbike tutorial is shown in the table 2, using 64
cores on the cloud from either (a) a single virtual machine of type
v128m256, or (b) four virtual machines of type v32m128 connected
via Ethernet. For grids with ~1 M cells and a total of 64 MPI ranks
(one rank per physical core), communication is very important, and
the single virtual machine is significantly faster. Communication
via shared memory remains advantageous for larger grids, but the
timing difference becomes less significant as the simulation
becomes more compute bound. Again, cost is basically the same for
configurations with the same number of virtual cpus and the same
amount of memory, and so the large shared-memory system is more
cost effective.

When the number of grid cells is ~10 M or greater, it may be
desirable to scale out to larger core counts in order to reduce the
time to solution. On Cloud systems that use TCP with virtio-net, it
is best to limit scaling and keep the number of grid cells per core
larger than ~10^5, otherwise latency in the Ethernet network
becomes a substantial bottleneck. Cloud systems that provide lower
latency networks can scale out further.

Table 2. Elapsed times for the simpleFoam motorbike
tutorial are shown for different grid sizes using either a
single virtual machine of type v128m256 or four instances of
type v32m128 connected by Ethernet.

#Cells v128m256 Four of v32m128

0.91 M 48.7 sec 88.1 sec

2.63 M 155.3 sec 195.4 sec

5.41 M 351.0 sec 420.6 sec

1.0E+1 1.0E+3 1.0E+5 1.0E+7

0.1

1.0

10.0

100.0

1000.0

Message Size (Bytes)

Ti
m

e
(M

ic
ro

se
co

n
d

s)

Half Round-Trip Times vs. Message Size

TCP Ethernet Virtio

Shared Memory

Session 1: Service and Cloud Computing ICPE ’22, April 9–13, 2022, Bejing, China

30

3 Managing Hyper-threading and using
physical cores
Cloud instances usually expose virtual cpus (vcpus), which map to
hyper-threads on the underlying server. Many HPC applications
gain little if any benefit from hyper-threading, and so it is common
practice to bind applications to just one hyper-thread per physical
core or to turn it off at the guest virtual machine [20]. With virtio-
net for network virtualization and TCP protocol [11] there is
another reason to use just one hyper-thread per core. Messages are
copied from the guest operating system in the user’s VM to the
operating system on the host, via “vhost” threads [7]. The “vhost”
threads are active within the host operating system. In addition,
there are kernel threads that service interrupts, both on the host
operating system, and for the guest virtual machine. When network
traffic is heavy, these threads need free slots for execution. If the
user has tied up all the hyper-threads with computational work, the
kernel threads will contend with user threads for execution slots,
and messaging performance will suffer. We have conducted
detailed experiments showing that this mechanism is a major factor
that limits scaling and contributes to performance variability on
cloud systems that use virtio-net.

Sources of performance variability can be identified using simple
tests[28,29,30], including measurements of the memory bandwidth
and core frequencies for every virtual machine. We have observed
that virtual machines with 16 vcpus (8 cores) can be located on the
underlying server hardware in multiple ways : some VMs fit inside
one numa domain while others span two numa domains. In
addition, there may be more than one VM allocated to the same
numa domain, resulting in contention for memory bandwidth. This
form of heterogeneity can result in job to job performance
variations because different VMs of the same type have different
performance characteristics, and the assignment of MPI ranks to
VMs can vary from job to job. It is useful to make quantitative
measurements of timing variability, using an artificial parallel
application with carefully calibrated units of computation work
combined with a simple communication pattern following
completion of each work unit [28]. With such tests, one can map
out the parallel efficiency as a function of the frequency and volume
of communication between the ranks. Additional insight can be
obtained by visualization of MPI time lines, which can show the
delays in completion of the work unit caused by CPU cycle-stealing
by competing processes. TCP communication results in significant
CPU activity. One can manage activity by the guest operating
system in the VM to some degree by carefully managing IRQ
affinity assignments. However, with virtio-net as the network
virtualization layer, there is also significant CPU activity in the host
operating system, which is outside the realm of control by a cloud
user. Our measurements show that CPU hot-spots resulting from
message processing by the host OS constitutes a major source of
timing variability and can limit scaling on cloud systems.

A dramatic example of this contention for CPU resources is
provided by a high-resolution weather forecasting case, using a mix
of MPI and OpenMP as described in a later section. When OpenMP
threads are limited to one thread per physical core, the average time

per time-step was ~0.28 seconds at 1536 cores. Doubling the number
of OpenMP threads so that every hyper-thread was busy with
OpenMP work resulted in an average time per step of ~3.2 seconds,
or more than a 10x slow-down. Detailed performance analysis
showed that the excess time is caused by delays in messaging. We
have observed similar effects in many HPC applications. This
problem can be avoided by either of two methods: (1) bind the
application’s threads to just one hyper-thread per physical core, or
(2) disable hyper-threading inside the user’s VM [20]. In both cases,
all hyper-threads remain available to the host operating system, and
so the “vhost” threads continue to have free slots for execution. Our
measurements indicate that these two options provide equivalent
performance. Normally we prefer to keep hyper-threading enabled
inside the VM and take care to bind one user thread or process to
each physical core, leaving half the vcpus free. The issue of host
kernel threads contending with application threads for CPU
resources does not arise when using only shared memory for
communication, or when using methods that directly expose the
network devices to the virtual machine.

4 Selecting instances and network
interfaces for scaling out to large core counts
When scaling to large numbers of virtual machines and cores, the
selection of an appropriate instance type depends on the available
network options, which in turn depend on the number of virtual
cpus in the instance. Our reference public cloud system uses virtio-
net for network virtualization, where each virtual Ethernet interface
can provide at most 16 Gbps bandwidth (single flow, unidirectional).
Other public clouds follow similar patterns [23,24,25,26]. Depending
on the number of virtual cpus in the instance, users can create
additional Ethernet interfaces and obtain up to 80 Gbps bandwidth
[26]. However, managing multiple interfaces adds complexity, and
it is often not possible to realize the full potential benefit. Many
HPC applications are rather loosely synchronous and have medium
to small messages that do not benefit from striping across multiple
adapters. In such cases, there is typically not much contention for
shared adapter resources, and communication performance is not
likely to improve with the addition of multiple Ethernet interfaces.

Our experience has been that those instances with ~16 vcpus and
one or two Ethernet interfaces provide a good starting choice when
scaling beyond the number of cores available in a single large VM.
With 16 vcpus, there are 8 physical cores, which is normally enough
to get some benefit from communication via shared memory, and
the core count is small enough to ensure good network bandwidth
per core for the messages that must go over Ethernet. These
network considerations are unique to cloud systems, which offer
many different instance types and network options. On traditional
HPC clusters, users have full access to the hardware on each server,
and all servers normally have identical configurations.

Many cloud providers use Ethernet with TCP protocol for
networking, and there are tunable parameters that affect
performance. We have noticed improved messaging performance
on the cloud by setting the MTU to 9000 for the Ethernet interfaces,

Session 1: Service and Cloud Computing ICPE ’22, April 9–13, 2022, Bejing, China

31

and by using the options shown in the table 3, set in each virtual
machine. Some of these parameters, such as the maximum number
of socket connections, may need adjustment, depending on the scale
of the parallel job. Similar TCP tuning parameters are suggested in
the OpenMPI frequently asked questions [8], and in the
performance tuning guides for Mellanox network adapters. Our
experience has been that the increased TCP memory buffers reduce
packet drops and re-transmits when the network load is heavy.
These choices tend to help performance using any number of TCP
interfaces.

The choice of MPI implementation can also make a difference,
particularly when it comes to support for multiple Ethernet
interfaces. The approach that we prefer uses MPI built on top of
UCX [9]. UCX provides a convenient environment variable,
UCX_NET_DEVICES, that can be used to select one or more
network interfaces. The UCX layer is automatically included in
recent releases of MPICH. We have tested mpich-3.4.2 configured
with the built-in “ch4:ucx” device. One can also incorporate UCX
into OpenMPI, and we have tested openmpi-4.1.1 built with ucx-
1.11.1. Both MPI implementations can provide good performance
and flexible control over multiple interfaces. The basic point-to-
point messaging behavior is very similar in these implementations,
because overhead is mostly in the TCP software layers, and not in
MPI or UCX. Differences tend to arise in some of the collective
communication operations, and so the best choice of MPI
implementation is application dependent.

Table 3. TCP tuning parameters

net.ipv4.tcp_low_latency 1

net.ipv4.tcp_adv_win_scale 1

net.ipv4.tcp_timestamps 0

net.ipv4.tcp_sack 1

net.core.netdev_max_backlog 250000

net.core.rmem_max 16777216

net.core.wmem_max 16777216

net.core.rmem_default 16777216

net.core.wmem_default 16777216

net.core.optmem_max 4194304

net.ipv4.tcp_rmem 4096 87380 16777216

net.ipv4.tcp_wmem 4096 65536 16777216

net.core.netdev_budget 1200

net.core.somaxconn 2048

The exchange bandwidth between two virtual machines is shown
in the figure 2, as a function of message size, using one or two
Ethernet interfaces. These measurements were made using
openmpi-4.1.1 built with ucx-1.11.1, with 8 MPI ranks per VM, and

v32m64 instances (32 vcpus, 64 GB memory) on the cloud. To use
just one of the two Ethernet interfaces, we set
UCX_NET_DEVICES=eth0 for all MPI ranks, and the exchange
bandwidth reaches a plateau at ~4 GB/sec (32 Gbps) for large
messages (curve “ucx-1” in the Figure 2).

By setting UCX_NET_DEVICES=eth0,eth1 for all MPI ranks, large
messages are striped across both virtual adapters, and the exchange
bandwidth reaches a plateau at ~8 GB/sec (64 Gbps) (curve “ucx-
striped”). Striping is effective only for rather large messages. For
many purposes it is better to launch MPI jobs with a helper script
that sets UCX_NET_DEVICES to eth0 for half of the ranks on each
VM, and to eth1 for the other half. This results in the curve labeled
“ucx-2”, which reaches a plateau at ~8 GB/sec and provides better
exchange bandwidth for medium sized messages. The same
mechanism, setting UCX_NET_DEVICES, applies to MPICH
versions that are configured with the “ch4:ucx” device.

With OpenMPI, one can alternatively select the built-in “ob1” point-
to-point messaging layer (--mca pml ob1). One can specify a single
Ethernet interface (--mca btl_tcp_if_include eth0), or request
striping over two interfaces (--mca btl_tcp_if_include eth0,eth1).
The performance characteristics are similar with either “ob1” or
“ucx” for the point-to-point messaging layer; and again, striping is
effective only for large messages.

For an example where multiple Ethernet interfaces can help,
consider a large parallel 3D FFT. We used the P3DFFT package for
these measurements [10], with an MPI-only build (no OpenMP).
The P3DFFT package uses a 2D pencil decomposition, where the
main communication pattern is MPI_Alltoallv or MPI_Alltoall on
process rows or columns.

Figure 2. The measured exchange bandwidth between two
virtual machines (8 MPI ranks per VM) is shown as a function
of message size, using either one Ethernet interface (ucx-1),
striping across two Ethernet interfaces (ucx-striped), or
assigning half the ranks to use one interface while the other
half use a different interface (ucx-2).

1.00E+02 1.00E+03 1.00E+04 1.00E+05 1.00E+06 1.00E+07

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

Message Size (bytes)

B
an

d
w

id
th

 (
G

B
/s

ec
)

v32m64 : Two Interfaces, Exchange Bandwidth

ucx-2

ucx-striped

ucx-1

Session 1: Service and Cloud Computing ICPE ’22, April 9–13, 2022, Bejing, China

32

The entire data set is transposed multiple times in order to
successively collect each dimension for 1D FFT transforms, keeping
the other two dimensions distributed. The transposition method
relies on network bandwidth when using large data sets. The data
shown in the figure 3 is for a 3D FFT on a grid with 3072^3 points,
distributed over 1536 MPI ranks, with one rank per physical core.
We used 192 VMs of type v16m32 for these measurements,
configured with two Ethernet interfaces, thus enabling the
maximum available network bandwidth per core. We used
openmpi-4.1.1 built on top of ucx-1.11.1, setting the environment
variable UCX_NET_DEVICES to assign Ethernet interfaces. For
simplicity, we chose to analyze one of the sample programs,
test_rand_f.x, which uses random numbers on the 3D grid. We
instrumented the code to roughly partition time into “messaging”
and “computation” components. The figure 3 shows timing data for
10 iterations of the forward and backward 3D FFT, using either just
one Ethernet interface (the left-most bar), or using a helper script
set UCX_NET_DEVICES to eth0 for even numbered ranks and to
eth1 for odd numbered ranks (the bar in the middle), or we request
striping over both interfaces by setting
UCX_NET_DEVICES=eth0,eth1 (the right-most bar). At this scale,
message sizes in MPI_Alltoallv were ~3-5 MBytes, performance is
limited by network bandwidth, and the messages are large enough
to benefit from striping, as shown in our earlier Figure 2. Using two
Ethernet interfaces clearly reduces the time associated with
messaging, but not by a factor of two, and the two different methods
for using both network interfaces provide roughly equivalent
performance.

Figure 3. The effect of using two Ethernet interfaces is shown
for 10 iterations of forward and backward 3D FFTs on a grid
with 3072^3 points distributed over 1536 MPI ranks on the
cloud.

We have examined the impact of enabling two Ethernet interfaces
on a substantial number of HPC applications, and in most cases the
performance improvement is minimal. There are exceptions, for
example when performance depends critically on collective
communication with quite large messages, as in the 3D FFT
example.

5 HPC workloads on Cloud vs a
Supercomputer
A high-resolution weather forecast model provides an interesting
test case. We made extensive measurements using WRF version
4.1.5 and a grid covering the continental US at 2.5 km resolution.
WRF is an explicit time-stepping code, where the main
communication pattern is boundary exchange with nearest
neighbors on a 2D Cartesian grid. There are no globally
synchronizing functions in the main time-step loop. WRF uses a
very effective method to pack and unpack message buffers. This
results in message sizes of ~10 KB to ~500 KB in the relevant parts
of the scaling curve. As a result, this high-resolution weather model
is not very sensitive to latency in the network, and it is well suited
for cost effective Ethernet networks using TCP protocol on public
cloud systems. One can achieve simulation speeds of ~50 forecast
hours per elapsed hour using ~1500 cores on the cloud, with the
standard single-interface Ethernet configuration, as shown in the
scaling curve in Figure 4. We used v16m32 instances (16 vcpus, 32
GB memory), and a mix of MPI plus OpenMP: four MPI ranks per
VM, with two OpenMP threads, taking care to bind just one
OpenMP thread per physical core.

The scaling curve for the same test case on the Summit
supercomputer at Oak Ridge National Laboratory is shown in
Figure 4 for comparison.

Figure 4. Scaling curves are shown for WRF 4.1.5 using a grid
covering the continental US at 2.5 km resolution. The upper
curve is for the cloud using v16m32 instance types with a
single 16 Gbps Ethernet interface, and the lower curve shows
data from the Summit supercomputing system at Oak Ridge.

The Summit system has two EDR Infiniband adapters per node and
includes a very low noise environment to ensure excellent scaling.
This WRF model used only CPUs (not GPUs), and the current x86
processors on the cloud provide higher performance per core
compared to the IBM Power 9 processors on Summit. Our
measurements on the cloud show no improvement for this WRF test
case when enabling two Ethernet interfaces. In fact, best
performance was with OpenMPI and the “ob1” point-to-point
messaging layer, using just one Ethernet interface. This is

0

10

20

30

40

50

60

100 300 500 700 900 1100 1300 1500 1700 1900

Si
m

u
la

ti
o

n
 S

p
ee

d

Cores

WRF Continental US 2.5 km Scaling

Cloud v16m32
Summit Power 9

eth0 eth0/eth1 eth0,eth1

0

5

10

15

20

25

30

35

40

45

50

Ti
m

e
in

 S
ec

o
n

d
s

P3DFFT 3072^3 Timing 1536 cores : v16m32

Computation

Messaging

Session 1: Service and Cloud Computing ICPE ’22, April 9–13, 2022, Bejing, China

33

consistent with expectation because the messages are too small to
benefit from striping, and WRF has plenty of load imbalance, which
tends to reduce contention for access to shared network adapters.
As mentioned earlier in this article, it is essential to bind just one
OpenMP thread to each physical core on the cloud system. If
OpenMP threads are bound to every virtual cpu, there will be
contention for execution slots between user threads and kernel
threads in the guest and host operating systems, resulting in
communication delays and ~10x lower performance at scale. This
type of contention occurs with virtio-net as the network
virtualization layer. Different behavior is expected for different
methods of network virtualization (such as SR-IOV).

SNAP is a well-known HPC benchmark used by U.S. Dept. of
Energy Labs as a proxy for solution of deterministic Boltzmann
transport models for neutral particles. We investigated the SNAP
benchmark used to evaluate “Commodity Technology Systems”
[12]. The test case has constant work per MPI rank (weak scaling),
using a local domain with dimensions of 640x4x4 grid cells. This is
a very communication intensive benchmark, because most of the
grid cells are on domain boundaries, so the ratio of communication
to local computation is relatively high. Measurements for SNAP are
shown in figure 5, comparing a public cloud system with the
Summit supercomputing system at Oak Ridge, using only the CPUs
for computation (not GPUs).

Figure 5. Weak-scaling curves are shown for the SNAP
benchmark, using a local domain with 640x4x4 grid cells per
MPI rank. The upper curve is for the cloud using v16m32
instance types with two 16 Gbps Ethernet interfaces, and the
lower curve shows data from the Summit supercomputing
system at Oak Ridge.

The cloud system was using virtual machines with 16 vcpus (8
cores) and two ethernet interfaces per VM. The Summit system has
42 cores and two EDR Infiniband adapters per node. Figure 5 shows
the performance metric (figure of merit) per MPI rank, so linear
scaling would appear as a flat line. This is another case where the
performance per core is higher on the public cloud system. SNAP
has one main “hot” routine, and the x86 processors used by the
cloud system benefit more from SIMD instructions, and thus
provide more performance per core. The scaling behavior is very

similar on both systems: there is a slight reduction in parallel
efficiency as one scales out beyond ~1000 cores. On the public cloud
system, using two Ethernet interfaces per VM resulted in a ~10-15%
performance improvement, relative to using a single Ethernet
interface.

We have investigated other well-known HPC applications
including the molecular dynamics package LAMMPS [13]. The
performance characteristics of LAMMPS depend on the force field,
and we selected solid copper with embedded-atom forces for this
study. On the public cloud system, we limited our measurements
to CPUs, but on the Summit supercomputing system, we made
measurements using (1) just the Power 9 CPUs, or (2) the NVIDIA
V100 GPUs enabled with the Kokkos package [14]. In order to
compare CPU and GPU systems, we show performance versus the
number of compute units, where a compute unit is either a CPU
socket, or a GPU device, and we used weak scaling, with a constant
number of copper atoms per compute unit (~4*10^5 atoms). On
Summit, each CPU socket has 21 Power 9 cores, and there are six
V100 GPUs and two EDR Infiniband adapters per node. On the
public cloud system, we used virtual machines with 16 vcpus (8
cores) and just one 16 Gbps Ethernet interface, and for purposes of
comparison, we assume that each “compute unit” on the cloud
contains 24 cores, as expected for the underlying x86 servers.

Figure 6. Weak-scaling curves are shown for LAMMPS using
embedded-atom forces for solid copper. The x-axis indicates
the number of compute units, which represent either a GPU
or a CPU socket. The V100 GPUs on Summit, top curve,
provide the best performance per compute unit. The two
lower curves indicate performance using CPUs on the cloud
(middle curve) or on Summit (lower curve).

The measured performance per compute unit is shown in figure 6,
with data extending to ~1500 cores for the CPU cases. Perfect linear
scaling would appear as a flat line in the figure. With these
parameters, the Summit system using Power 9 CPUs provides very
close to the ideal scaling behavior. On the public cloud system, we
used the Intel package [15], which exploits SIMD instructions
available for the x86 processors. This results in better performance
per core (and per compute unit) compared to the Power 9 processors
on Summit. On the cloud system, performance per compute unit

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0 200 400 600 800 1000 1200 1400 1600

F
ig

u
re

 o
f
M

e
ri
t
p
e
r

C
o
re

Cores

SNAP Scaling : 640x4x4 Local Domain

Cloud v16m32

Summit Power 9

0E+00

1E+07

2E+07

3E+07

4E+07

5E+07

6E+07

7E+07

8E+07

9E+07

1E+08

0 10 20 30 40 50 60 70 80

P
e
rf

o
rm

a
n
c
e
 p

e
r

C
o
m

p
u
te

 U
n
it

Number of Compute Units

LAMMPS Copper/Embedded-Atom Scaling

Summit V100

Cloud v16m32

Summit Power 9

Session 1: Service and Cloud Computing ICPE ’22, April 9–13, 2022, Bejing, China

34

decreases by a modest amount, indicating less efficient scaling. The
NVIDIA V100 GPUs provide significantly more performance per
compute unit, as shown in the top curve. However, scaling is less
than ideal in the GPU case because it takes less time to do the
computation per time step, and there is more overhead in the
messaging layers. To get the most benefit from GPUs, a cloud
system would need good support for messaging using RDMA from
GPU memory.

6 Discussion
In this paper, we reported best practices for compute, memory and
network intensive workloads with moderate requirements for
storage in applications such as WRF checkpoints. Public clouds offer
a collection of storage and file system technologies such as host
attached storage, network attached block storage, NFS file systems
and parallel HPC file systems. For I/O intensive HPC workloads,
careful evaluation with the different storage and file systems in
cloud will be necessary to leverage cloud economically and to
achieve scalable performance.

7 Conclusion
Many cloud providers use Ethernet with TCP protocol for
networking [16,17,18,19], which comes with high latency, whereas
shared memory provides very efficient communication. As a result,
it is often best to choose a single large virtual machine if the HPC
workload fits. When scaling to large numbers of cores, a good
starting choice is to use virtual machine instances with ~16 virtual
cpus and one or two Ethernet interfaces. Multiple network
interfaces offer marginal performance improvement when
messages are relatively small and application behavior is loosely
synchronous, but applications that rely on collective
communication with large messages can benefit. With careful
choices for managing the compute and networking resources,
current public clouds can handle many HPC workloads, and provide
performance comparable to, and sometimes better than, current
supercomputing systems.

ACKNOWLEDGMENTS
Authors would like to thank Paul Mazzurana, Augie Mena, Greg
Mewhinney, Suraksha Vidyarthi from IBM Cloud for their help and
collaboration for experimentation on IBM Cloud [27].

REFERENCES
[1] Giulia Guidi, Marquita Ellis, Aydin Buluc, Katherine Yelick, David Culler, 10 Years

Later: Cloud Computing is Closing the Performance Gap, ICPE '21: Companion of
the ACM/SPEC International Conference on Performance Engineering April 2021
Pages 41–48 https://doi.org/10.1145/3447545.3451183

[2] Constantinos Evangelinos and Chris Hill. 2008. Cloud computing for parallel
scientific HPC applications: Feasibility of running coupled atmosphere-ocean climate
models on Amazon's EC2. CCA-08, Vol. 2, 2.40 (2008), 2--34.

[3] Katherine Yelick, Susan Coghlan, Brent Draney, and Richard S. Canon. 2011. The
Magellan Report on Cloud Computing for Science. US Department of Energy, Office
of Science, Office of Advanced Scientific Computing Research (ASCR), Vol. 3.

[4] https://www.mmm.ucar.edu/weather-research-and-forecasting-model

[5] https://www.ibm.com/ibm/history/ibm100/us/en/icons/deepthunder

[6] https://openfoam.org

[7] https://www.redhat.com/en/blog/introduction-virtio-networking-and-vhost-net

[8] https://www.open-mpi.org see the frequently asked questions

[9] https://openucx.org

[10] https://p3dfft.net

[11] Using Google Virtual NIC,
https://cloud.google.com/compute/docs/networking/using-gvnic

[12] https://hpc.llnl.gov/cts-2-benchmarks

[13] https://www.lammps.org

[14] https://docs.lammps.org/Speed_kokkos.html

[15] https://docs.lammps.org/Speed_intel.html

[16] https://cloud.google.com/vpc/docs/create-use-multiple-interfaces#max-interfaces

[17] https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-eni.html

[18] https://docs.microsoft.com/en-us/azure/virtual-network/virtual-network-
network-interface-vm?context=/azure/virtual-machines/context/context

[19] https://cloud.ibm.com/docs/vpc?topic=vpc-using-instance-vnics

[20] Seetharami Seelam, Disable Hyper-Threading in IBM Cloud
https://www.ibm.com/cloud/blog/disable-hyper-threading-in-ibm-cloud

[21] Paul Mazzurana, Augie Mena, Robert Walkup, Weather Research and Forecasting
Model Workload Evaluation on IBM Cloud,
https://www.ibm.com/cloud/blog/weather-research-and-forecasting-model-
workload-evaluation-on-ibm-cloud

[22] Robert Walkup, Greg Mewhinney, Running OpenFOAM on IBM Cloud,
https://www.ibm.com/cloud/blog/running-openfoam-on-ibm-cloud

[23] AWS Elastic Network Interfaces:
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-eni.html

[24] GCE Multiple network interfaces: https://cloud.google.com/vpc/docs/create-use-
multiple-interfaces

[25] Microsoft Azure: Multiple Network interface: https://docs.microsoft.com/en-
us/azure/virtual-machines/linux/multiple-nics

[26] Rei Odaira, Saju Mathew, Weiming Gu, Multiple Virtual Network Interfaces
Maximizing Throughput in IBM Cloud VPC,
https://www.ibm.com/cloud/blog/multiple-virtual-network-interfaces-
maximizing-throughput-in-ibm-cloud-vpc

[27] Suraksha Vidyarth, IBM Spectrum LSF Is Now Available on IBM Cloud,
https://www.ibm.com/cloud/blog/announcements/ibm-spectrum-lsf-is-now-
available-on-ibm-cloud

[28] Robert Walkup, OS Noise tool -- Utility to characterize parallel application scaling
issues caused by effects including OS noise. https://github.com/IBM/osnoise

[29] Robert Walkup, MPI Trace tool: https://github.com/IBM/mpitrace

[30] Seetharami Seelam, Liana Fong, Asser Tantawi, John Lewars, John Divirgilio,
Kevin Gildea. Extreme scale computing: Modeling the impact of system noise in
multicore clustered systems. In Parallel & Distributed Processing (IPDPS), 2010 IEEE
International Symposium on, pages 1–12. IEEE, 2010.

Session 1: Service and Cloud Computing ICPE ’22, April 9–13, 2022, Bejing, China

35

https://doi.org/10.1145/3447545.3451183
https://www.mmm.ucar.edu/weather-research-and-forecasting-model
https://www.ibm.com/ibm/history/ibm100/us/en/icons/deepthunder
https://openfoam.org/
https://www.redhat.com/en/blog/introduction-virtio-networking-and-vhost-net
https://www.open-mpi.org/
https://openucx.org/
https://p3dfft.net/
https://cloud.google.com/compute/docs/networking/using-gvnic
https://hpc.llnl.gov/cts-2-benchmarks
https://www.lammps.org/
https://docs.lammps.org/Speed_kokkos.html
https://docs.lammps.org/Speed_intel.html
https://cloud.google.com/vpc/docs/create-use-multiple-interfaces#max-interfaces
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-eni.html
https://docs.microsoft.com/en-us/azure/virtual-network/virtual-network-network-interface-vm?context=/azure/virtual-machines/context/context
https://docs.microsoft.com/en-us/azure/virtual-network/virtual-network-network-interface-vm?context=/azure/virtual-machines/context/context
https://cloud.ibm.com/docs/vpc?topic=vpc-using-instance-vnics
https://www.ibm.com/cloud/blog/disable-hyper-threading-in-ibm-cloud
https://www.ibm.com/cloud/blog/weather-research-and-forecasting-model-workload-evaluation-on-ibm-cloud
https://www.ibm.com/cloud/blog/weather-research-and-forecasting-model-workload-evaluation-on-ibm-cloud
https://www.ibm.com/cloud/blog/running-openfoam-on-ibm-cloud
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-eni.html
https://cloud.google.com/vpc/docs/create-use-multiple-interfaces
https://cloud.google.com/vpc/docs/create-use-multiple-interfaces
https://docs.microsoft.com/en-us/azure/virtual-machines/linux/multiple-nics
https://docs.microsoft.com/en-us/azure/virtual-machines/linux/multiple-nics
https://www.ibm.com/cloud/blog/announcements/ibm-spectrum-lsf-is-now-available-on-ibm-cloud
https://www.ibm.com/cloud/blog/announcements/ibm-spectrum-lsf-is-now-available-on-ibm-cloud
https://github.com/IBM/osnoise
https://github.com/IBM/mpitrace

