
Sampling-based Label Propagation for Balanced Graph
Partitioning

Adnan El Moussawi

Université Paris-Saclay, CNRS,

Laboratoire Interdisciplinaire des

Sciences du Numérique

Orsay, France

adnan.el-moussawi@lisn.fr

Ricardo Rojas Ruiz

Université Paris-Saclay, CNRS,

Laboratoire Interdisciplinaire des

Sciences du Numérique

Orsay, France

ricardo.rojas@student-cs.fr

Nacéra Bennacer Seghouani

Université Paris-Saclay, CNRS,

Laboratoire Interdisciplinaire des

Sciences du Numérique

Orsay, France

nacera.seghouani@lisn.fr

ABSTRACT
In this experience paper, we present new sampling-based algorithms

for balanced graph partitioning based on the Label Propagation

(LP) approach. The purpose is to define new heuristics to extend

the multi-objective and scalable Balanced GRAph Partitioning al-

gorithm B-GRAP proposed in [9]. The main challenge is related to

how to build a graph sample that ensures stability and improves the

convergence and the partitioning quality which depend strongly

on the structure of the graph. We defined two sampling-based

heuristics named RD-B-GRAP and HD-B-GRAP in order to study

the behavior of the propagation according to different quality mea-

sures related to the vertex and the edge balance, to the edge cut,

and also to the propagation time. The results obtained on different

graphs showed that the sampling-based algorithms improve the

propagation time without affecting the balance between partitions.

Moreover, The edge cut is slightly improved on some graphs.

CCS CONCEPTS
• Computing methodologies→ Parallel algorithms;

KEYWORDS
Graph Partitioning, vertex balance, edge balance, graph sampling,

parallel graph Computing, label propagation, Giraph.

ACM Reference Format:
Adnan El Moussawi, Ricardo Rojas Ruiz, and Nacéra Bennacer Seghouani.

2022. Sampling-based Label Propagation for Balanced Graph Partitioning. In

Proceedings of the 2022 ACM/SPEC International Conference on Performance
Engineering (ICPE ’22), April 9–13, 2022, Bejing, China. ACM, New York, NY,

USA, 8 pages. https://doi.org/10.1145/3489525.3511698

1 INTRODUCTION
The demand and the need of powerful graph databases have in-

creased in the last years due to their great capabilities for complex

analysis. Therefore, distributed systems propose opportunities as

well as huge challenges in order to improve the performance of

big data analytics. By parallelizing both storage and execution,

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

ICPE ’22, April 9–13, 2022, Bejing, China
© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9143-6/22/04. . . $15.00

https://doi.org/10.1145/3489525.3511698

distributed systems achieve great improvements especially when

clusters ormachines work independently. However, inter-node com-

munication in distributed graphs demands great execution time

when the distribution of nodes and edges is not balanced [5]. In

this context, the aim of graph partitioning is to identify an optimal

partition approach which can balance the workload of the graph

and minimize the edge-cuts thereby reducing the communication

between machines. Different kind of algorithms for graph parti-

tioning are proposed in the literature such as spectral, multilevel,

stream, machine learning-based and label propagation partitioning

approaches [1, 4, 6, 20, 22].

In this paper we focused on the label propagation approach as

an extension of B-GRAP a multi-objective and scalable Balanced

GRAph Partitioning (B-GRAP) algorithm, which distributes vertices

B-GRAPVB or edges B-GRAPEB in a balanced way [9]. The main

challenge is related to the seed nodes selection and to neighboring

nodes that propagate labels that the stability, the convergence and

the partitioning quality depend strongly on the structure of the

graph. Sampling graph seems to be a promising way to select nodes

based on their connections and degree to improve the performance

of the partitioning and to reduce the computation time. We defined

new sampling-based heuristics named RD-B-GRAP (Random De-

gree) and HD-B-GRAP (High Degree) in order to study the behavior

of the propagation according to different quality measures related

to the vertex and the edge balance, to the edge cut and also to the

propagation time.

We used Giraph
1
programming model for Hadoop and ran the

algorithms on different kind of large graphs of different structures

with sizes going up to 42M vertices and 1.5B edges, by varying the

number of partitions, the sampling parameters, and using several

measures related to the partitioning balance quality and to the

computation time. The results showed that the sampling-based

algorithms reduce the label propagation time on all the graphs, with

a gain going from 6% to 40% comparing to B-GRAP. Furthermore,

the vertex and the edge balance of partitioning remained unchanged

and stable on almost of graph data sets, while scaling the number of

partitions. Moreover, The edge cut was slightly improved on some

of the graphs and unchanged on the others.

In the following we give a review on the partitioning and the

sampling approaches. In Section 3, we give some useful notations

and preliminaries. Then, Section 4 details our sampling based label

propagation algorithms. Section 5, presents the implementation

environment and the experiment settings, followed by Section 6

1
https://giraph.apache.org/

Session 6: Theory of Performance ICPE ’22, April 9–13, 2022, Bejing, China

223

https://orcid.org/0000-0001-8597-3909
https://doi.org/10.1145/3489525.3511698
https://doi.org/10.1145/3489525.3511698
https://giraph.apache.org/

which details our experiments and results. Finally, we conclude in

Section 7.

2 RELATEDWORK
During the last decade, research communities working on graph

datasets have given a lot of interest to the definition of new strate-

gies for large graph parallel computing and analytics in a distributed

environment. This context opened up new challenges to define ef-

ficient graph partitioning algorithms [6, 14, 20]. One of the main

challenges consists in defining methods that allow to balance the

workload among the nodes of a distributed computing environment

and to reduce, at the same time, the communication load over the

network. In this section we discuss works about graph partitioning

approaches, then we present briefly graph sampling purposes and

applications.

Graph Partitioning. A common strategy in large graph par-

titioning is to use multilevel approaches [6]. Their main idea is to

generate a first partition on the basis of a reduced view of the graph

in which a vertex represents many vertices of the original graph.

For example a triangle of three vertices can be reduced to one. The

algorithms then expands the graph taking into account the whole

initial graph, such as METIS [15] algorithm. Another known algo-

rithm is Scotch [8] which deals with the graph changes, in contrary

to METIS. Streaming approaches [24] process the graph iteratively.

These methods are faster than multilevel algorithms but they build

partitioning with lower quality, in term of cuts and it’s generally

difficult to parallelize streaming algorithms.

Other works have used the label propagation approach (LP) [21] to

partition large graphs. LP was mainly used for community detection

in social networks [7, 13]. Making use of LP for the graph partition-

ing problem was motivated by the lightweight mechanism that uses

the network structure to guide its progress. LP partitioning meth-

ods generate less intermediary results than multilevel approaches,

which need to store many intermediate results such as the coarser

graph, and run with a lower complexity. Furthermore, LP method

is semantic-aware, given the existence of local closely connected

substructures, a label tends to propagate within such structures. In

[19] the authors defined a distributed partitioning algorithm called

Spinner that considers only edge balance. Spinner is based on LP ap-

proach and runs on the top of Giraph API.Compared to the previous

work, Spinner supports parallelism and can adapt an existing parti-

tioning to consider graph updates by adding or removing vertices

and edges and changing the number of partitions. The algorithm

divides 𝑁 vertices across 𝐾 partitions, while trying to keep similar

the number of edges in each partition. In the same context other

approaches have been proposed to take advantage from distributed

computation and Map-Reduce programming paradigms. In [2] the

authors embedded the nodes onto a line, and then processed them

in a distributed manner guided by a linear embedding order. Their

focus was on balanced-partitioning and on minimizing the total cut

size. Recently, [9] proposed a multi-objective LP based partitioning

algorithm B-GRAP. Comparing to previous methods, B-GRAP takes

into account either edge-balance or vertex balance constraint. The

authors showed experimentally that B-GRAP outperforms existing

LP based partitioning approaches.

Graph sampling. A graph sample is a subset of vertices and/ or

edges from original graph. The biggest advantage of sampling meth-

ods is their execution efficiency so that the graph transformation

procedure won’t take longer time than straightforward computa-

tion on original graph. It has a wide spectrum of applications, e.g.

exploring, visualizing, scaling up analysis, etc. Commonly used

techniques are vertex or edge sampling, traversal based sampling,

substructure sampling to find patterns such as triangles and tri-

ads and streaming sampling [10–12]. Sampling graph has evolved

during the last decade to more advanced graph exploration ap-

proaches such as Forest Fire and Frontier sampling and Random

Walk algorithm variants.

In our work, we aim to investigate the sampling approaches

for graph partitioning problem. Combining the sampling with the

graph partitioning could help to improve the performance of the

partitioning and to reduce the computation time. More particularly,

in the case of LP based approaches, a sample of the graph can be

used to initiate the label propagation process, instead of using the

whole graph [19] or based on an heuristic [9]. In fact, a subgraph

sample which takes into account the graph structure and selects

relevant nodes allows to propagate efficiently and rapidly the labels

through the whole graph. Furthermore, comparing to multilevel

partitioning approaches that use a coarsened graph as an an entry

for the partitioning, the sampling requires less computation time

and resources, as it uses few intermediate results.

3 BACKGROUND AND PRELIMINARIES
3.1 Problem Formulation and Notations
The label propagation algorithm was defined in the context of com-

munity detection in social networks [7, 13]. This approach re-used

in graph partitioning research context thanks to its lightweight and

intuitive mechanism. Given a number of partitions of the graph, the

naive LP algorithm simply works as follows: (i) At first, each vertex

is assigned to a partition randomly; (ii) Then, the label of each vertex

is propagated and updated iteratively to its neighborhood, where

each vertex takes the most frequent label among its neighborhood

as its own label. The process ends when labels no longer change.

In the following we describe formally the LP algorithm.

Given a number of partitions 𝐾 , a directed graph 𝐺 = ⟨𝑉 , 𝐸,𝜔⟩,
where 𝑉 is a set of vertices and 𝐸 a set of weighted edges with

𝜔 : 𝐸 → R+. Let 𝐿 = {𝑙}𝐾
𝑙=1

be a set of partition labels defined by a

labeling function𝜙 : 𝑉 → 𝐿 such that𝜙 (𝑣) = 𝑙 means that 𝑣 belongs

to the partition with label 𝑙 . The naïve LP algorithm proceeds as

follows. Initially, a unique label 𝑙𝑣 is assigned to each vertex 𝑣 . Then,

the label of each 𝑣 ∈ 𝑉 is propagated and updated iteratively to its

neighborhood 𝑁 (𝑣) = {𝑢 ∈ 𝑉 | (𝑣,𝑢) ∨ (𝑢, 𝑣) ∈ 𝐸} and is updated

until a given convergence criteria is reached. The label updating is

done by taking into account the most frequent label among 𝑁 (𝑣)
labels. More formally, let FLP (𝑣, 𝑙) be the frequency of a label 𝑙 in

the neighborhood of 𝑣 , defined by:

FLP (𝑣, 𝑙) =
∑︁

𝑢∈𝑁 (𝑣)
𝜔 (𝑣,𝑢)𝛿

(
𝜙 (𝑢), 𝑙

)
(1)

where 𝜙 (𝑢) gives the current label of 𝑢 and 𝛿 is the Kronecker delta

function, which is equal 1 if 𝜙 (𝑢) = 𝑙 , and 0 otherwise. The label

Session 6: Theory of Performance ICPE ’22, April 9–13, 2022, Bejing, China

224

of vertex 𝑣 is replaced by the label that maximizes the frequency

function: 𝑙𝑣 = argmax𝑙 FLP (𝑣, 𝑙).
If many maximal labels exist and do not include the current

label of 𝑣 , one of them is randomly chosen. LP algorithm stops if∑
𝑣∈𝑉

∑
𝑙 ∈𝐿 FLP (𝑣, 𝑙) converges according to a given threshold 𝜖 .

We note that naïve LP algorithm does not take into account the

directions of edges. To consider directed graphs, virtual edges are

added [9], such that: ∀(𝑣,𝑢) ∈ 𝐸,𝜔 (𝑣,𝑢) = 2 and if (𝑢, 𝑣) ∉ 𝐸, (𝑢, 𝑣)
is added with 𝜔 (𝑢, 𝑣) = 1.

3.2 B-GRAP
B-GRAP [9] aims to define a 𝐾-balanced and LP-based partitioning

algorithm that decreases the total cuts while considering the vertex

balance or the edge balance constraints in directed graphs.

B-GRAP objective functions. The basic LP approach updates the

labels without caring about balance, consequently the trivial opti-

mal solution of Eq. (1) is assigning all vertices to a single label. To

deal with this, the authors of B-GRAP have considired the balance

constraint in the update function by adding a penalty term, which

whenever the assignment of a vertex to a partition violates the

balance constraint. The new update function is defined as follow.

F = FLP + 𝜆P (2)

P represents penalty terms and 𝜆 is a weight parameter. Two

update functions PVB and PEB were defined to respectively deal

with vertex and edge balance constraints:

PVB (𝑙) =
1

𝐾
− 𝑠𝑖𝑧𝑒 (𝑉 , 𝑙)|𝑉 | (3)

This function measures the divergence between the perfect balance

ratio and the ratio of vertices with label 𝑙 .

PEB (𝑙) =
1

𝐾
− 𝑠𝑖𝑧𝑒 (𝐸, 𝑙)|𝐸 | (4)

PEB discourages a vertex to move to a partition with 𝑙 label, when

the ratio of edges in the partition 𝑙 is closer or larger than the

balance factor. Note that comparing to vertex balance, edge balance

minimizing the edge cuts implicitly by maximizing the edge locality

in each partition.

The algorithm 1 describes the main procedures of B-GRAP: ini-

tialisation and label propagation. To initialize B-GRAP, the authors

considered only hub vertices having a high outgoing degree 𝑑+ (.).
Their intuition is that the higher 𝑑+ (𝑣), the more 𝜙 (𝑣) will be propa-
gated and considered as frequent label. They defined their algorithm

1 as following: Given a directed graph 𝐺 = ⟨𝑉 , 𝐸,𝜔⟩, 𝑑𝑖𝑛𝑓 denotes
the minimum out degree threshold to consider that a vertex 𝑣 as

a hub vertex. The algorithm proceeds as follows. First, the set of

labels 𝐿 is initialized according to the input number of partitions

𝐾 value (Line 1). Then, each 𝑣 ∈ 𝑉 , such 𝑑+ (𝑣) > 𝑑𝑖𝑛𝑓 is randomly

assigned a label ∈ 𝐿 and those labels are propagated to neighbors

(Line 2). Then, the label of these neighbors are updated and propa-

gated iteratively using an update function (Lines 3-7). The vertices

are then checked and those not reached by the update/propagation

step are initialized randomly, to ensure that all vertices are assigned

a label (Lines 8-9). The algorithm repeats the update/propagate step

(Line 10-12) until convergence (Line 13).

Algorithm 1 B-GRAP

Input: 𝐺 = ⟨𝑉 , 𝐸, 𝑤 ⟩, 𝐾 , 𝜖 , 𝑑𝑖𝑛𝑓
Output: a partitioned graph𝐺 = ⟨𝑉 , 𝐸, 𝑤,𝜙 ⟩
1: 𝐿 = {𝑙 }𝐾

𝑙=1

2: for {𝑣 ∈ {𝑣 ∈ 𝑉 ,𝑑+ (𝑣) > 𝑑𝑖𝑛𝑓 }} do
3: 𝜙 (𝑣) = 𝑟𝑎𝑛𝑑𝑜𝑚 (𝐿) and propagate to 𝑁 (𝑣)
4: end for
5: while Δ

(
F
LP
(𝐺, 𝐿)

)
≤ 𝜖 do

6: for (𝑣 ∈ 𝑉 , 𝑙 ∈ 𝐿) do
7: get the set of frequent labels w.r.t an update function

8: end for
9: Update and propagate 𝜙 (𝑣) to 𝑁 (𝑣)
10: for

(
𝑣 ∈ 𝑉 , 𝜙 (𝑣) = 𝑛𝑢𝑙𝑙

)
do

11: initialize 𝜙 (𝑣) randomly from 𝐿 and propagate to 𝑁 (𝑣)
12: end for
13: end while
14: return𝐺 = ⟨𝑉 , 𝐸, 𝑤, {𝜙 (𝑣) }𝑣∈𝑉 ⟩

Algorithm 2 Sampling-based heuristics

Input: 𝐺 = ⟨𝑉 , 𝐸, 𝑤 ⟩, 𝐾, 𝜖, 𝜏, 𝛽, 𝜎
Output: a partitioned graph𝐺 = ⟨𝑉 , 𝐸,𝜔,𝜙 ⟩
1: Compute 𝜎 Seeds

2: Compute Sample and propagate (see Algorithm 3)

3: Update and propagate as in Algorithm (1) Lines 5-15

4: return𝐺 = ⟨𝑉 , 𝐸, 𝑤, {𝜙 (𝑣) }𝑣∈𝑉 ⟩

4 SAMPLING-BASED LABEL PROPAGATION
ALGORITHMS

4.1 Main procedures
One of the biggest problems in label propagation based partition-

ing algorithms is to deal with graphs of different structures. The

initialization step affects both the partitioning quality and the exe-

cution time. Our purpose is to study how we can introduce a graph

sampling in initialization step in order to deal with these issues.

[25] proposed a graph Rank Degree sampling method using a edge

selection rule based on a node ranking. In order to define our ini-

tialization heuristics, we identify two main steps: (i) seed vertices

selection to retrieve the initial 𝜎 vertices; (ii) sampling to take 𝛽

vertices from the neighbors of selected seeds in order to initiate

the LP process. In the second step, only 𝜏 vertices are selected from

the neighbors of a seed at each iteration, this allows to reduce the

impact of seeds with a high degree (hub vertices) on the sampling.

In fact, without 𝜏 parameter, most of the sampled vertices will be se-

lected from the neighborhood of the hub seeds. The Figure 1 shows

an overview on the sampling-based HD-B-GRAP and RD-B-GRAP

heuristics and summarizes the two steps comparing to B-GRAP.

The algorithm 2 describes the main procedures of sampling based

heuristics for seed selection (Line 1), neighbor sampling (Line 2,

𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒𝑆𝑎𝑚𝑝𝑙𝑒 () function) and label updates and propagation

according to B-GRAP (Line 3). The function 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒𝑆𝑎𝑚𝑝𝑙𝑒 () is
detailed in Algorithm 3. It is an iterative function that will continue

to execute itself until the stopping condition is met. In our case, the

stopping condition is when the sample size has been reached and

all partition sets have been initialized or in formal terms |𝑉𝑆 | ≥ 𝛽
and |𝑃𝑙 | ≥ 1,∀𝑙 ∈ 𝐿, where 𝑉𝑆 is the sampled vertices from the

graph and 𝑃𝑙 is the 𝑙-th partition.

In the case that a partition set is empty, the algorithmwill attempt

to initialize it and to balance all partition sets at the same time.

Thus, it will move a vertex from one partition with excess nodes

(i.e. |𝑃𝑘 | > |𝐺𝑆 |/𝐾) to the uninitialized partition (Lines 11-14). This

procedure will iterate until both stopping conditions are true.

Session 6: Theory of Performance ICPE ’22, April 9–13, 2022, Bejing, China

225

Figure 1: Sampling-based B-GRAP algorithms

4.2 RD-B-GRAP algorithm
RD-B-GRAP algorithm obtains a neighbor according to its rank in

descending order (omitting previously sampled vertices) and selects

𝜏 neighbors to be seeds in the next iteration. A complete execution

of the RD-B-GRAP is as follows (Algorithms 2 and 3).

In the seed selection sub-step, a seed will be selected as a random

uniform sample of the nodes. These seeds will later propagate in the

sampling propagation sub-step as follows: i) each vertex in the seed

will request the degree to all of its neighbors; ii) the same vertex,

in the following superstep, will receive the answering messages

from un-sampled neighbors and will only store those from the 𝜏

highest degree neighbors; finally, iii) the vertex will notify the 𝜏

highest degree neighbors that they have been sampled and will

be seed for the next iteration. The sampling propagation sub-step

will execute until the sample size is reached. Finally, the algorithm

moves to the label propagation step and returns the partitioning

when it converges.

Algorithm 3 RD-B-GRAP and HD-B-GRAP initializeSample()

Input: 𝐺,𝑆𝑒𝑒𝑑𝑠, 𝐾, 𝜏, 𝛽
Output: Sampled vertex sets with labels𝑉𝑆
1: 𝐿 ← {𝑙 }𝐾

𝑙=1

2: 𝑉𝑆 ← ∅
3: {𝑃𝑙 ← ∅}𝐾𝑙=1

4: while |𝑉𝑆 | ≥ 𝛽 and |𝑃𝑙 | ≥ 1, ∀𝑙 ∈ 𝐿 do
5: 𝐶 ← ∅, candidate set, 𝑆 ← ∅, sampled in superstep set

6: for 𝑠 ∈ 𝑆𝑒𝑒𝑑𝑠 do
7: find unvisited neighbors 𝑁 (𝑠) degrees, rank them in descending order

8: 𝐶 ← 𝐶∪ first 𝜏 vertices from ranked 𝑁 (𝑠)
9: for 𝑐 ∈ 𝐶 do
10: generate random number 𝑟

11: if 𝑟 ≤ 𝛽−|𝑉𝑆 |
|𝐶 | then

12: initialize 𝜙 (𝑐) randomly from 𝐿

13: 𝑃𝜙 (𝑐) ← 𝑃𝜙 (𝑐) ∪ {𝑐 }
14: 𝑆 ← 𝑆 ∪ {𝑐 }
15: end if
16: end for
17: end for
18: 𝑉𝑆 ← 𝑉𝑆 ∪ 𝑆
19: 𝑆𝑒𝑒𝑑𝑠 ← 𝑆
20: end while
21: return ⟨𝑉𝑆 , {𝜙 (𝑣) }𝑣∈𝑉𝑆 ⟩

In the real execution, each of the sampled vertices would be

assigned a label and aggregated into the counter of the label. Before

the algorithm finishes, it would have to verify that all partition sets

have a minimum of 1 vertex inside. If it is not the case, it will relabel

vertices from overpopulated sets. Now we will go on to see how

the HD-B-GRAP differs from this algorithm.

4.3 HD-B-GRAP algorithm
RD-B-GRAP and HD-B-GRAP are actually quite similar, the differ-

ence lies in the seed initialization sub-step, as we could see in Figure

1. We note that this sampling technique will result in a sample with

a higher bias to high degree vertices, which could lead to a reduced

Label Propagation execution time.

A complete execution of the HD-B-GRAP is as follows (Algo-

rithms 2 and 3). First we select the highest degree 𝜎 vertices. In the

seed selection sub-step, we first generate the degree distribution of

the entire graph and then select the vertices with the highest degree.

These seeds will later propagate in the sampling propagation sub-

step as follows: i) each vertex in the seed will request the degree to

all of its neighbors; ii) the same vertex, in the following superstep,

will receive the answering messages from un-sampled neighbors

and will only store those from the 𝜏 highest degree neighbors; fi-

nally, iii) the vertex will notify the 𝜏 highest degree neighbors that

they have been sampled and will be seed for the next iteration. The

sampling propagation sub-step will execute until the sample size is

reached. Finally, the algorithm moves to the label propagation step

and returns the partitioning when it converges.

5 EXPERIMENT SETTINGS
We achieved different experiments on different graph data sets in

order to study the impact of the sampling on the LP partitioning.

We specifically evaluated the edge-cut quality, the balance quality

and the LP computation time of HD-B-GRAP and RD-B-GRAP com-

paring to B-GRAP. All the experiments are done on a single-node

Hadoop cluster. The machine has 80 compute cores and 1.5Tera

RAM, but 64 cores and 786GB RAM are used by Hadoop.

Data sets description In our experiments, we use ten graph

data sets of different degree distributions and different sizes. LastFM

(LF), Wikitalk (W), Pockec (P), Flixster (F), LiveJournal (LJ), Orkut

(O) and Twitter (T) are social online networks graphs. BerkeleyStanf

(B) is the berkely.edu and stanford.edu web graph. DelaunaySC (D)

and Graph500 (G) are synthetic graphs. Notice that only (G) is an

undirected graph. The table Table 1 summarises for each graph data

set the edge and vertex numbers, the percentages of vertices with

at most one degree value and at least 100 degree value and also the

number of vertices with the maximum degree value.

We evaluate our algorithm over all the graphs presented in Ta-

ble 1, by varying the number of partitions 𝐾 ∈ {2𝑖 }6
𝑖=1

. We execute

10 runs of each algorithm for each graph and each value of 𝐾 to

ensure the significance of the results. For all experiments, we com-

pute the average variation of the following measures with respect

to the number of partitions 𝐾 and over the runs:

The maximum normalized unbalance of vertices (MNUVB) and of

edges (MNUEB): this metric is used to measure the unbalance and

represents the percentage-wise difference of only the largest parti-

tion from a perfectly balanced partition.

MNUVB =
max(|𝑉𝑙 |)
|𝑉 |/𝐾 , MNUEB =

max(|𝐸𝑙 |)
|𝐸 |/𝐾 , with 𝑙 ∈ 𝐿.

The edge-cuts ratio (EC): the ratio of edges connecting each two

vertices in two different partitions w.r.t the total number of edges.

The computation time (Time) required to complete the label propa-

gation processing.

We note that to compute EC andMNU only the original input

edges of the graph are considered. For all experiments, we set

𝜖 = 10
−3

as a threshold stop value and we set 𝜏 and the out degree

Session 6: Theory of Performance ICPE ’22, April 9–13, 2022, Bejing, China

226

Table 1: Data sets description
Graph LastFM WikiTalk BerkeleyStanf Flixster DelaunaySC LiveJournal Orkut Graph500 Twitter

Directed yes yes yes yes yes yes yes no yes

|𝑉 | 1.2 2.4M 0.7M 2.5M 8.4M 4.8M 2.7M 4.6M 41.7M

|𝐸 | 4.5 5M 7.6M 7.9M 25.2M 69M 117.2M 258.5M 1.5B

|{𝑣}𝑑+ (𝑣) ≤1
%| 49.6% 97.2% 11.0% 60.2% 25.8% 30.0% 16.7% 23.6% 10.5%

|{𝑣}𝑑+ (𝑣) ≥100
%| 0.1% 0.3% 0.9% 0.1% 0.0% 2.0% 8.6% 8.5% 3.2%

Max degree 1.1k 3k 84k 1.5k 28 22.9k 33.3K 544k 4.9M

Source [23] [17] [18] [23, 26] [4, 23] [3] [23] [23] [16]

average
¯𝑑+ =

|𝐸 |
|𝑉 |

2
. The penalty term weight parameter 𝜆 in the

update function F is set to 1. This gives an equal importance to

the penalty term P and to FLP according to the update functions

defined in Section 3.2. For HD-B-GRAP and RD-B-GRAP, we set

𝛽 = 0.2, 𝜎 = 0.1 × 𝛽 and 𝜏 = 2. We note that the choice of these

values is studied using several graphs and configurations, for more

details see Section 6.3.

6 RESULTS ANALYSIS
In the following, we firstly present the results of running the sam-

pling based partitioning algorithms HD-B-GRAP and RD-B-GRAP

comparing to B-GRAP using vertex and edge objective functions,

and also to the state art results. Then we the study about 𝛽, 𝛿 and 𝜏

parameters robustness.

6.1 Vertex-balance evaluation
In this experiments we compare the results obtained with

HD-B-GRAP, RD-B-GRAP and B-GRAP using the vertex balance

constraints. We study the impact of each sampling approach on

the vertex balance quality, on the edge-cut quality and on the LP

computation time.

Figure 2 shows that the sampling in the most of the graphs

doesn’t impact the balance quality and MNUVB is similar between

all the algorithms, expect for Wikitalk and BerkeleyStanf and 𝐾 ≥
32: the quality of RD-B-GRAP decreases slightly on Wikitalk and

poorly on BerkeleyStanf, HD-B-GRAP performs poorly on both

graphs. The results are slightly better than B-GRAP on LastFM and

Flixster graphs with an improvement rate equals ≈ 1%.

The quality of the edge-cut remains stable with very good val-

ues. We can notice a high improvement of EC for HD-B-GRAP on

WikiTalk, that counteracts the MNUVB distortion, and a slight im-

provement on some other graphs. The total average improvement

percent on each graph and for all values of 𝐾 is summarized as

follow: (i) HD-B-GRAP: 25% on WikiTalk, 4 ∼ 5% on BerkeleyStanf

and Flixster, 0 ∼ 1.5% on other graphs, (ii) RD-B-GRAP: 4 ∼ 5.5% on

WikiTalk, BerkeleyStanf and on Flixster, 0 ∼ 1.3% on other graphs.

Regarding the LP computation time, both sampling based ini-

tialization outperform the original B-GRAP. The improvement

varies between 6.3% and 40.7% for HD-B-GRAP and between 6.9%

and 38.6% for RD-B-GRAP. In the case of a large graph, such as

Twitter, the total average improvement of LP computation time is

12.7% (≈ 390 seconds) for HD-B-GRAP and 11.9% (≈ 370 seconds).
The average improvements percent for our sampling based algo-

rithms comparing to B-GRAP for each graphs and w.r.t. toMNUVB,

EC and LP time are given in Table 2. . In this table we emphasis the

2
The choice of this value was studied in [9]

values higher than 5% and we mark in red color the worst values

(≤ −5%).

Table 2: The percent of quality (EC,MNUVB) and performance
(LP time) improvements of HD-B-GRAP and RD-B-GRAP
w.r.t. B-GRAP and using the vertex balance.

Vertex Balance HD-B-GRAP (%) RD-B-GRAP (%)
Graph MNUVB EC LP Time MNUVB EC LP Time
LastFM 0.8 0.0 39.2 0.9 0.0 39.8
WikiTalk -25.1 24.4 32.8 -5.5 5.4 12.6
BerkeleyStanf -29.5 4.6 40.7 -36.0 5.3 38.6
Flixster 1.5 4.3 42.3 1.0 4.0 32.6
DelaunaySC 0.0 1.5 18.6 0.0 1.2 10.5
LiveJournal -0.1 0.0 11.1 -0.1 -0.1 13.6
Orkut 0.1 0.4 7.2 -0.1 0.4 6.9
Graph500 0.1 0.6 6.3 0.2 0.8 9.5
Twitter 0.0 1.3 12.6 0.1 1.3 11.9

6.2 Edge-balance evaluation
The results on balance quality and edge quality are similar to the

vertex balance case, similarly for the LP computation time, which

was improved over all graph data sets. In particular, the results

show a high improvement on the two largest graphs Graph500 and

Twitter with a percent of gain equals respectively to 40.3% and to

18.7%.

Comparison with the state of the art methods In the follow-

ing, we compare the results obtained with our proposed solutions

on Twitter graph to the results reported in [19]. Note that the au-

thors has evaluated only the edge balance quality, as they deal only

with this constraint. They used the ratio of local edges 𝜌 to evalu-

ate the partitioning quality, which equals to the number of edges

connecting two vertices belonging to the same partition divided

by the total number of edges. This metric is inversely proportional

to the ratio of edge-cuts. The computation time wasn’t considered

in this experiment, as the algorithms was executed in different

environments.

The table 3 summarizes the results obtained on Twitter graph

with the following algorithms: B-GRAP, HD-B-GRAP, RD-B-GRAP,

Spinner [19], Fennel [24] and Metis [15].

B-GRAP performs generally better HD-B-GRAP and

HD-B-GRAP w.r.t. to the local edge quality, and has similar

balance quality w.r.t. to the MNUEB. We assume that the de-

terioration of the cut quality is due to the presence of many

interconnected communities in the Twitter graph, that are difficult

to separate, which makes it hard to obtain a good sampling. In

particular, the seed selection method of HD-B-GRAP, based on

highest degrees, can lead to the selection of some interconnected

hub vertices which share a common neighbors.

Session 6: Theory of Performance ICPE ’22, April 9–13, 2022, Bejing, China

227

Figure 2: Variation of the average scores of MNUVB, EC and Time for the partitioning obtained with B-GRAP, HD-B-GRAP and
RD-B-GRAP, w.r.t. 𝐾 and with the vertex balance constraint.

Session 6: Theory of Performance ICPE ’22, April 9–13, 2022, Bejing, China

228

Comparing to other algorithms, B-GRAP has a slightly better lo-

cality quality than Spinner [19], which is based on the LP approach.

Fennel performs similarly to B-GRAP with respect to 𝜌 , except on

𝑘 = 2 the quality is the best, it performs poorly with respect to

MNUEB comparing to all other algorithms. Metis [15] remains the

best approach w.r.t. to quality of the partitioning and the balance.

However, we remind that Metis has a high computation cost.

6.3 Parameters robustness
In order to study the robustness of our sampling based partitioning

algorithms HD-B-GRAP and RD-B-GRAP to the sampling param-

eters, we defined two different main tests. Firstly, we studied the

impact of the sizes of the sample and of the seeds. Secondly, we stud-

ied the impact of 𝜏 , the neighboring nodes set size. Next we explain

our intuition for each experiment and we analyze the results.

To achieve these experiments, we used Twitter graph and we

fixed the number of partitions 𝐾 to 4. For the first experiment, the

sample size 𝛽 ∈ 10%, 15%, 20%, 25% × |𝑉 |, with 𝜎 = 𝛽/10 and 𝜏

fixed to 5. Finally, for each value of 𝛽 , we made 10 runs of each

algorithm and we computeMNUVB, EC, the sampling computation

time and the LP computation time. In the second experiment, 𝜏 ∈
{5, 25, 50, 100} and we fix the values of 𝛽 and 𝜎 respectively to

15% and 1.5% of the vertices number, then we proceed similarly to

compute the evaluationmeasures. The results that we have obtained

forMNUVB were similar for the different configurations. Therefore,

they are not relevant to study the robustness.

Impact of the sizes of seeds and sample: Our initial hypoth-
esis in regard to this parameter is that as 𝛽 value increases, the

algorithm should take more time to execute the sampling and less

time to execute the label propagation. Conversely, as 𝜎 increases

its value, we expect that the time required for the sampling will be

reduced, while the expected behavior on the label propagation is

that it will take less time to converge. The overall effect of changing

both 𝛽 and 𝜎 (since we defined 𝜎 to be 10% of 𝛽), should lead to a

reduced time because 𝜎 grows in terms of 𝜏 . In terms of the quality

of partitioning, we needed to show how it will be affect.

From the results shown in Figure 3, we can see that our hypoth-

esis is validated. It shows some slight variations in the edge-cut EC,
but the standard deviations of EC overlap, thus we cannot conclude

that there is an improvement in this regard. Conversely, we can see

that there is a clear improvement in execution time, both in terms

of the sampling and the label propagation steps. This execution

time decreasing can be obtained since 𝛽 = 15% and 𝜎 = 1.5%.

Impact of the neighboring nodes set size: Regarding this

parameter, our initial hypothesis in terms of time is that this might

be able to speed up the sampling and that in has no inference in

the label propagation. However, it doesn’t require to have a high

value in order to speed it up since the expected growth will be

capped at a maximum of |𝑆 | ∗ 𝜏 vertices sampled per superstep,

leading to exponential growth over iterations. We must keep in

mind, nevertheless, that the size of the seed varies through iterations

and in some cases it might contract in comparison to a previous

superstep. Note that for this test, we set 𝛽 = 15% and 𝜎 = 1.5%,

since they were the best configuration obtained in the previous

experiment.

From the results shown in Figure 4, we can confirm that the

algorithms are not sensitive to the value of 𝜏 . Since all metrics

overlap the standard deviation, we cannot say that the results are

better nor worse. Thus, we can say that a value of 5 for 𝜏 is as good

as having a value of 100.

7 CONCLUSIONS AND PERSPECTIVES
In this paper, we defined and studied HD-B-GRAP and RD-B-GRAP

algorithms that combine graph sampling and label propagation for

graph balanced partitioning, i.e. vertex or edge balance constraint.

To conclude, our algorithms have in general better edge-cut qual-

ity than the original B-GRAP algorithm and this gain comes at a

trade off for balance. This unbalance is not really noteworthy in

medium to large data sets, but on small data sets it is significant. We

also see that our algorithms tend to be slower since the sampling

stage has been introduced, however, once the sampling is achieved,

there are significant improvements on the label propagation stage.

In few cases, this gain was enough to counteract the time added

for the sampling. In vertex-balance case, regarding the LP conver-

gence, both algorithms have reduced computation time over all

the graphs by 6% to 40%. The conclusions in edge-balance case,

on either balance quality or edge quality are similar. We notice a

high improvement on the two largest graphs Graph500 and Twitter

with a percent of gain equals respectively to 40.3% and to 18.7%.

The comparison with some exiting edge-balanced partitioned meth-

ods on Twitter graph have showed a slight deterioration in EC,
especially for HD-B-GRAP. For this graph, we think that presence

of many interconnected communities impacts the quality of the

sampling. In terms of parameter robustness, changing the sample

size 𝛽 and, consequently the seeds size 𝜎 could lead to a reduced

execution time in both sampling and label propagation stages. In

the case of the Twitter graph, the improvement can be achieved

when 𝛽 = 15% and 𝜎 = 1.5%. For the seed neighboring nodes set

size parameter 𝜏 , it was difficult to conclude for Twitter data set.

There are many perspectives that we can explore. First of all,

we would like to study if an optimal configuration for the hyper-

parameters exists and or if it depends on the graph topology. In

the same way, we have been able to prove that graph sampling can

improve the performance of label propagation algorithms, it would

be interesting to extend this work to other existing approaches of

graph partitioning on which the initialization is performed at ran-

dom, such as multilevel algorithms. Finally, since label propagation

is originally a community detection algorithm, we could explore

sampling based algorithms to try to tackle this open problem.

REFERENCES
[1] Avdiukhin, D., Pupyrev, S., and Yaroslavtsev, G. Multi-dimensional balanced

graph partitioning via projected gradient descent. Proceedings of the VLDB
Endowment 12 (04 2019), 906–919.

[2] Aydin, K., Bateni, M., and Mirrokni, V. Distributed balanced partitioning via

linear embedding. Algorithms 12, 8 (2019).
[3] Backstrom, L., Huttenlocher, D., Kleinberg, J., and Lan, X. Group formation

in large social networks. In Proc. of the SIGKDD Inter. Conf. on Knowledge discovery
and data mining (2006), ACM Press.

[4] Bader, D. A., Meyerhenke, H., Sanders, P., and Wagner, D. Graph Partitioning
and Graph Clustering, vol. 588. American Mathematical Society Providence, RI,

2013.

[5] Buluç, A., and Madduri, K. Graph partitioning for scalable distributed graph

computations. In Graph Partitioning and Graph Clustering, 10th DIMACS Im-
plementation Challenge Workshop (2012), vol. 588, American Mathematical Soc.,

Session 6: Theory of Performance ICPE ’22, April 9–13, 2022, Bejing, China

229

Table 3: Comparison of the state of the art algorithms for Twitter graph while scaling the number of desired partitions and
using the edge balance constraint. The table reports the ratio of local edges 𝜌 and the MNUEB.

𝑘 = 2 𝑘 = 4 𝑘 = 8 𝑘 = 16 𝑘 = 32

Approach 𝜌 MNUEB 𝜌 MNUEB 𝜌 MNUEB 𝜌 MNUEB 𝜌 MNUEB

HD-B-GRAP 0.84 1.02 0.66 1.03 0.52 1.05 0.30 1.10 0.29 1.07

RD-B-GRAP 0.80 1.02 0.69 1.04 0.46 1.05 0.32 1.06 0.34 1.14

B-GRAP 0.85 1.01 0.70 1.04 0.52 1.05 0.42 1.06 0.33 1.07

Spinner [19] 0.85 1.05 0.69 1.02 0.51 1.05 0.39 1.04 0.31 1.04

Fennel [24] 0.93 1.10 0.71 1.10 0.52 1.10 0.41 1.10 0.33 1.10

Metis [15] 0.88 1.02 0.76 1.03 0.64 1.03 0.46 1.03 0.37 1.03

Figure 3: Robustness of HD-B-GRAP and RD-B-GRAP to the sample size: Average scores of MNUVB, EC and execution time
obtained on Twitter graph, with 𝐾 = 4, and while varying parameters 𝛽 and 𝜎

Figure 4: Robustness of HD-B-GRAP and RD-B-GRAP to the neighbor size 𝜏 : Average scores of MNUVB, EC and execution time
obtained on Twitter graph, with 𝐾 = 4, and while varying parameter 𝜏

pp. 83–102.

[6] Buluç, A., Meyerhenke, H., Safro, I., Sanders, P., and Schulz, C. Recent
Advances in Graph Partitioning. Springer, 2016, pp. 117–158.

[7] Chakraborty, T., Dalmia, A., Mukherjee, A., and Ganguly, N. Metrics for

community analysis: A survey. ACM Comput. Surv. 50, 4 (2016), 1–37.
[8] Chevalier, C., and Pellegrini, F. Pt-scotch: A tool for efficient parallel graph

ordering. Parallel Computing 34, 6 (2008), 318–331.
[9] EL Moussawi, A., Bennacer Seghouani, N., and Bugiotti, F. A graph parti-

tioning algorithm for edge or vertex balance. In Database and Expert Systems
Applications (Dexa) (2020), vol. 12391, pp. 23–37.

[10] Frank, O. Social network analysis, estimation and sampling in. In Encyclopedia of
Complexity and Systems Science, R. A. Meyers, Ed. Springer, 2009, pp. 8213–8231.

[11] Frank, O. Network sampling. In Inter. Encyclopedia of Statistical Science, M. Lovric,

Ed. Springer, 2011, pp. 941–942.

[12] Frank, O., and Shafie, T. Random multigraphs and aggregated triads with fixed

degrees. Netw. Sci. 6, 2 (2018), 232–250.
[13] Gregory, S. Finding overlapping communities in networks by label propagation.

New Journal of Physics 12, 10 (oct 2010), 103018.
[14] Heidari, S., Simmhan, Y., N. Calheiros, R., and Buyya, R. Scalable graph

processing frameworks: A taxonomy and open challenges. ACM Computing
Surveys 51 (2018), 1–53.

[15] Karypis, G., and Kumar, V. Multilevel graph partitioning schemes. In Proc. of
the 24th Inter. Conf. on Parallel Processing (ICPP) (1995), vol. 3, pp. 113–122.

[16] Kwak, H., Lee, C., Park, H., and Moon, S. What is Twitter, a social network or

a news media? In Proc. of the 19th Inter. Conf. on World wide web (WWW) (2010),
ACM, pp. 591–600.

[17] Leskovec, J., Huttenlocher, D., and Kleinberg, J. Signed networks in social

media. In Proc. of the 28th Inter. Conf. on Human factors in computing systems

(2010), p. 1361.

[18] Leskovec, J., Lang, K. J., Dasgupta, A., and Mahoney, M. W. Community

structure in large networks: Natural cluster sizes and the absence of large well-

defined clusters. Internet Mathematics 6, 1 (2009), 29–123.
[19] Martella, C., Logothetis, D., Loukas, A., and Siganos, G. Spinner: Scalable

graph partitioning in the cloud. In Proc. - Int. Conf. Data Engineering (2017).

[20] Meyerhenke, H., Sanders, P., and Schulz, C. Parallel graph partitioning for

complex networks. IEEE Trans. on Parallel and Distributed Systems 28, 9 (2017),
2625–2638.

[21] Raghavan, U. N., Albert, R., and Kumara, S. Near linear time algorithm to

detect community structures in large-scale networks. Physical review. E, Statistical,
nonlinear, and soft matter physics (2007), 036106.

[22] Rais, H., Abed, S., andWatada, J. Computational comparison of major proposed

methods for graph partitioning problem. Journal of Advanced Computational
Intelligence and Intelligent Informatics 23 (01 2019), 5–17.

[23] Rossi, R. A., and Ahmed, N. K. The network data repository with interactive

graph analytics and visualization. In Proc. of the 29 AAAI (2015).
[24] Tsourakakis, C., Gkantsidis, C., Radunovic, B., and Vojnovic, M. FENNEL:

Streaming graph partitioning for massive scale graphs. In Proc. of the 7th ACM
Inter. Conf. on Web search and data mining (2014), pp. 333–342.

[25] Voudigari, E., Salamanos, N., Papageorgiou, T., and Yannakoudakis, E. J.

Rank degree: An efficient algorithm for graph sampling. In Inter. Conf. on Advances
in Social Networks Analysis and Mining, ASONAM (2016), IEEE Computer Society,

pp. 120–129.

[26] Zafarani, R., and Liu, H. Users joining multiple sites: Distributions and patterns.

In 8th Inter. AAAI Conf. on Weblogs and Social Media (2014).

Session 6: Theory of Performance ICPE ’22, April 9–13, 2022, Bejing, China

230

	Abstract
	1 Introduction
	2 Related Work
	3 Background and Preliminaries
	3.1 Problem Formulation and Notations
	3.2 B-GRAP

	4 Sampling-based Label Propagation Algorithms
	4.1 Main procedures
	4.2 RD-B-GRAP algorithm
	4.3 HD-B-GRAP algorithm

	5 Experiment Settings
	6 Results analysis
	6.1 Vertex-balance evaluation
	6.2 Edge-balance evaluation
	6.3 Parameters robustness

	7 Conclusions and Perspectives
	References

