
A Stochastic Extension of Stateflow
Stefan Kaalen

kaalen@kth.se

KTH Royal Institute of Technology

Department of Machine Design

Stockholm, Sweden

Anton Hampus

ahampus@kth.se

KTH Royal Institute of Technology

Department of Machine Design

Stockholm, Sweden

Mattias Nyberg

matny@kth.se

KTH Royal Institute of Technology

Department of Machine Design

Stockholm, Sweden

Olle Mattsson

ollemat@kth

Scania CV

Södertälje, Sweden

ABSTRACT
Although commonly used in industry, a major drawback of State-

flow is that it lacks support for stochastic properties; properties that

are often needed to build accurate models of real-world systems.

In order to solve this problem, as the first contribution, Stochastic

Stateflow (SSF) is presented as a stochastic extension of a subset of

Stateflow models. As the second contribution, the tool SMP-tool is

updated with support for SSF models specified in Stateflow. Finally,

as the third contribution, an industrial case study is presented.

CCS CONCEPTS
• Theory of computation→ Quantitative automata; • Com-
puter systems organization → Reliability.

KEYWORDS
Stateflow, SSF, SMP-tool, stochastic, model-based

ACM Reference Format:
Stefan Kaalen, Anton Hampus, Mattias Nyberg, and Olle Mattsson. 2022. A

Stochastic Extension of Stateflow. In ICPE ’22: Proceedings of the ACM/SPEC
International Conference on Performance Engineering, April 09–13, 2022, Be-
jing, China. ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/

3489525.3511679

1 INTRODUCTION
Nowadays, research and development in industry to a large degree

rely on model-based development. One model-based tool that is well

spread in industry is Stateflow
1
. Stateflow supports modeling of

finite-state machines and has in many areas become an industrial

standard practice, e.g., within automotive [14]. Even though very

popular, Stateflow has the limitation that it does not explicitly sup-

port modeling of stochastic properties. To overcome this limitation,

the present paper proposes a stochastic extension of Stateflow.

1
https://www.mathworks.com/products/stateflow.html

This work is licensed under a Creative Commons

Attribution International 4.0 License.

ICPE ’22, April 09–13, 2022, Beijing, China
© 2022 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9143-6/22/04.

https://doi.org/10.1145/3489525.3511679

One area where modeling of stochastic properties is vital is

within model-based safety analysis. Model-based safety analysis is

of particular importance to support development of complex safety-

critical systems [2, 6, 11]. Stochastic properties are needed e.g. to

model random faults and failures, uncertain human behavior, and

uncertain behaviors of complex sensors such as radars and cameras.

Stateflow is based upon state transition diagrams for whichmuch

of the groundwork was laid in the introduction of Statecharts [9]. In

previous work, Jansen [10] has presented Stocharts as a stochastic

extension of Statecharts. However, while the syntax is similar, the

semantics of Statecharts and Stateflow have major differences [2,

14]. Therefore, the stochastic extension in Stocharts can not be

applied to Stateflow.

The stochastic extension of Stateflow, proposed in the present

paper, is divided into three contributions. The first contribution is

a language named Stochastic StateFlow (SSF), which is a stochastic

extension of a subset of the Stateflow language. The extension is

twofold: a stochastic time delay of transitions, and a probabilistic

choice of the destination state of transitions. SSF is presented with

both syntax and semantics, and is constructed such that models can

be easily built in the standard graphical user interface of Stateflow.

As the second contribution, the Matlab application SMP-tool,

presented in [12], has been updated to support analysis of SSF

models. Analysis of SSF models in SMP-tool is performed by Monte

Carlo simulations. The previous version of SMP-tool [12] had a

syntax and semantics that, to a much lesser degree, matched the

syntax and semantics of standard Stateflow. Most importantly, the

previous version did not support the so-called AND states used in

Stateflow to model parallelism.

As the final contribution, an industrial case study of a subsystem

of a gearbox from the heavy vehicle manufacturer Scania is pre-

sented. This subsystem is modeled as an SSF model and analyzed

using SMP-tool.

The outline of this paper is as follows. In Sec. 2 and 3, the first con-

tribution, i.e., the syntax and semantics of SSF models, is presented.

Then, Sec. 4, the second contribution, i.e., the updated SMP-tool, is

presented. Moreover, in Sec. 5, the third contribution, containing

the industrial case study, is presented. Finally, in Sec. 6, related

work is discussed.

Session 6: Theory of Performance ICPE ’22, April 9–13, 2022, Bejing, China

211

https://orcid.org/0000-0001-7972-8843
https://doi.org/10.1145/3489525.3511679
https://doi.org/10.1145/3489525.3511679
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3489525.3511679
https://www.acm.org/publications/policies/artifact-review-and-badging-current

2 SYNTAX OF SSF MODELS
The syntax of SSF models will first be presented in terms of an

abstract syntax. Then, an SSF model built in Stateflow will be uti-

lized to explain the concrete syntax. The goal has been to align

the syntax of SSF models with the syntax of a subset of Stateflow

discussed further in the end of Sec. 2.1.

2.1 Abstract syntax
The abstract syntax is presented in the same formalism as similar

work in the area [4, 10]. Let P(A) denote the power set of a set A,

i.e., the set of all subsets of A. The abstract syntax of SSF models is

defined as follows.

Definition 2.1. An SSF model is a tuple

M = (S,Sdown, initial, F , E,G,T) where

• S is a finite, non-empty set of states organized as an ordered tree

by the three functions children, type, and order. The function
children : S → P(S) associates each state with a possible

empty set of children states. The function type : S → {BASIC,
AND, OR} assigns a type to each state. Leafs of the state tree

have type BASIC and all other nodes have type AND or OR. The
function order : S → N+ associates each state sharing the same

AND parent 𝑠𝑖 with a non-negative integer such that order(𝑠 𝑗) ≠
order(𝑠𝑘) if 𝑠 𝑗 ≠ 𝑠𝑘 for all 𝑠 𝑗 , 𝑠𝑘 ∈ children(𝑠𝑖).

• Sdown ⊆ S is a subset of states (representing system failure).

• initial is a function {𝑠𝑖 ∈ S | type(𝑠𝑖) = OR} → S that assigns

one of the children states of each OR state as the initial state.

• F = {𝐹𝑖 (𝑡)}𝑖 is a set of Cumulative Distribution Functions

(CDFs), each non-decreasing and satisfying lim𝑡→0
− 𝐹𝑖 (𝑡) = 0

and

lim𝑡→∞ 𝐹𝑖 (𝑡) = 1. Note that by including degenerate distribu-

tions, deterministic times can also be represented in F .

• G is a finite set of guards specified in BNF as:

guard ::= proposition | (¬guard) | (guard∨guard) | (guard∧guard)
proposition ::= in(state) | after(CDF) | T ,
where state is a symbol representing a state inS,CDF is a symbol

representing a CDF in F , and where T denotes a proposition that

evaluates to true.
• E is a finite set of events including the non-event ⋄ with the

intuitive interpretation that no event is broadcast.

• T is a set of transitions given as tuples

𝜏 = (𝑠𝜏 , Ein

𝜏 , 𝑔𝜏 , (S × E) →𝜏 [0, 1], 𝑛𝜏), where 𝑠𝜏 ∈ S, Ein

𝜏 ∈
P(E), 𝑔𝜏 ∈ G, (S × E) →𝜏 [0, 1] is a probability vector, and 𝑛𝜏
is a non-negative integer assigned such that 𝑛𝜏𝑖 ≠ 𝑛𝜏 𝑗 if 𝜏𝑖 ≠ 𝜏 𝑗
for all 𝜏𝑖 , 𝜏 𝑗 ∈ T with 𝑠𝜏𝑖 = 𝑠𝜏 𝑗 . □

For any transition 𝜏 , 𝑠𝜏 is referred to as the source state, Ein

𝜏 is

referred to as the set of condition events, each pair (𝑠𝑖 , 𝑒𝑖) with
positive probability in the probability vector is referred to as a pair

of destination state and broadcast event, and 𝑛𝜏 is referred to as the

transition order.
The subset of Stateflow that SSF models are built upon, satisfies

the following two points. Firstly, there are no variables. Secondly, in

the spirit of providing a safe subset of Stateflow [3], only transition

actions are allowed and not also condition actions.

2.2 Concrete syntax
The abstract syntax will now be mapped to a concrete syntax in

Stateflow through the example model visualized graphically in

Fig. 1. The states of the underlying SSF model of the graphical

model give rise to the ordered tree visualized in Fig. 2.

In addition to the states explicitly visualized in Fig. 1, the under-

lying SSF model of the graphical model has a further state root
satisfying type(root) = AND and children(root) = {S1,S2}. In
the graphical model, for each state with parent of type AND, the value
of the function order is given by the number in the upper right

corner of the state. For instance, order(S1) = 1 and order(S2) = 2.

Down states are specified in the graphical model by giving them

the label “down_state” beneath the state name. In Fig. 1, the only

down state is 𝑆11.

For each state of type OR, the function initial is graphically

specified by assigning a Stateflow default transition to one of its

children. In the example, initial(S1) = S3, initial(S2) = S8,

and initial(S3) = S4.

The transitions of the graphical model are represented by arrows

leaving a state. In cases where there are several pairs of destination

state and broadcast event for a transition in the underlying SSF

model, the corresponding arrow from the source state in the graphi-

cal model has a Stateflow junction as destination and an arrow from

the junction to the corresponding destination state for each pair.

Each of these arrows from a junction is labeled by the probability in

a square bracket and the broadcast event in curly brackets that are

preceded by a slash. The right-most of the two transitions leaving

S4 in the graphical model is an example of such a case. The set of

condition events of a transition are given in the graphical model

by labeling the corresponding arrow from the source state with

the events separated by “| |”, outside of any brackets. The guard

is given in square brackets with “&&” representing conjunction,

“| |” representing disjunction, and “∼” representing negation. If a

transition 𝜏 has no such brackets attached to it, the interpretation is

that the transition has the guard 𝑔𝜏 = T. Note that in the graphical

model, square brackets might be interpreted differently depending

on the source of the arrow. For an arrow originating from a state,

it is seen as a guard. However, for an arrow originating from a

junction, it is a probability. When there is only one pair of destina-

tion state and broadcast event for a transition, the event is given

in curly brackets that are preceded by a slash in the label of the

corresponding arrow from the source state to the destination state.

Note that if all possible pairs of a destination state and a broadcast

event from a transition share the same broadcast event then the

event can be included as label only on the arrow to the junction

instead of all arrows out from the junction. The transition order of

a transition is given by the number written on the arrow leaving

the source state of the corresponding transition.

The set F of CDFs is given in the graphical model by all CDFs

that appear in any guard of the model. For Fig. 1, the set of CDFs is{
exp(1ℎ−1), lognormal(2, 1), deg(0ℎ), deg(1ℎ), deg(2ℎ)

}
, contain-

ing an exponential, a lognormal, and several degenerate distribu-

tions.

Note that writing “after(0*u.h)” in the guard of a transition is

interpreted equivalently to not writing the after() expression
at all.

Session 6: Theory of Performance ICPE ’22, April 9–13, 2022, Bejing, China

212

Figure 1: Model specified in Stateflow following the syntax of Def. 2.1.

Figure 2: The set of states S of the model in Fig. 1 organized
as an ordered tree. The bold subtree is the initial subtree
discussed in Sec. 3.1.

The time units that can be assigned to parameters of CDFs in the

concrete syntax is given by all time units in the Matlab Units List
2
.

In the graphical model in Fig. 1, all parameters in all the CDFs have

the unit hours.
The graphical model in Fig. 1 gives rise to seven symbols in the

Stateflow symbol list that can be seen in the right hand side of the

figure; u, down_state, a, b, E1, E2, E3. The events E1, E2, and E3

are set to the type “Local Event”, u (which appears through the

use of the Matlab unit list) and down_state are set to type “Input

Data”, and the added parameters a and b are set to type “Local Data”.

Furthermore, a and b have their values set in the value field of the

symbols list and the unit is set in the value field of the symbols list

for a and in each place the parameter is utilized in the model for b.

The concrete syntax of SSF models has been developed with the

aim to be aligned to the concrete syntax of the subset of Stateflow

considered. Yet the addition of stochastic properties give rise to

some differences. In the after() expressions of SSF models, general

CDFs can be specified and not just constants times as is the case

in standard Stateflow. In SSF-models probabilities are assigned

within square brackets labeling arrows out of junctions while these

brackets are designated for guards in standard Stateflow.

2
https://www.mathworks.com/help/symbolic/units-list.html

3 SEMANTICS OF SSF MODELS
The semantics of SSF models can be summarized as follows. Initially

a subtree S0 of S is entered by the use of the initial and type
functions. A random sample is then drawn from each CDF in each

after() expression in each transition for which the source state

is in S0. When the guard of a transition evaluates to true, and
the transition has no condition events, the transition is triggered.

When a transition is triggered, a random draw is made from the

probabilities on the arrows from the corresponding junction to

find which state will be entered and which event will be broadcast.

The effects of broadcasting the event will first be evaluated, after

which the transition will actually be performed. This results in a

new subtree of S and the process then repeats itself. However, in

detail, the semantics is considerably more intricate. The semantics

of SSF models will therefore now be presented first informally

by considering the model in Fig. 1 and then formally using an

operational semantics. The idea has been to as far as possible align

the semantics of SSF models with the semantics of the subset of

Stateflow that SSF is based upon, motivated by the wide spread of

Stateflow in industry. A study of a number of different example

models has indicated that this goal has been satisfied.

3.1 Informal semantics
Consider the model in Fig. 1. At time 𝑡 = 0 the state root (which is

implicit in the model) is entered. Since root is an AND state, all its
children states (S1 and S2) will be entered. Given their order, S1will
be entered first and will be considered next. S1 is an OR state and
initial(S1) = S3 will thereby be the only state in children(S1)
that is entered. Recursively, given that S3 is an OR state, the AND
state S4will be entered which yields that also S6 and S7 are entered.
Next, since both S6 and S7 are of type BASIC, no more states can

be entered from their branches. Now, S8 is entered since S2 is

an OR state and initial(S2) = S8. This yields the complete initial

subtree illustrated by the bold subtree in Fig. 2. The subtree contains

the following states written in order of highest to lowest priority

of consideration: root, S1, S3, S4, S6, S7, S2, S8. These states are
referred to as the set of active states.

The transitions that are active, i.e., all transitions for which the

source state is in the set of active states, are now considered. The

Session 6: Theory of Performance ICPE ’22, April 9–13, 2022, Bejing, China

213

active transitions are ordered firstly by the priority of the source

states and secondly by the execution order for all transitions sharing

a source state. The initially active transitions in order from the

highest to lowest priority are:

• 𝜏1 = (S3, ∅, after(lognormal(2, 1)), ((S10, E2) → 1), 1)
• 𝜏2 = (S4, {E1, E2},T, ((S10, E3) → 0.2, (S5,⋄) → 0.8), 1)
• 𝜏3 = (S4, ∅, in(S9) | | (in(S7) && after(exp(1/ℎ))), ((S5,⋄) →
1), 2)

• 𝜏4 = (S8, {E1, E2}, after(deg(1ℎ)), ((S9, E1) → 1), 1),

where lognormal(𝜇, 𝜎), exp(𝜆), and deg(𝛼) denotes the CDF of a
lognormal, an exponential, and a degenerate distribution and where

only the pairs of destination state and broadcast event are written

out for the probability vector. Since for each active transition, either

no condition event is currently broadcast or the guard is evaluated

to false at time 𝑡 = 0, no transition is triggered at this time.

A sample is now drawn from the CDF of each after() expression
in each active transition. As an example, assume that the lognor-

mal distribution yields 10.5ℎ, the exponential distribution yields

0.5ℎ, and trivially that the degenerate distribution for the after
expression in 𝜏4 yields 1ℎ. The lowest time in all of the after()
expressions in all four active transitions will now be considered.

In the example, this is 0.5ℎ yielded by the exponential distribution.

The transitions are now considered (in order of priority) to see if a

transition is triggered at time 𝑡 = 0.5ℎ. The result after checking

𝜏1, 𝜏2, and 𝜏3 in order is that transition 𝜏3 is triggered at this time

since it has an empty set of condition events and its guard eval-

uates to true at time 𝑡 = 0.5ℎ. A sample is now drawn from the

probability vector in 𝜏3 to find which destination state is entered

and which event is broadcast when the transition is triggered. In

the example, the result is trivially that the destination state is S5
and that the broadcast event is the event ⋄. The source state S4
and all descendants thereof are now removed from the set of active

states together with all ancestors of S4 that are not shared by S5. In
the example, S4, S6, and S7 are removed. Next, 𝜏3 is removed from

the set of active transitions. Since the non-event ⋄ is broadcast by
triggering 𝜏3, no effects of the broadcasting is considered. The next

step is to set the destination state S5 and, as was done with the

root state for finding the initial subtree, recursively setting children

states as active. In a similar manner, all ancestors of S5 must be

considered such that the resulting set of active states is a subtree of

S satisfying that all children of AND states in the subtree are active,

one child of each OR state in the subtree is active and each leaf node

is a BASIC state. The new subtree of S, in order of highest to lowest

priority, is given by the states root, S1, S3, S5, S2 and S8.
All previously active transitions with a source state no longer in

the set of active states are no longer active (𝜏2 and 𝜏3 in the example)

and all transitions (none for the example) with a newly entered

state as source state are active. Next, a sample is drawn from all

CDFs of the newly activated transitions (none for the example).

Note that for each active transition that were not made active by

the triggering of 𝜏3, the earlier samples for the CDFs are kept. In

the example, this applies to the lognormal distribution in 𝜏1 and the

degenerate distribution in 𝜏4. The updated list of active transitions

is ordered in the same manner as for the active transitions for the

initial subtree. Now, all active transitions are checked to see if they

are triggered at the current time, in an order starting with the one

with highest priority that was not made active in the latest step and

that had not yet been checked before transition 𝜏3 was triggered.

In the example, 𝜏4 will be checked followed by 𝜏1. This is repeated

until no more transition are triggered at time 𝑡 = 0.5ℎ.

The process now repeats itself starting by finding the lowest

remaining time in the samples of the after() expressions. For the
example, this time is 0.5ℎ for the after() expression in 𝜏4. However,
looking through the active transitions at this updated time 𝑡 = 1ℎ,

i.e., 0.5 hours after the latest considered time 𝑡 = 0.5ℎ, it is for the

example found that no transition is triggered at this point in time

since the after() expression in the guard of 𝜏1 is evaluated to false

and since none of the condition events in 𝜏4 are being broadcast. The

considered after() expression of 𝜏4 will now remain to evaluate

to true until the transition is triggered.

The next time that is considered is 𝑡 = 10.5ℎ. At this point, 𝜏1
is triggered. After removing states from the set of active states

as described earlier and inactivating 𝜏1, the broadcasting of E2 is
considered. It is clear that this event will trigger transition 𝜏4 since

𝜏4 is active, E2 is in the set of condition events of 𝜏4, and the guard

of 𝜏4 is evaluated to true. Now, as described earlier, states are

removed from the set of active states for this transition 𝜏4. Since

no active state has the event E1, which is broadcast by triggering

𝜏4, as condition event, the next step is to set the destination state

S9 as active together with recursively setting children states and

ancestor states as active as was done above for the transition 𝜏3. This

is followed by repeating the procedure for 𝜏1 with the destination

state S10. The resulting subtree of active states is given by the states
root, S1, S10, S2 and S9.

No more transitions are triggered at the time and the next time

to check is 𝑡 = 12.5ℎ (from the expression after(deg(2ℎ)) given
in the transition 𝜏5 = (S10, ∅, after(deg(2ℎ)), ((S11, E1) → 1), 1)
that became active at time 𝑡 = 10.5ℎ). The transition broadcasts E1
after removing the source state S10, and transition 𝜏5 is no longer

in the set of active transitions. No active transition is triggered by

E1 at this time and the new subtree of active states is given by the

states root, S1, S11, S2 and S9.
The process continues in the above fashion. A complete formal

semantics of SSF models will now be presented.

3.2 Formal semantics
Consider an SSF model M = (S,Sdown, initial, F , E,G,T). In-
spired by [8], the formal semantics of the model will be defined

using an operational semantics. In order to provide such a definition,

some notation will be introduced first.

• Timer: given a guard 𝑔𝑖 ∈ G, a timer of 𝑔𝑖 corresponds to a spe-

cific instance of a CDF in 𝑔𝑖 . For instance, consider 𝑔1 to be an

expression of the form in(𝑠1) ∧ after(𝐹1) ∧¬after(𝐹2), where
𝑠1 ∈ S and {𝐹1, 𝐹2} ⊆ F . Then 𝑔1 has two distinct timers corre-

sponding to 𝐹1 and 𝐹2, respectively. Note that the two timers are

distinct even in the case where the CDFs 𝐹1 and 𝐹2 are identical.

• source(𝜏𝑖), where 𝜏𝑖 ∈ T : the unique source state of 𝜏𝑖 in S.
• D: the set of all timers, i.e.,D = {𝑑𝑖 | ∃𝑔 𝑗 ∈ G s.t. 𝑑𝑖 is a timer or 𝑔 𝑗 }.
• D𝑠𝑖 , where 𝑠𝑖 ∈ S: the set of all timers 𝑑 𝑗 such that there exists

a transition 𝜏𝑘 ∈ T with source(𝜏𝑘) = 𝑠𝑖 such that 𝑑 𝑗 is a timer

of 𝑔𝜏𝑘 .

Session 6: Theory of Performance ICPE ’22, April 9–13, 2022, Bejing, China

214

• source(𝑑𝑖), where 𝑑𝑖 ∈ D: the unique state 𝑠 𝑗 ∈ S such that

𝑑𝑖 ∈ D𝑠 𝑗 .

• root: the root state of the tree given by S.
• T𝑠𝑖 , where 𝑠𝑖 ∈ S: the set of all transitions with 𝑠𝑖 as source state,
i.e., T𝑠𝑖 = {𝜏 𝑗 ∈ T | source(𝜏 𝑗) = 𝑠𝑖 }.

• parent(𝑠𝑖), where 𝑠𝑖 ∈ S: the unique state 𝑠 𝑗 ∈ S such that

𝑠𝑖 ∈ children(𝑠 𝑗).
• children𝑄 (𝑠𝑖), where𝑄 ⊆ S and 𝑠𝑖 ∈ S: the set children(𝑠𝑖) ∩𝑄 .

• lca(𝑠𝑖 , 𝑠 𝑗), where {𝑠𝑖 , 𝑠 𝑗 } ⊆ S: the lowest common ancestor of

𝑠𝑖 and 𝑠 𝑗 .

• first(𝑄), where 𝑄 ⊆ children(𝑠𝑖) for some state 𝑠𝑖 ∈ S: if
𝑠𝑖 is of type AND, first(𝑄) is the state 𝑠 𝑗 ∈ 𝑄 with minimal

order(𝑠 𝑗). If 𝑠𝑖 is of type OR and𝑄 is a singleton, then first(𝑄)
is the only element in 𝑄 . Otherwise, first(𝑄) is undefined.

• first(𝑇), where 𝑇 ⊆ T𝑠𝑖 for some state 𝑠𝑖 ∈ S: the transition
𝜏 𝑗 ∈ 𝑇 with minimal transition order 𝑛𝜏 𝑗 .

• 𝜋𝑖 · 𝜋 𝑗 , where 𝜋𝑖 and 𝜋 𝑗 are sequences: the concatenation of 𝜋𝑖
and 𝜋 𝑗 .

• 𝜖 : the empty sequence.

• 𝑓 [𝑢 ↦→ 𝑣], where 𝑓 is a function: a functionwith the same domain

as 𝑓 such that 𝑓 [𝑢 ↦→ 𝑣] (𝑥) =
{
𝑣 if 𝑥 = 𝑢

𝑓 (𝑥) otherwise .

In this notation, the reference to the specific SSF model is always

implicit and assumed obvious from the context. Note also that the

operators parent, source, lca, and first operate implicitly on

the entire set S of states.

3.2.1 Sampling future. In order to separately describe the stochas-

tic component of an SSF modelM, the notion of sampling future
of M will be used. Intuitively, a sampling future of a model is a

function that maps each timer and each transition to an infinite

sequence of future sample values. For a formal definition of a sam-

pling future, let 𝐴∞
, where 𝐴 is a set, denote the set of all infinite

sequences consisting of elements in 𝐴.

Definition 3.1. A sampling future of an SSF model

M = (S,Sdown, initial, F , E,G,T) is a tuple Φ = (ΦD ,ΦT) where
• ΦD

is a function ΦD
: D → R∞≥0 mapping each timer 𝑑𝑖 ∈ D to

an infinite sequence of realizations of corresponding i.i.d. random

variables sharing the distribution F𝑖 , and
• ΦT

is a function ΦT
: T → (S × E)∞ mapping each transition

𝜏𝑖 ∈ T to an infinite sequence of realizations of corresponding

i.i.d. random variables sharing the distribution represented by

the probability vector denoted by →𝜏𝑖 . □

3.2.2 Configuration. Intuitively, a configuration of an SSF model

M represents the currently active states of M, a remaining time

value for each timer contained in M and a sampling future of

M. Given a set 𝑄 of states, a timer 𝑑𝑖 is said to be active in 𝑄 if

source(𝑑𝑖) ∈ 𝑄 and inactive otherwise. The convention used in

this paper is that each timer that is inactive in the set of states of a

configuration has remaining time value 0.

Definition 3.2. A configuration C of an SSF model

M = (S,Sdown, initial, F , E,G,T) is a tuple (S𝐶 , 𝑟𝐶 ,Φ𝐶) where
S𝐶 is a subset of S, 𝑟𝐶 : D → R≥0 is a function, and Φ𝐶 is a

sampling future of M such that the following holds:

• The set S𝐶 contains root. For each AND state 𝑠𝑖 ∈ S𝐶 , each child

in children(𝑠𝑖) is an element of S𝐶 . For each OR state 𝑠 𝑗 ∈ S𝐶 ,
exactly one child in children(𝑠 𝑗) is an element of S𝐶 .

• For each timer 𝑑𝑖 ∈ D, if 𝑑𝑖 is inactive in S𝐶 then 𝑟𝐶 (𝑑𝑖) = 0.

Otherwise, 𝑑𝑖 is not greater than the maximum value of the

support of the probability density function corresponding to 𝑑𝑖 .

□

As an example, consider the model depicted in Fig. 1. The model

has five timers which will be denoted 𝑑1 = lognormal(2, 1), 𝑑2 =
exp(1/ℎ), 𝑑3 = deg(0ℎ), 𝑑4 = deg(1ℎ) and 𝑑5 = deg(2ℎ). A
configuration 𝐶 = (S𝐶 , 𝑟𝐶 ,Φ𝐶) representing the initial situation

for this model may be the following. Examining the initial set

of active states graphically represented in Fig. 2, it is clear that

𝑆𝐶 = {root, 𝑆1, 𝑆2, 𝑆3, 𝑆4, 𝑆6, 𝑆7, 𝑆8} (written in no particular or-

der). Following the same sampling pattern as in Sec. 3.1, timers

𝑑1, 𝑑2 and 𝑑4 initially get values 10.5, 0.5 and 1, respectively, while

timers𝑑3 and𝑑5 are inactive and get the value 0. Thus, 𝑟𝐶 is the func-

tion {𝑑1 ↦→ 10.5, 𝑑2 ↦→ 0.5, 𝑑3 ↦→ 0, 𝑑4 ↦→ 1, 𝑑5 ↦→ 0}. Originating
from the fact that the timers 𝑑3, 𝑑4 and 𝑑5 are degenerate, it must

be the case that the sampling future Φ𝐶 gives ΦD
𝐶
(𝑑3) = 0, 0, 0 . . .,

ΦD
𝐶
(𝑑4) = 1, 1, 1 . . . and ΦD

𝐶
(𝑑5) = 2, 2, 2 For the timers 𝑑1 and

𝑑2, which are non-degenerate, ΦD
𝐶

can yield any sequences of num-

bers as long as they are in the support of each respective timer. The

case is similar for ΦT
𝐶
.

The set of all configurations is denoted C. A configuration 𝐶 is

said to be initial if the following holds:
• for each state 𝑠𝑖 ∈ S𝐶 such that type(𝑠𝑖) = OR, its initial child
initial(𝑠𝑖) is also a member of S𝐶 ,

• for each active timer 𝑑𝑖 in S𝐶 , the value 𝑟𝐶 (𝑑𝑖) is in the support

of the probability density function corresponding to 𝑑𝑖 .

A transition 𝜏𝑖 ∈ T is said to be enabled in a configuration 𝐶

under an event 𝑒 𝑗 , written enabled(𝜏𝑖 ,𝐶, 𝑒 𝑗), if the following holds:
• source(𝜏𝑖) ∈ S𝐶 ,
• the set Ein

𝜏𝑖
of condition events is either empty or contains 𝑒 𝑗 ,

• the guard of 𝜏𝑖 evaluates to true in 𝐶 , written (𝐶,𝑔𝜏𝑖) ⊢ true.

3.2.3 Guard evaluation. The evaluation of guards is defined using

an operational semantics, see Fig. 15. In order to get a clear under-

standing of how the evaluation works, some of the rules will be

examined more closely by means of a small example. Assume for in-

stance that 𝑔1 is a guard of the form in(𝑠1) ∧after(𝑑1), where 𝑠1 is
a state in S and 𝑑1 is an instance of a CDF in F . Assume also that𝐶

is a configuration where 𝑠1 ∈ S𝐶 and 𝑟𝐶 (𝑑1) = 2.5. Now, in order to

evaluate 𝑔1 = in(𝑠1) ∧ after(𝑑1), the rule Eval-6 will be used. The
premises of this rule are evaluated on the sub-expressions in(𝑠1)
and after(𝑑1), respectively. According to rules Eval-4 and Eval-3,

the statements (𝐶, in(𝑠1)) ⊢ true and (𝐶, after(𝑑1)) ⊢ false
holds, respectively. Thus applying Eval-6 gives (𝐶,𝑔1) ⊢ false
since true ∧ false is false.

The semantics of determining a successor for a given configura-

tion, e.g., by the triggering of some transitions or broadcasting of an

event, is also defined using an operational semantics, see Fig. 11-9.

The rules are organised into nine different levels of abstraction,

each responsible for its own computational step. The following sub-

section is devoted to give an intuition for each level, by explaining

how a subset of the rules work.

Session 6: Theory of Performance ICPE ’22, April 9–13, 2022, Bejing, China

215

3.2.4 Overview of the operational semantics. At the highest level,
the relation −−−−→

Exec
describes how a subtree of the set S of states is

executed. The statement (𝐶,𝑄,𝑇) 𝑒−−−−→
Exec

𝐶 ′
can be read “executing

configuration 𝐶 with remaining states 𝑄 and remaining transitions

𝑇 to consider, under event 𝑒 , produces configuration 𝐶 ′
”. It is as-

sumed that the elements of 𝑄 and 𝑇 all belong to the same source

state, say 𝑠𝑖 , so that the tuple (𝐶,𝑄,𝑇) can be viewed as a break-

point in the execution of the model such that 𝑠𝑖 is the currently

considered state and 𝑄 and 𝑇 are the children and transitions left

to consider, respectively. As an example, the rule

Exec-3:

𝑇 ≠ ∅ ∃𝑠𝑝 ∈ S . 𝑇 ⊆ T𝑠𝑝 𝜏 = first(𝑇)
enabled(𝜏,𝐶, 𝑒) 𝐶

𝜏−−−−−→
Trans

𝐶 ′

(𝐶,𝑄,𝑇) 𝑒−−−−→
Exec

𝐶 ′

says that if there are transitions left to consider, all of them be-

longing to the same source state and the prioritised one being 𝜏 ,

with 𝜏 being enabled and the result of taking 𝜏 is a configuration𝐶 ′
,

then executing the remaining subtree induced by (𝐶,𝑄,𝑇) yields𝐶 ′
.

According to the rule Exec-5, a statement of the form 𝐶
𝑒−−−−→

Exec
𝐶 ′

is simply shorthand for (𝐶, childrenS𝐶
(root),Troot)

𝑒−−−−→
Exec

𝐶 ′
,

which represents an execution of the entire tree of states S under

event 𝑒 .

One level deeper, triggering a transition is described by the rela-

tion −−−−−→
Trans

. The statement 𝐶
𝜏−−−−−→

Trans
𝐶 ′

can be read as “triggering

transition 𝜏 from configuration 𝐶 produces configuration 𝐶 ′
”. As

an example, the rule

Trans-2:

source(𝜏) = 𝑠 parent(𝑠) = 𝑠𝑝 (𝐶, 𝜏) −−−−−−→
Branch

(𝐶 ′′, 𝑠 ′, 𝑒)
parent(𝑠 ′) = 𝑠 ′𝑝 lca(𝑠, 𝑠 ′) = 𝑠̂ (𝐶 ′′, {𝑠, 𝑠 ′} ∪ children (̂𝑠)) −−−−→

Exit
𝐶 ′′′

𝐶 ′′′ 𝑒−−−−→
Send

𝐶 ′′′′ 𝑝 = lca (̂𝑠, lca(𝑠𝑝 , 𝑠 ′𝑝)) 𝑝 ∈ S𝐶′′′′

type(𝑝) ≠ OR ∨ childrenS𝐶′′′′ (𝑝) = ∅
type(𝑝) ≠ AND ∨ childrenS𝐶′′′′ (𝑝) ≠ children(𝑝) (𝐶 ′′′′, {𝑠 ′}) −−−−−→

Enter
𝐶 ′

𝐶
𝜏−−−−−→

Trans
𝐶 ′

says that if 𝜏 has source 𝑠 , the branching of 𝜏 is determined to go

to state 𝑠 ′ and broadcast event 𝑒 , exiting the required states from

𝐶 and broadcasting event 𝑒 does not cause a transition from an

ancestor of 𝑠 , and lastly entering 𝑠 ′ produces 𝐶 ′
, then the result of

triggering transition 𝜏 from 𝐶 is 𝐶 ′
.

Sending an event ⋄ does nothing. However, sending any other

event 𝑒 consists of executing the entire tree of active states under 𝑒 .

These are exactly the cases captured by the two rules

Send-1:

𝑒 = ⋄
𝐶

𝑒−−−−→
Send

𝐶

Send-2:

𝑒 ≠ ⋄ 𝐶
𝑒−−−−→

Exec
𝐶 ′

𝐶
𝑒−−−−→

Send
𝐶 ′

.

Exiting a set of states is described by −−−−→
Exit

. Here, in order to

keep the tree of active states connected, exiting some state 𝑠 must

imply that all descendants of 𝑠 are also exited. The rule

Exit-3:

(𝐶, 𝑠) −−−−−−−−−−→
Inactivate

𝐶 ′′ (𝐶 ′′, childrenS𝐶′′ (𝑠)) −−−−→
Exit

𝐶 ′

(𝐶, {𝑠}) −−−−→
Exit

𝐶 ′

says that exiting the singleton {𝑠} consists of first inactivating 𝑠

and then exiting all children of 𝑠 recursively. Inactivating a state is

described by the single rule

Inactivate-1:

𝐶 ′ = (S𝐶 \ {𝑠}, 𝑟𝐶 [𝑑 ↦→ 0,∀𝑑 ∈ D𝑠],Φ𝐶)
(𝐶, 𝑠) −−−−−−−−−−→

Inactivate
𝐶 ′

which states that inactivating 𝑠 from 𝐶 results in the configuration

where 𝑠 is removed from the active states and all timer values of 𝑠

are remapped to 0. The case is similar for entering and activating

states, but with two slight differences. First, in order to be able to

enter a state 𝑠 for which neither the ancestors or descendants are

active, both the parent and the children of 𝑠 must be recursively

entered. Second, when activating a state, instead of resetting the

timer values to 0, new values must be taken from the sampling

future.

The stochastic aspect of the execution is described by the rela-

tions −−−−−−−→
Restart

and −−−−−−→
Branch

. The restart relation describes the be-

havior of restarting a set of timers and the branch relation describes

the choice made among destination states and broadcast events in

the probability vector of a transition. As an example, the rule

Restart-3:

ΦD
𝐶
(𝑑) = 𝑣 · 𝜙 𝑟 ′ = 𝑟𝐶 [𝑑 ↦→ 𝑣] Φ′ =

(
ΦD
𝐶
[𝑑 ↦→ 𝜙],ΦT

𝐶

)
𝐶 ′ = (S𝐶 , 𝑟 ′,Φ′)

(𝐶, {𝑑}) −−−−−−−→
Restart

𝐶 ′

simply says that if the sampling future for a timer 𝑑 begins with

time value 𝑣 , then restarting𝑑 consists of removing the first element

𝑣 from the sampling future and remapping the timer value of 𝑑 to

𝑣 . Lastly, the rule

Branch-1:

ΦT
𝐶
(𝜏) = (𝑠, 𝑒) · 𝜙 Φ′ =

(
ΦD
𝐶
,ΦT

𝐶
[𝜏 ↦→ 𝜙]

)
𝐶 ′ = (S𝐶 , 𝑟𝐶 ,Φ′)

(𝐶, 𝜏) −−−−−−→
Branch

(𝐶 ′, 𝑠, 𝑒)

states that if the sampling future of a transition 𝜏 begins with the

state-event pair (𝑠, 𝑒) then the pair is removed from the sampling

future and the determined destination of 𝜏 is 𝑠 with broadcast

event 𝑒 .

3.2.5 Run. The semantics of an SSF model M is given in terms of

so-called runs of M with respect to a given sampling future. A run

is informally considered to be a timed sequence of configurations

taking the form

𝐶0

𝑡1−→ 𝐶1

𝑡2−→ 𝐶2

𝑡3−→ . . .

where 𝐶0 is an initial configuration and any two successive con-

figurations are distinguished by the fact that a transition has been

triggered between them. If no transition is enabled in a configura-

tion 𝐶𝑖 , then time is advanced until a transition becomes enabled.

This time advancement corresponds to the value 𝑡𝑖+1. When this has

happened, the model is executed until once again no transitions are

enabled. Execution of a model, which happens with no time delay,

consists of triggering all enabled transitions in an order imposed by

the state hierarchy together with the transition order and the order

of children states. Enforcing such an ordering of transitions within

a run consists of the following two parts. First, a relation is defined

such that each configuration is related to that which results after

executing it. This relation is denoted −−−−→
Exec

. Second, it is required

that the configurations visited in a run without any passing of time

are connected by −−−−→
Exec

in such a way to ensure that whenever a

transition is triggered, it is because it is a part of some ongoing

execution. Thus, a run can be viewed at two levels. At the highest

Session 6: Theory of Performance ICPE ’22, April 9–13, 2022, Bejing, China

216

level, successive configurations are distinguished by the fact that

the model has been executed between them. Meanwhile, at the

lower level, successive configurations are distinguished by the fact

that a single transition has been triggered between them.

Before a run can be defined formally, the following notions need

to be introduced. Let advance : C × R≥0 → C be a function such

that advance(𝐶, 𝑡) gives the configuration that results after advanc-

ing all timers in𝐶 with 𝑡 , i.e., the configuration𝐶 ′
where S𝐶′ = S𝐶 ,

Φ𝐶′ = Φ𝐶 , and for each timer 𝑑𝑖 ∈ D, 𝑟𝐶′ (𝑑𝑖) = max(0, 𝑟𝐶 (𝑑𝑖) − 𝑡).
Let moreover ttt : C → R≥0 denote the time to trigger for a

given configuration, i.e., the remaining time until a transition is

enabled, such that for each 𝐶 ∈ C, ttt(𝐶) = min{𝑡 ∈ R≥0 | ∃𝜏𝑖 ∈
T s.t. enabled(𝜏𝑖 , advance(𝐶, 𝑡),⋄)}. A configuration 𝐶 for which

there exists no such time 𝑡 , i.e., for which ttt(𝐶) is undefined, is
said to be a trap configuration.

Definition 3.3. A run of an SSF model M with respect to a sam-

pling future Φ of M is a (finite or infinite) sequence

𝜔 = 𝐶0

𝑡1−→ 𝐶1

𝑡2−→ 𝐶2

𝑡3−→ ...

such that

• 𝐶0 is an initial configuration with Φ𝐶0
= Φ.

• For each 𝑖 ≥ 0 such that𝐶𝑖 is not a trap configuration, 𝑡𝑖+1 = ttt(𝐶𝑖).
• For each 𝑖 ≥ 0 such that 𝐶𝑖 is not a trap configuration, the

successor of 𝐶𝑖 is the configuration 𝐶𝑖+1 such that

advance(𝐶𝑖 , 𝑡𝑖+1)
𝜏𝑖−−−−−→

Trans
𝐶𝑖+1

for some enabled transition 𝜏𝑖 in advance(𝐶𝑖 , 𝑡𝑖+1).
• For each 𝑖 such that 𝑡𝑖 > 0 or 𝑖 = 0, if there exists some 𝑗 such

that 𝜔 contains the substring 𝐶𝑖
0−→ 𝐶𝑖+1

0−→ 𝐶𝑖+2
0−→ . . .

0−→ 𝐶 𝑗

and 𝑡 𝑗+1 > 0, then there also exist numbers 𝑘1, 𝑘2, . . . 𝑘𝑛 with

𝑖 ≤ 𝑘𝑙 ≤ 𝑘𝑚 ≤ 𝑗 for each 1 ≤ 𝑙 ≤ 𝑚 ≤ 𝑛 such that 𝐶𝑖
⋄−−−−→

Exec

𝐶𝑘1
⋄−−−−→

Exec
𝐶𝑘2

⋄−−−−→
Exec

. . .
⋄−−−−→

Exec
𝐶𝑘𝑛

⋄−−−−→
Exec

𝐶 𝑗 .

• For each 𝑖 such that 𝑡𝑖 > 0 or 𝑖 = 0, if 𝜔 contains an infinite

substring𝐶𝑖
0−→ 𝐶𝑖+1

0−→ 𝐶𝑖+2
0−→ . . ., then there exists a sequence

𝑘1, 𝑘2, . . . of infinite length with 𝑖 ≤ 𝑘𝑙 ≤ 𝑘𝑚 for each 1 ≤ 𝑙 ≤ 𝑚

such that 𝐶𝑖
⋄−−−−→

Exec
𝐶𝑘1

⋄−−−−→
Exec

𝐶𝑘2
⋄−−−−→

Exec
. . . . □

The relations −−−−−→
Trans

and −−−−→
Exec

are defined formally in Fig. 11-9.

4 SMP-TOOL
Part of the Graphical User Interface (GUI) of SMP-tool is here pre-

sented together with the results of running some analyses. This

is followed by a presentation of how the simulation for transient

analysis of an SSF model M is performed in SMP-tool.

4.1 Graphical User Interface
Fig. 3 visualizes some of the GUI of SMP-tool together with the

result of running some analyses. At the top left corner, the main

GUI is visualized when an SSF model named “redundantSteering”

has been loaded into the tool. Here the different types of analyses

available in the tool are presented. Two examples are: 1) Transient

analysis that finds the probability that the model has reached a

down state by either a symbolic/numerical or a simulation engine

for the times specified in “Analysis time” and then interpolates

to visualize how the probability changes over time. 2) Sensitivity

analysis that repeats the process of transient analysis for different

values of the model parameters to find how much each of them

affects the resulting probability.

The plot in the top right corner of Fig. 3 has been created by run-

ning a transient analysis using the simulation engine. Here it is vi-

sualized how the probability of reaching a down state changes over

time with a confidence interval. The plot in the bottom left corner

is the result of running a sensitivity analysis of a model with three

parameters “Accident_rate”, “FR_Primary”, and “FR_Secondary”.

The result is a window with a tab for each parameter showing how

the probability of reaching a down state differs when the value of

the parameter is changed. The bottom right plot was generated by

running “Display state transition” and visualizes some probability

distributions, e.g., the distribution of the sojourn time, i.e., how

much time is spent in the specified state.

All of these functionalities are available for a subset of Hierar-

chical Semi-Markov Process (HSMP) models as presented in [12].

The support for SSF models which are not also HSMP models cur-

rently applies only to transient and sensitivity analysis utilizing

the simulation engine.

4.2 Simulation
SMP-tool can currently perform transient Monte Carlo simulation

of SSF models given that the following six restrictions hold. (1) No

AND state has an OR parent. (2) No guard has more than one after()
expression. (3) Given any two children 𝑠𝑖 and 𝑠 𝑗 of an AND state,

no transition with 𝑠𝑖 or any of its descendants as source state can

have 𝑠 𝑗 or any of its descendants as destination state or vice versa.

(4) All destination states of all transitions are of type BASIC. (5)
No transition with a source state 𝑠𝑖 can have a destination state

𝑠 𝑗 where 𝑠𝑖 is an ancestor of 𝑠 𝑗 . (6) There exists no negation of an

after() expression in any guard.

The simulation is performed in a two-step manner. Firstly, the

model is transformed such that no OR states with an OR state as par-
ent state remain, in detail described in Sec. 4.2.1. Secondly, a Monte

Carlo simulation is performed on the new transformed model, in

detail described in Sec. 4.2.2.

4.2.1 Model transformation. The model transformation works by,

for each OR state 𝑠𝑖 with an OR state 𝑠 𝑗 as parent state, moving all

children states of 𝑠𝑖 to be children of a complementary OR state 𝑠𝑖_

with the AND state root as parent. Complementary transitions are

then added within 𝑠𝑖_ together with a complementary child state

𝑠𝑖_𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒 . Only the information about whether 𝑠𝑖 is active or not

is then contained in 𝑠 𝑗 while the more detailed information about

which children is active is contained in 𝑠𝑖_. The transformation

can be repeated if there are several layers of OR states with an

OR state as parent state until all children of OR states are of type

BASIC. Figure 4 illustrates the transformation applied to a simple

example model. S3_ represents the complementary state and its

child state S3_inactive that S3 is not currently active. Furthermore,

E1_ and E2_ are two complementary events created during the

transformation.

The model transformation is summarized in the following con-

jecture.

Session 6: Theory of Performance ICPE ’22, April 9–13, 2022, Bejing, China

217

Figure 3: Subset of the GUI of SMP-tool.

(a)

(b)

Figure 4: a) A simple example SSF model before the model
transformation has been applied. b) The model yielded from
transforming the example model.

Conjecture 4.1. Consider any SSF modelM satisfying the restric-
tions listed in the beginning of Sec. 4.2 and the modelM∗ resulting of
transformingM as described above. Consider a given sampling future
Φ and a run 𝜔 of M with respect to the sampling future Φ. Let (𝐶𝑖)𝑖
denote the sequence of configurations and (𝑡𝑖)𝑖 denote the sequence
of times of 𝜔 . Then the run 𝜔∗ ofM∗ given by the sampling future Φ
satisfies (𝑡𝑖)𝑖 = (𝑡∗

𝑖
)𝑖 and each active state in each configuration𝐶𝑖 is

also an active state of 𝐶∗
𝑖
.

The conjecture has been verified by transforming several exam-

ple models and comparing the runs for some sampling futures.

4.2.2 Simulating a transformed model. The algorithm for simulat-

ing one lifetime of an SSF model M yielded by transforming an

SSF model M ′
as described in Sec. 4.2.1 is presented in Alg. 1. The

algorithm takes as input the SSF modelM and the time 𝑡𝑙𝑖 𝑓 𝑒 that

the model will be simulated for. The output of the algorithm is a

time 𝑡𝑑𝑜𝑤𝑛 . If, and only if, 𝑡𝑑𝑜𝑤𝑛 ≤ 𝑡𝑙𝑖 𝑓 𝑒 , a down state has been

reached in the simulation. By repeating this process and seeing for

how many simulations a down state was reached, the probability of

reaching a down state can be estimated with a confidence interval.

5 CASE STUDY
A case study will now be presented. The case study is from a real

industrial system from the heavy-vehicles manufacturer Scania

but has been somewhat modified for confidentiality reasons. The

system is modeled in Stateflow as an SSF model and analyzed using

SMP-tool.

5.1 Gearbox wheel lock
The case study considers a gearbox of a truck and a dangerous

failure of the gearbox causing the wheels of the vehicle to lock

at their current position during driving. The cause considered for

this failure is a short circuit in the internal electrical system of the

gearbox. For a system failure to occur, two faults must be present

at the same time; Short Circuit to Battery (SCB) and Short Circuit

to Ground (SCG). It is assumed that the appearance of each of these

faults have exponential distributions with rates 10
−6/ℎ. Moreover,

Session 6: Theory of Performance ICPE ’22, April 9–13, 2022, Bejing, China

218

Algorithm 1: One simulation of an SSF model.

Input: An SSF model M and an analysis time 𝑡𝑙𝑖 𝑓 𝑒 .

Output: 𝑡𝑑𝑜𝑤𝑛 - The time a down state was reached in the

simulation (inf if it wasn’t reached within 𝑡𝑙𝑖 𝑓 𝑒).

1 Set 𝑆𝑎𝑐𝑡𝑖𝑣𝑒 to a list of the initially active states according to

their order of priority.

while true do
2 if a state in 𝑆𝑎𝑐𝑡𝑖𝑣𝑒 is in S𝑑𝑜𝑤𝑛 then
3 Set 𝑡𝑑𝑜𝑤𝑛 to the current time.

break

else
4 Sample a time from the timer of each transition in T

with source location in 𝑆𝑎𝑐𝑡𝑖𝑣𝑒 and for which no

sampled time exists.

if the lowest sampled time 𝑡𝑚𝑖𝑛 causes the total time
to be above 𝑡𝑙𝑖 𝑓 𝑒 then

5 𝑡𝑑𝑜𝑤𝑛 = ∞.

break

else
6 for the transition 𝜏 with highest priority and

sampled time 𝑡𝑚𝑖𝑛 that satisfies E𝑖𝑛
𝜏 = ∅ do

Sample a pair of destination state and

broadcast event (𝑠, 𝑒) from 𝜏 .

7 Remove 𝑠𝜏 , all its children states and all

ancestors of 𝑠𝜏 that are not ancestors of 𝑠

from 𝑆𝑎𝑐𝑡𝑖𝑣𝑒 .

8 If 𝑒 triggers other transitions with source

state in 𝑆𝑎𝑐𝑡𝑖𝑣𝑒 and sampled times ≤ 𝑡𝑚𝑖𝑛 ,

sample destination state and broadcast

event (𝑠 ′, 𝑒 ′) and remove states from

𝑆𝑎𝑐𝑡𝑖𝑣𝑒 as above. Repeat this with 𝑒 ′ until
no more transition are triggered.

9 Forget the sampled times of all triggered

transitions and all transitions with source

state not in 𝑆𝑎𝑐𝑡𝑖𝑣𝑒 .

10 Add the destination states of these triggered

transitions along with ancestors and

descendants such that the states in 𝑆𝑎𝑐𝑡𝑖𝑣𝑒
represent a proper subtree of S where each

active OR state has one child active, each

active AND state has all children active, and

initial is used for entering children of OR
states.

11 Reduce the time of all sampled timers by

𝑡𝑚𝑖𝑛 .

end
end

end
end

there is a diagnosis that may detect each of these faults. The diagno-

sis is assumed to have a certain probability of detecting a fault and

if a fault goes undetected it is assumed to remain that way until the

vehicle visits a repair shop to get the gearbox fixed. The probability

that a fault is detected by the diagnosis is 0.99. Furthermore, the

diagnosis can in itself become unavailable. If this occurs, no faults

will be detected. It is assumed that the appearance of failure in the

diagnosis has an exponential distribution with rate 10
−6/ℎ. At ev-

ery time the vehicle is started up, a separate diagnosis is performed

to check the availability of the diagnosis of SCB and SCG faults.

This start-up diagnosis has a certain probability of missing that

the diagnosis of SCB and SCG is unavailable. The probability that

an unavailability is detected in this start-up diagnosis is 0.99. It is

conservatively assumed for both of the diagnosis procedures that

if any fault goes undetected after a diagnosis it will continue to be

undetected indefinitely. It is also conservatively assumed that each

driving session of the vehicle is 16 hours long.

When a fault in SCB or SCG is detected, the driver will be warned

and the vehicle will be locked in its current gear. It is assumed that

the driver will stop the vehicle after 1 hour in this state after which

the vehicle will be repaired before started again.When the diagnosis

at the start-up of the vehicle finds that the diagnosis of SCB and

SCG faults is unavailable, the driver will not be allowed to drive

the vehicle and it is assumed that the fault is fixed in a repair shop

before the vehicle will be driven again.

5.2 Modeling
An SSF model specified in Stateflow for the gearbox case study

is presented in Fig. 5. For the resulting model, the root state is

an AND state with 6 parallel children states. There are two par-

allel states named SCB_status and SCG_status tracking whether

an SCB or SCG fault is present, respectively. The parallel state

diagnosis_function tracks the result of the diagnostic procedure

when an SCB or SCG fault becomes present. The availability of the

diagnostic procedure together with the result of the start-up diagno-

sis is tracked in the parallel state diagnosis_status. Including both

of these parts in diagnosis_status significantly lowers the expected
number of triggered transitions during the vehicle life time, and

thereby makes the simulation more efficient. Furthermore, there is

a parallel state system_controller. This state contains the function-
ality of the safety procedure of the vehicle which is initialized when

an SCB or SCG fault is detected. Finally, there is a parallel state

system_availability which tracks whether the vehicle has reached

a down state, i.e., if there has been a wheel lock, or not.

In the state SCB_status, a fault event is broadcast when a fail-

ure in SCB becomes present. Furthermore, when a failure in SCB

is present and a repair event is received, SCB_status goes back
to working condition. The state SCG_status works in the same

manner for SCG faults.

In the state diagnosis_status, the feedback will either be unavail-
able but it is yet to be diagnosed (diagnosis_down), be unavailable
but this was missed by the start-up diagnosis (diagnosis_dead), or
be available (diagnosis_up).

In the state diagnosis_function, either the state fault_detected or
the state diagnosis_monitoringwill be in the set of active states. Ini-
tially, time is spent in diagnosis_monitoring. If the diagnosis is avail-
able and a fault event is received when in diagnosis_monitoring,
a transition will be triggered either back into diagnosis_monitoring
or to the state fault_detected inwhich case the event fault_detected
will be broadcast. When in fault_detected and the repair event is

received, a transition into diagnosis_monitoring is triggered.

Session 6: Theory of Performance ICPE ’22, April 9–13, 2022, Bejing, China

219

Figure 5: SSF model of the gearbox case study.

In the state system_controller, the vehicle will either be in the

state nominal_driving or in the state gear_locked. When in

nominal_driving and the event fault_detected is received, a transi-

tion to gear_locked is triggered. After being in gear_locked for an

hour, a transition into nominal_driving will be triggered and the

event repair is broadcast.

In the state system_availability, the vehicle will either be in the

state system_up representing that no wheel lock has occurred, or

in the state system_down which represents the absorbing down

state that a wheel lock has occurred. A transition from system_up
to system_down is triggered when both an SCB and SCG fault are

present and the gearbox is not locked in a gear.

5.3 Analysis
SMP-tool will now be used to find the probability of getting a wheel

lock during the vehicle lifetime of 45000 hours. It is assumed that the

vehicle should be designed to have a maximum failure probability

of 10
−6

during the lifetime of the system. By designing the system

according to the chosen distributions, simulating the model 5 · 107
times yields the result illustrated in Fig 6. As can be seen, the entire

95% confidence bound has a system failure probability of below

10
−6

after 45000 hours of driving.

Of course, there are several other possible configurations of

parameter values that also satisfy the required maximum system

failure probability. By utilizing the sensitivity analysis built into the

SMP-tool, other configurations of parameter values can be found.

6 RELATEDWORK
Here, some related work about models related to SSF models, for-

malization of the semantics of Stateflow, and extensions of Stateflow

are presented.

A modeling formalism that syntactically resembles that of SSF

models is StoCharts presented in [10]. However, there are essential

semantic differences based on the differences between the semantics

of Stateflow Models and Statecharts. Unlike Statecharts, Stateflow

has no notion of true concurrency; only one event can be broadcast

at once and only one transition can be considered at once. On the

contrary, several events can be active at the same time and several

transitions can be considered at the same time in Statecharts. These

Figure 6: Result of simulating the system in the gearbox case
study 5 · 107 times for the lifetime 45000 hours

differences may cause non-determinism to appear in Stocharts

on places where they would not appear in SSF-models [13–15].

While the use of non-determinism in practise is not necessarily a

disadvantage, it goes against the purpose of the present paper to

align the semantics of SSF models with the semantics of Stateflow.

When it comes to the semantics of Stateflow, several attempts

have been made to formalize it for a subset of the language [1, 4,

7, 8, 15]. Like the semantics presented in the present paper, the

semantics for a subset of Stateflow models presented in [8] is an

operational semantics and some differences between the two se-

mantics will therefore be discussed. Except that the semantics in

[8] is of Stateflow models and thereby lacks the stochastic parts of

the semantics of SSF models, the semantics is defined over different

subsets of Stateflow models. Some restrictions which are made in

the semantics of [8] that the semantics of the present paper does

not adhere to are: (1) Each transition can only have one condition

event. (2)Events can be broadcast only to parallel states. (3) There

can be no recursion with events. (4) There can be no transitions

out of parallel states. (5) Events can only be broadcast to already

visited states. Point 2 refers to that there is no transition 𝜏𝑖 with

a broadcast event 𝑒 𝑗 where there exists a transition 𝜏𝑘 with 𝑒 𝑗 in

its set of condition events such that the source states of 𝜏𝑖 and 𝜏𝑘
do not have the same parent AND state. Point 3 refers to that the

broadcasting of an event 𝑒1 from a transition 𝜏𝑖 can never cause

a chain of events that eventually triggers the transition 𝜏𝑖 again

(and thus cause an infinite loops of recurring transitions). How-

ever, since the semantics of the present article only allow transition

events, i.e., events where the source state is set as inactive and the

destination state not yet set as active when evaluating the event,

these infinite loops can not occur. Point 4 refers to that no transition

can have a source state 𝑠𝑖 such that the parent of 𝑠𝑖 is of type AND.
Point 5 refers to that there exists no run of an SSF model where

a transition broadcasts an event 𝑒𝑖 before the source state of each

Session 6: Theory of Performance ICPE ’22, April 9–13, 2022, Bejing, China

220

transitions with 𝑒𝑖 in its set of condition events has been active

earlier in the run.

There are also some restrictions on the subset of Stateflow that

is utilized in SSF models and that are not made by [8]. The perhaps

greatest restriction is that SSF models do not allow Stateflow vari-

ables. Furthermore, in the spirit of allowing only a safe predictable

subset of Stateflow, SSF models only allow transition actions and

not condition actions in accordance with the guideline [3].

Another stochastic extension of Stateflow has been previously

presented in [2]. However, the extension limits the models to

Continuous-Time Markov Chains (CTMC), i.e., only exponential

CDFs are allowed while SSF models allow general CDFs. Even

thoughmethods have been presented to approximate non-exponential

distributions with Phase-type distributions, i.e., a combination of

exponential distributions, in for example [5], the number of ex-

ponential distributions needed for a good approximation may be

very high, causing the state space to be greatly increased during

the approximation. Furthermore, the methods does not approxi-

mate all probability distributions well, this is especially the case for

distributions with heavy-tails that are not exponentially bounded.

Moreover, in [2] the models are translated to PRISM
3
having its

own semantics different from Stateflow, e.g., non-determinism ex-

ists while Stateflow is deterministic. Finally, the CDFs of SSF models

are specified directly in the Stateflow chart while CDFs of the mod-

els referred to in [2] are specified as Simulink requirements outside

of the Stateflow chart.

7 CONCLUSION
Stateflow is a common tool in industry for modeling systems as

state-transition diagrams. However, Stateflow lacks explicit sup-

port for stochastic properties that are often important for building

accurate models of real-world systems.

As a first contribution, a stochastic extension of a subset of

Stateflow was therefore presented. For these new models, referred

to as SSF models, a complete syntax and semantics were presented.

As a second contribution, SMP-tool was extended with support for

Monte Carlo simulation of SSF models. As the final contribution, a

subsystem of a gearbox from an industrial case study was modeled

as an SSF model and analyzed using SMP-tool.

Future work includes relaxing the restrictions of which SSF mod-

els can be simulated and prove that the simulation follows the

semantics. Future work also includes complementing the Monte-

Carlo simulation in SMP-tool with a numerical transient analysis

of SSF models.

ACKNOWLEDGMENTS
The authors acknowledge the following agencies and projects for

financial support: the European H2020 - ECSEL PRYSTINE project

and Vinnova FFI through the SafeDim project.

REFERENCES
[1] Aditya Agrawal, Gyula Simon, and Gabor Karsai. 2004. Semantic Translation of

Simulink/Stateflow Models to Hybrid Automata Using Graph Transformations.

Electronic Notes in Theoretical Computer Science 109 (2004), 43—-56.

3
https://www.prismmodelchecker.org/

[2] Adrian Beer, Todor Georgiev, Florian Leitner-Fischer, and Stefan Leue. 2013.

Model-Based Quantitative Safety Analysis of Matlab Simulink/Stateflow Models.

In MBEES.
[3] MathWorks Advisory Board. 2020. Control algorithm modeling guidelines us-

ing MATLAB, Simulink, and Stateflow. Technical Report. SRI International.

https://www.mathworks.com/solutions/mab-guidelines.html.
[4] Pontus Boström. 2006. Mode-Automata in Simulink/Stateflow. Technical report.

Turku Centre for Computer Science.

[5] David Roxbee Cox. 1955. A use of complex probabilities in the theory of stochastic

processes. Mathematical Proceedings of the Cambridge Philosophical Society 51(2)

(1955), 313—-319.

[6] Matthias Gudemann and Frank Ortmeier. 2010. A framework for qualitative and

quantitative formal model-based safety analysis. In 2010 IEEE 12th International
Symposium on High Assurance Systems Engineering. IEEE, 132–141.

[7] Grégoire Hamon. 2005. A Denotational Semantics for Stateflow. In Proceedings
of the 5st International Conference On Embedded Software (EMSOFT). ACM press,

New York, NY, 164–172.

[8] Grégoire Hamon and John Rushby. 2007. An Operational Semantics for Stateflow.

International Journal on Software Tools for Technology Transfer (STTT) 9 (2007),
447—-456.

[9] David Harel. 1987. Statecharts: a visual formalism for complex systems. Science
of computer programming 8 (1987), 231—-274.

[10] David N. Jansen. 2003. Extensions of Statecharts with probability, time, and sto-
chastic timing. Ph.D. Dissertation. University of Twente.

[11] Anjali Joshi, Steven P. Miller, Michael Whalen, and Mats P.E. Heimdahl. 2005.

A proposal for model-based safety analysis. In 24th Digital Avionics Systems
Conference, Vol. 2. IEEE, 13–.

[12] Stefan Kaalen, Mattias Nyberg, and Olle Mattsson. 2021. Transient Analysis of

Hierarchical Semi-Markov Process Models with Tool Support in Stateflow. In

Quantitative Evaluation of Systems: 18th International Conference, Proceedings,
Springer Nature , 2021, p. 105-126. Springer nature, 105—-126.

[13] Paula J. Pingree, Erich Mikk, Gerard J. Holzmann, Margaret H. Smith, and Dennis

Dams. 2002. Validation of mission critical software design and implementation us-

ing model checking. In Proceedings of the 21st Digital Avionics Systems Conference
(DASC). IEEE.

[14] Norman Scaife, Christos Sofronis, Paul Caspi, Stavros Tripakis, and Florence

Maraninchi. 2004. Defining and translating a ´´safe” subset of Simulink/Stateflow

into Lustre. In Proceedings of the 4th ACM international conference on Embedded
software (EMSOFT). ACM press, New York, NY, 259—-268.

[15] Ashish Tiwari. 2002. Formal semantics and analysis methods for Simulink State-
flow models. Technical Report. SRI International. http://www.csl.sri.com/-
∼tiwari/stateflow.html.

Inactivate-1:

𝐶 ′ = (S𝐶 \ {𝑠}, 𝑟𝐶 [𝑑 ↦→ 0,∀𝑑 ∈ D𝑠],Φ𝐶)
(𝐶, 𝑠) −−−−−−−−−−→

Inactivate
𝐶 ′

Figure 7: Rule for inactivating a state

Activate-1:

(𝐶,D𝑠) −−−−−−−→
Restart

𝐶 ′′ 𝐶 ′ = (S𝐶′′ ∪ {𝑠}, 𝑟𝐶′′,Φ𝐶′′)

𝐶
𝑠−−−−−−−−→

Activate
𝐶 ′,

Figure 8: Rule for activating a state

Branch-1:

ΦT
𝐶
(𝜏) = (𝑠, 𝑒) · 𝜙 Φ′ =

(
ΦD
𝐶
,ΦT

𝐶
[𝜏 ↦→ 𝜙]

)
𝐶 ′ = (S𝐶 , 𝑟𝐶 ,Φ′)

(𝐶, 𝜏) −−−−−−→
Branch

(𝐶 ′, 𝑠, 𝑒)

Figure 9: Rule for branching in a transition

Session 6: Theory of Performance ICPE ’22, April 9–13, 2022, Bejing, China

221

Trans-1:

source(𝜏) = 𝑠 parent(𝑠) = 𝑠𝑝 (𝐶, 𝜏) −−−−−−→
Branch

(𝐶 ′′, 𝑠 ′, 𝑒) parent(𝑠 ′) = 𝑠 ′𝑝 lca(𝑠, 𝑠 ′) = 𝑠̂ (𝐶 ′′, {𝑠, 𝑠 ′} ∪ children (̂𝑠)) −−−−→
Exit

𝐶 ′′′ 𝐶 ′′′ 𝑒−−−−→
Send

𝐶 ′

𝑝 = lca (̂𝑠, lca(𝑠𝑝 , 𝑠 ′𝑝))
(
𝑝 ∉ S𝐶′

)
∨
(
type(𝑝) = OR ∧ childrenS𝐶′ (𝑝) ≠ ∅

)
∨
(
type(𝑝) = AND ∧ childrenS𝐶′ (𝑝) = children(𝑝)

)
𝐶

𝜏−−−−−→
Trans

𝐶 ′

Trans-2:

source(𝜏) = 𝑠 parent(𝑠) = 𝑠𝑝 (𝐶, 𝜏) −−−−−−→
Branch

(𝐶 ′′, 𝑠 ′, 𝑒) parent(𝑠 ′) = 𝑠 ′𝑝 lca(𝑠, 𝑠 ′) = 𝑠̂ (𝐶 ′′, {𝑠, 𝑠 ′} ∪ children (̂𝑠)) −−−−→
Exit

𝐶 ′′′ 𝐶 ′′′ 𝑒−−−−→
Send

𝐶 ′′′′

𝑝 = lca (̂𝑠, lca(𝑠𝑝 , 𝑠 ′𝑝)) 𝑝 ∈ S𝐶′′′′ type(𝑝) ≠ OR ∨ childrenS𝐶′′′′ (𝑝) = ∅ type(𝑝) ≠ AND ∨ childrenS𝐶′′′′ (𝑝) ≠ children(𝑝) (𝐶 ′′′′, {𝑠 ′}) −−−−−→
Enter

𝐶 ′

𝐶
𝜏−−−−−→

Trans
𝐶 ′

Figure 10: Rules for transitions

Exec-1:

(𝐶, ∅, ∅) 𝑒−−−−→
Exec

𝐶

Exec-2:

𝑄 ≠ ∅ ∃𝑠𝑝 ∈ S . 𝑄 ⊆ childrenS𝐶
(𝑠𝑝) 𝑠 = first(𝑄)

(𝐶, childrenS𝐶
(𝑠),T𝑠)

𝑒−−−−→
Exec

𝐶 ′′ (𝐶 ′′, (𝑄 \ {𝑠}) ∩ S𝐶′′, ∅) 𝑒−−−−→
Exec

𝐶 ′

(𝐶,𝑄, ∅) 𝑒−−−−→
Exec

𝐶 ′

Exec-3:

𝑇 ≠ ∅ ∃𝑠𝑝 ∈ S . 𝑇 ⊆ T𝑠𝑝 𝜏 = first(𝑇)
enabled(𝜏,𝐶, 𝑒) 𝐶

𝜏−−−−−→
Trans

𝐶 ′

(𝐶,𝑄,𝑇) 𝑒−−−−→
Exec

𝐶 ′

Exec-4:

𝑇 ≠ ∅ ∃𝑠𝑝 ∈ S . 𝑇 ⊆ T𝑠𝑝 𝜏 = first(𝑇)
¬enabled(𝜏,𝐶, 𝑒) (𝐶,𝑄,𝑇 \ {𝜏}) 𝑒−−−−→

Exec
𝐶 ′

(𝐶,𝑄,𝑇) 𝑒−−−−→
Exec

𝐶 ′

Exec-5:

(𝐶, childrenS𝐶
(root),Troot)

𝑒−−−−→
Exec

𝐶 ′

𝐶
𝑒−−−−→

Exec
𝐶 ′

Figure 11: Rules for executing an active subtree

Exit-1:

(𝐶, ∅) −−−−→
Exit

𝐶
Exit-2:

𝑄1 ∩𝑄2 = ∅ 𝑄1 ≠ ∅ 𝑄2 ≠ ∅
(𝐶,𝑄1) −−−−→

Exit
𝐶 ′′ (𝐶 ′′, 𝑄2) −−−−→

Exit
𝐶 ′

(𝐶,𝑄1 ∪𝑄2) −−−−→
Exit

𝐶 ′

Exit-3:

(𝐶, 𝑠) −−−−−−−−−−→
Inactivate

𝐶 ′′ (𝐶 ′′, childrenS𝐶′′ (𝑠)) −−−−→
Exit

𝐶 ′

(𝐶, {𝑠}) −−−−→
Exit

𝐶 ′

Figure 12: Rules for exiting a set of states

Restart-1:

(𝐶, ∅) −−−−−−−→
Restart

𝐶

Restart-2:

𝑅1 ∩ 𝑅2 = ∅ 𝑅1 ≠ ∅ 𝑅2 ≠ ∅
(𝐶, 𝑅1) −−−−−−−→

Restart
𝐶 ′′ (𝐶 ′′, 𝑅2) −−−−−−−→

Restart
𝐶 ′

(𝐶, 𝑅1 ∪ 𝑅2) −−−−−−−→
Restart

𝐶 ′

Restart-3:

ΦD
𝐶
(𝑑) = 𝑣 · 𝜙 𝑟 ′ = 𝑟𝐶 [𝑑 ↦→ 𝑣] Φ′ =

(
ΦD
𝐶
[𝑑 ↦→ 𝜙],ΦT

𝐶

)
𝐶 ′ = (S𝐶 , 𝑟 ′,Φ′)

(𝐶, {𝑑}) −−−−−−−→
Restart

𝐶 ′

Figure 13: Rules for restarting timers

Enter-1:

(𝐶, ∅) −−−−−→
Enter

𝐶
Enter-2:

𝑄1 ∩𝑄2 = ∅ 𝑄1 ≠ ∅ 𝑄2 ≠ ∅
(𝐶,𝑄1) −−−−−→

Enter
𝐶 ′′

(𝐶 ′′, 𝑄2) −−−−−→
Enter

𝐶 ′

(𝐶,𝑄1 ∪𝑄2) −−−−−→
Enter

𝐶 ′

Enter-3:

𝑠 ∈ S𝐶
(𝐶, {𝑠}) −−−−−→

Enter
𝐶

Enter-4:

𝑠 ∉ S𝐶 type(𝑠) = BASIC
(𝐶, 𝑠) −−−−−−−−→

Activate
𝐶 ′′

(𝐶 ′′, {parent(𝑠)}) −−−−−→
Enter

𝐶 ′

(𝐶, {𝑠}) −−−−−→
Enter

𝐶 ′

Enter-5:

𝑠 ∉ S𝐶 type(𝑠) = AND 𝑄 = childrenS (𝑠) ∪ {parent(𝑠)}
(𝐶, 𝑠) −−−−−−−−→

Activate
𝐶 ′′ (𝐶 ′′, 𝑄) −−−−−→

Enter
𝐶 ′

(𝐶, {𝑠}) −−−−−→
Enter

𝐶 ′

Enter-6:

𝑠 ∉ S𝐶 type(𝑠) = OR childrenS𝐶
(𝑠) ≠ ∅

(𝐶, 𝑠) −−−−−−−−→
Activate

𝐶 ′′ (𝐶 ′′, {parent(𝑠)}) −−−−−→
Enter

𝐶 ′

(𝐶, {𝑠}) −−−−−→
Enter

𝐶 ′

Enter-7:

𝑠 ∉ S𝐶 type(𝑠) = OR childrenS𝐶
(𝑠) = ∅

(𝐶, 𝑠) −−−−−−−−→
Activate

𝐶 ′′ (𝐶 ′′, {initial(𝑠), parent(𝑠)}) −−−−−→
Enter

𝐶 ′

(𝐶, {𝑠}) −−−−−→
Enter

𝐶 ′

Figure 14: Rules for entering states

Eval-1:

(𝐶,T) ⊢ true
Eval-2:

𝑟𝐶 (𝑑) = 0

(𝐶, after(𝑑)) ⊢ true

Eval-3:

𝑟𝐶 (𝑟) ≠ 0

(𝐶, after(𝑑)) ⊢ false
Eval-4:

𝑠 ∈ S𝐶
(𝐶, in(𝑠)) ⊢ true

Eval-5:

𝑠 ∉ S𝐶
(𝐶, in(𝑠)) ⊢ false

Eval-6:

(𝐶,𝑔1) ⊢ 𝑣1 (𝐶,𝑔2) ⊢ 𝑣2
(𝐶,𝑔1 ∧ 𝑔2) ⊢ 𝑣1 ∧ 𝑣2

Eval-7:

(𝐶,𝑔1) ⊢ 𝑣1 (𝐶,𝑔2) ⊢ 𝑣2
(𝐶,𝑔1 ∨ 𝑔2) ⊢ 𝑣1 ∨ 𝑣2

Eval-8:

(𝐶,𝑔) ⊢ 𝑣
(𝐶,¬𝑔) ⊢ ¬𝑣

Figure 15: Rules for evaluating a guard

Send-1:

𝑒 = ⋄
𝐶

𝑒−−−−→
Send

𝐶

Send-2:

𝑒 ≠ ⋄ 𝐶
𝑒−−−−→

Exec
𝐶 ′

𝐶
𝑒−−−−→

Send
𝐶 ′

Figure 16: Rules for sending an event

Session 6: Theory of Performance ICPE ’22, April 9–13, 2022, Bejing, China

222

	Abstract
	1 Introduction
	2 Syntax of SSF models
	2.1 Abstract syntax
	2.2 Concrete syntax

	3 Semantics of SSF models
	3.1 Informal semantics
	3.2 Formal semantics

	4 SMP-tool
	4.1 Graphical User Interface
	4.2 Simulation

	5 Case study
	5.1 Gearbox wheel lock
	5.2 Modeling
	5.3 Analysis

	6 Related work
	7 Conclusion
	Acknowledgments
	References

 HistoryItem_V1
 AddMaskingTape

 Range: From page 1 to page 1
 Mask co-ordinates: Horizontal, vertical offset 399.78, 740.88 Width 170.14 Height 21.79 points
 Origin: bottom left

 1
 0
 BL

 1
 SubDoc
 1

 CurrentAVDoc

 399.7784 740.8753 170.1363 21.7908

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 0
 12
 0
 1

 1

 HistoryList_V1
 qi2base

