
A Mixed PS-FCFS Policy for CPU Intensive Workloads
Simonetta Balsamo

Andrea Marin

Università Ca’ Foscari Venezia

Venice, Italy

{balsamo,marin}@unive.it

Isi Mitrani

University of Newcastle

Newcastle, United Kingdom

isi.mitrani@newcastle.ac.uk

ABSTRACT
Round robin (RR) is a widely adopted scheduling policy in mod-

ern computer systems. The scheduler handles the concurrency by

alternating the run processes in such a way that they can use the

processor continuously for at most a quantum of time. When the

processor is assigned to another process, a context switch occurs.

Although modern architectures handle context switches quite effi-

ciently, the processes may incur in some indirect costs mainly due

to cache overwriting.

RR is widely appreciated both in case of interactive and CPU

intensive processes. In the latter case, with respect to the First-

Come-First-Served approach (FCFS), RR does not penalise the small

jobs.

In this paper, we study a scheduling policy, namely PS-FCFS, that

fixes a maximum level of parallelism 𝑁 and leaves the remaining

jobs in a FCFS queue. The idea is that of exploiting the advantages

of RR without incurring in heavy slowdowns because of context

switches.

We propose a queueing model for PS-FCFS allowing us to: (i) find

the optimal level of multiprogramming and (ii) study important

properties of this policy such as the mean performance measures

and results about its sensitivity to the moments of the jobs’ service

demands.

CCS CONCEPTS
• Software and its engineering→ Software performance; Sched-
uling; • Mathematics of computing → Queueing theory.

KEYWORDS
Scheduling, Response time optimisation, Queueing systems, Con-

text switch

ACM Reference Format:
Simonetta Balsamo, Andrea Marin, and Isi Mitrani. 2022. A Mixed PS-FCFS

Policy for CPU Intensive Workloads. In Proceedings of the 2022 ACM/SPEC
International Conference on Performance Engineering (ICPE ’22), April 9–13,
2022, Bejing, China. ACM, New York, NY, USA, 12 pages. https://doi.org/10.

1145/3489525.3511678

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

ICPE ’22, April 9–13, 2022, Bejing, China
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-9143-6/22/04. . . $15.00

https://doi.org/10.1145/3489525.3511678

1 INTRODUCTION
Processor sharing (PS) discipline has been widely studied in queue-

ing theory especially motivated by computer science or telecommu-

nication applications. In fact, the well-known round robin discipline

with preemption of modern operating systems is well approximated

by PS. In PS, each job in the queue receives the same amount of

computational power and this approximates the fact that the round

robin with preemption and resume implemented by operating sys-

tems assigns the processor to each of the ready jobs for a certain

time-slice.

However, this approximation neglects the costs of the context

switches. In fact, whenever a process is preempted and another

one is resumed, the operating system must save the state of the

former and restore the state of the latter. This causes what are

known to be the direct costs of context switches and are estimated

in modern architectures between 1 and 10 𝜇𝑠 according to the Intel-

like architectures being considered (see, e.g., [14] and [26]) while,

according to [4], in Linux on ARM architectures it raises to 48 𝜇𝑠 .

For practical situations, direct costs may cause a small reduc-

tion in the performance of real world systems. However, context

switches cause other time costs, namely the indirect costs. These
mainly include the costs due to the sharing of L1-L3 cache systems

among the parallel processes. Notice that, as for the Translation

Lookaside Buffer (TLB) flushing penalties, these have been drasti-

cally reduced by modern processors both of AMD and Intel [18].

The indirect costs depend both on the architecture and on the

application being run [4]. Several works agree on the fact that these

penalties can reach up to few hundreds of microseconds per context

switch [4, 14, 17].

In [9], the authors use SPEC CPU2006 benchmarks to assess the

slowdown of processes for time-slices of 2.5 or 5ms. The measured

slowdown can reach up to 50% for certain applications (hmme) with

the smallest time-slice.

At this point, while it is clear that round-robin is useful for inter-

active processes, it becomes more difficult to say if this is a useful

scheduling in the case of CPU intensive processes. In these cases,

First-Come-First-Served (FCFS) discipline would eliminate almost

entirely direct and indirect costs of context switches. However, it

is well-know from queueing theory that, if the service demands of

jobs (or their length) have a high coefficient of variation, the per-

formance of FCFS in terms of response time can be extremely poor

(see [12] for the results of the M/G/1 queueing system). Intuitively,

this is due to the fact that a small job arriving after a big one has to

wait for the completion of the latter before beginning its service.

For example, an inversion of the order of service would drastically

reduce the response time for the small job with a small penalty for

the big one.

Session 6: Theory of Performance ICPE ’22, April 9–13, 2022, Bejing, China

199

https://doi.org/10.1145/3489525.3511678
https://doi.org/10.1145/3489525.3511678
https://doi.org/10.1145/3489525.3511678

Processor sharing largely solves this problem. It is well-known

that, under a Poisson arrival process, the expected response time

depends only on the average service demand of the incoming jobs

and not on its variance (or higher moments). The𝑀/𝐺/1 and the

𝑀/𝐺/1/𝑃𝑆 queueing systems have the same expected response

time when the service demand of the job has the variance of the

exponential random variable. For higher coefficients of variation,

the PS policy performs better than FCFS.

In the literature, a possible workaround to the penalty of the

round robin is that of modulating the time-slice size dynamically.

However, increasing the time-slice dynamically is in general compli-

cated, and the decision algorithm itself may increase the overhead

of the context switch (see, e.g., [21]). Moreover, longer time-slices

may affect the performance of possible concurrent interactive pro-

cesses and the control of the length is, in general, not possible in

user mode.

In this paper, we propose a different approach to the problem.We

schedule the jobs with amixed discipline of PS and FCFS, i.e., at each

moment at most 𝑁 jobs share the processor and the remaining ones

are queued according to a FCFS policy. Figure 1 shows a graphical

description of this discipline. Notice that the server has a state

dependent speed to account for the slowdown caused by the PS.

The slowdown function can depend on the number of concurrent

jobs being concurrently served by the server. The goal is to enjoy

the benefits of the PS discipline on the concurrent jobs but without

paying a high penalty for the context switching.

Clearly, the new policy is useful only when the jobs’ service

demands have a variance higher than that of the exponential ran-

dom variable, otherwise a plain FCFS would be simpler and would

perform better. However, jobs’ lengths are heavily tailed in practi-

cal situations as reported in many works (see, e.g., [6, 20] and the

references therein).

This policy is not entirely new as it is used by some popular

applications, as e.g., Apache web server. However, in these cases, the

limitation of parallel processes is mainly done to contain the amount

of resources globally used by the application. For example, for what

concerns the memory resource, the objective is not to resort to page

swapping that would lead to a drastic system slowdown.

The case of multi cores can be reduced to that of a single core

by using the load-dependency of the service rate of the queueing

system. However, in many scenarios, the possibility of specifying

the affinity of a job to a core naturally reduces the problem of multi

cores to that of finding the optimal level of concurrency for a single

core [11, Ch. 35].

The research questions are twofold.

(i) One the one side, we aim to develop a model-based optimiza-

tion procedure that allows us to find the optimal value for 𝑁 given

the penalty of the context switches and service demand distribution.

Clearly, if 𝑁 = 1 the PS-FCFS policy corresponds to the simple FCFS

while if𝑁 → ∞we obtain a state dependent PS queue. The PS-FCFS

operates between these two limiting cases and, intuitively, finding

the optimal 𝑁 to minimise the expected response time (or equiva-

lently the average occupancy 𝐿) takes into account that, with FCFS,

the server does not waste time in context switches but small jobs

are penalised, while with a pure PS discipline the context switch

costs negatively affect our goal.

(ii) The second problem that we address is more theoretical. It

is well-known that under independent Poisson arrival process, the

expected response time of the M/G/1/PS depends only on the first

moment of the service demand, while for the FCFS discipline we

must consider the first two moments. Our findings show that, sur-

prisingly, the M/G/1/PS-FCFS queue is sensitive to moments higher

than the second of the service demand. Although this observation

has little practical consequences since, according to our experi-

ments, the differences in the expected response times are small

between distributions with the same first two moments, from a

theoretical perspective we think it is an intriguing result.

The paper is structured as follow. Section 2 describes the motiva-

tions and the applications of the results of this research. In Section 3,

we formally introduce the PS-FCFS discipline and introduce the

modelling assumptions. In Section 4, we show its solution based on

the generating function method. Section 5 discusses the sensitivity

of the disciplines to the moments of the service time distribution.

Section 6 presents some case studies and unveil some insights of the

PS-FCFS discipline. Related work is discussed in Section 7. Finally,

Section 8 concludes the paper.

2 MOTIVATIONS AND APPLICATIONS
Nowadays, parallel computations are extremely important espe-

cially in the domain of high performance computing. Hardware

architectures provide several real or virtual cores each of which

can run several processes or threads. While, in general, increasing

parallelism is a clear advantage until the number of physical cores is

reached (they generally have independent L1 and L2 cache systems

and a very large L3 cache), it is less obvious how many processes

should run for each core.

POSIX threads allow the programmer to specify the multipro-

gramming level for each core and the scheduling discipline that

must be used to handle the parallelism [11, 22]: Round-Robin, First-

Come-First-Served or Other, where the latter is the default one and
uses the default policy of the operating system.

Linux scheduler program is called Completely Fair Scheduler
(CFS) and decides the length of processes/threads’ time-slice based

on a dynamic priority that privileges interactive tasks and on the

total number of processes. It is interesting to see that with higher

number of parallel processes the time-slice is reduced and hence

more context switches per unit of time are performed
1
.

Our queueing model can be used, for example, in these scenarios:

(1) Assume we have a process with a certain (heavy) memory

requirement and whose length is distributed according to a

known distribution. For simplicity, let us ignore the context

switch costs. What is the minimum level of parallelism (i.e.,

what is the minimum amount of memory that is needed) that

we should use to enjoy the benefits of PS in the reduction of

the expected response time?

(2) Assume a scheduling policywhose time-slice becomes smaller

as the number of processes increases (e.g., the CFS). Given

the job size distribution, the slowdown due to a context

switch and the intensity of the workload, what is the opti-

mal multiprogramming level decided considering the trade

off between the reduction of the expected response time

1
https://developer.ibm.com/tutorials/l-completely-fair-scheduler/

Session 6: Theory of Performance ICPE ’22, April 9–13, 2022, Bejing, China

200

https://developer.ibm.com/tutorials/l-completely-fair-scheduler/

FCFS

Pool of N jobs served with PS

Single load dependent server

Job served with PS

Job waiting in the FCFS queue

Figure 1: The FCFS-PS policy

��
��

��
��

- --
Q
Q
Q
Q
Qs

𝜈1
𝜈2

𝑞

1 − 𝑞

Figure 2: Two-phase Coxian distribution

and the penalty due to the context switch costs (direct and

indirect)?

Questions similar to the second one require the estimation of the

direct and indirect costs of context switches. There are several ways

to do this, although the main methodology is the Ousterhout’s

method [19].

The answers to the previous questions depend, in general, on the

traffic intensity. The numerical solution of the models is efficient

and thus can be used for dynamical online configuration of the

optimal maximum multiprogramming level.

3 THE FCFS-PS MODEL
Jobs arrive in a Poisson stream at rate 𝜆 and are served by a single

server with load-dependent speed. The job lengths (measured in

instructions) are i.i.d. random variables with Coxian distribution

with 𝐾 phases. Recall that Coxian distributions can model any

distribution with rational Laplace transform and are dense in the

domain of positive valued distributions.

Phase 𝑖 is distributed exponentially with mean 1/𝜈𝑖 , for 𝑖 =

1, . . . , 𝐾 . Phase 𝑖 + 1 follows phase 𝑖 with probability 𝑞𝑖 . When the

Coxian random variable consists of only 2 stages, we omit the

subscript to 𝑞1. Figure 2 shows an example of Cox-2 r.v..

The job scheduling policy is a combination of Processor-Sharing

(PS) and First-Come-First-Served (FCFS), depending on a threshold

parameter, 𝑁 . That is, the jobs occupying the first 𝑁 positions in

the queue share the processor equally, while the remaining jobs

wait in order of arrival. Incoming jobs join the PS group if they

find fewer than 𝑁 jobs present, otherwise they join the FCFS group.

This policy will be referred to as FCFS-PS and is illustrated in Figure

1.

As previously discussed, the frequent context-switching inherent

in the implementation of the PS discipline imposes a speed penalty

which may depend on the number of jobs sharing, 𝑛. More precisely,

the useful service capacity (measured in user instructions executed

per unit time) is some non-increasing function of 𝑛, 𝑠 (𝑛). For ex-
ample, the service capacity could have the form 𝑠 (𝑛) = 𝑎/(𝑏 + 𝑛),
where 𝑎 and 𝑏 are positive constants. Thus, the processor works at

its lowest service capacity, 𝑠 (𝑁), when there are 𝑁 or more jobs

present.

4 GENERATING FUNCTION SOLUTION FOR
TWO PHASE COXIAN SERVICE DEMAND

In this section, we describe the solution for the case where the

service time is distributed according to a Coxian r.v. with 2 phases.

In Section 5, we consider the more general case of arbitrary number

of phases.

Under this simplifying assumption, the system state is described

by a pair of integers, (𝑛, 𝑖), where𝑛 is the number of jobs present and

𝑖 is the number of jobs which are currently in phase 1 of their execu-

tion. The feasible states are 𝑛 = 0, 1, . . . and 𝑖 = 0, 1, . . . ,min(𝑛, 𝑁).
Since the variable 𝑛 increases and decreases by one job at a time,

the above assumptions imply that (𝑛, 𝑖) is a Markov process of the

Quasi-Birth-and-Death type. That process has a stationary distri-

bution if the offered load (instructions per unit time) is lower than

the lowest service capacity:

𝜆

(
1

𝜈1

+ 𝑞

𝜈2

)
< 𝑠 (𝑁) . (1)

This condition is necessary and sufficient.

When the system is in state (𝑛, 𝑖), with 𝑛 < 𝑁 , a fraction 𝑠 (𝑛)𝑖/𝑛
of the service capacity is allocated to jobs in phase 1, and a fraction

𝑠 (𝑛) (𝑛 − 𝑖)/𝑛 to jobs in phase 2. Hence, the completion rates for

phases 1 and 2 are 𝑠 (𝑛)𝑖𝜈1/𝑛 and 𝑠 (𝑛) (𝑛 − 𝑖)𝜈2/𝑛, respectively. To
simplify the notation, we shall denote the phase 1 and phase 2

completion rates per job by 𝜇1,𝑛 = 𝑠 (𝑛)𝜈1/𝑛 and 𝜇2,𝑛 = 𝑠 (𝑛)𝜈2/𝑛,
respectively. Then the overall phase 1 and phase 2 completion rates

in state (𝑛, 𝑖), for 𝑛 < 𝑁 , can be expressed as 𝑖𝜇1,𝑛 and (𝑛 − 𝑖)𝜇2,𝑛 ,

respectively.

If 𝑛 ≥ 𝑁 , the completion rates cease to depend on 𝑛. We shall

write 𝜇1 = 𝑠 (𝑁)𝜈1/𝑁 and 𝜇2 = 𝑠 (𝑁)𝜈2/𝑁 , so that the overall

phase 1 and phase 2 completion rates in state (𝑛, 𝑖) become 𝑖𝜇1 and

(𝑁 − 𝑖)𝜇2, respectively.

Session 6: Theory of Performance ICPE ’22, April 9–13, 2022, Bejing, China

201

��
��
��
��
��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

6

6666

6

�
�

�
�

�	

�
�

�
�

�	

�
�
�
���

�
�
�
����
�

�
�

�	

� � �

��

� �

�

? ?

????

?

?

6

@
@@R

@
@@R

@
@@R

6

�
�
�
���

�
�
�
��� �

�
�

�
�	

�
�
�
���

�
�

�
�

�	

@
@
@
@@R

@
@
@
@@R

@
@
@
@@R

�
�

�
�

�	

�

�
�
�
���

?

?

? ?

?

(1,0)

(2,0) (2,1)

(3,0) (3,1) (3,2) (3,3)

(4,0)
(4,2) (4,3)

(4,1)

(1,1)

(2,2)

(0,0)

𝜆

𝜆

𝜆𝜆

𝜆

𝜆

𝜆𝜆𝜆𝜆

2𝜇23𝜇2

3𝜇2 2𝜇2
𝜇2

𝜇2

𝜇2,1

2𝜇2,2
𝜇2,2

3𝜇1𝑞
2𝜇1𝑞𝜇1𝑞

2𝜇1𝑞𝜇1𝑞 3𝜇1𝑞

𝜇1𝑞 2𝜇1𝑞 3𝜇1𝑞

𝜇1𝑞 2𝜇1𝑞 3𝜇1𝑞

𝜇1,2𝑞 2𝜇1,2𝑞

𝜇1,1𝑞

𝜇1,1𝑞

2𝜇1,2𝑞𝜇1,2𝑞

Figure 3: State transition diagram for 𝑁 = 3 (𝑞 = 1 − 𝑞)

The transition structure of the Markov process, for the case

𝑁 = 3, is illustrated in Figure 3. Note that the state entered after

a phase 1 completion is (𝑛, 𝑖 − 1) with probability 𝑞 (the job starts

phase 2), and with probability 1 − 𝑞, it is either state (𝑛 − 1, 𝑖 − 1)
(when𝑛 ≤ 𝑁 ; the job departs and there are no waiting jobs), or state

(𝑛 − 1, 𝑖) (when 𝑛 > 𝑁 ; the job departs and is replaced by a waiting

job in phase 1). A phase 2 completion results in state (𝑛− 1, 𝑖) when
𝑛 ≤ 𝑁 , and state (𝑛 − 1, 𝑖 + 1) when 𝑛 > 𝑁 (a waiting job starts

phase 1). A new arrival finding state (𝑛, 𝑖) causes a transition to

state (𝑛 + 1, 𝑖 + 1) if 𝑛 < 𝑁 and to state (𝑛 + 1, 𝑖) if 𝑛 ≥ 𝑁 .

Let 𝜋𝑛,𝑖 be the steady-state probability of state (𝑛, 𝑖). In view

of the transition structure described above, we can write a set of

balance equations for these probabilities. First, when 𝑛 = 0,

𝜆𝜋0,0 = 𝜇1,1 (1 − 𝑞)𝜋1,1 + 𝜇2,1𝜋1,0 . (2)

For 𝑛 = 1, 2, . . . , 𝑁 − 1, the balance equations for 𝑖 = 0, 1, . . . , 𝑛

can be written as

(𝜆 + 𝑖𝜇1,𝑛 + (𝑛 − 𝑖)𝜇2,𝑛)𝜋𝑛,𝑖 = 𝜆𝜋𝑛−1,𝑖−1 + (𝑖 + 1)𝜇1,𝑛𝑞𝜋𝑛,𝑖+1

+ (𝑖 + 1)𝜇1,𝑛+1 (1 − 𝑞)𝜋𝑛+1,𝑖+1 + 𝜇2,𝑛+1 (𝑛 + 1 − 𝑖)𝜋𝑛+1,𝑖 , (3)

where 𝜋𝑛−1,−1 = 0 𝜋𝑛,𝑛+1 = 0 by definition.

The balance equations for 𝑛 = 𝑁 and 𝑖 = 0, 1, . . . , 𝑁 are

(𝜆 + 𝑖𝜇1 + (𝑁 − 𝑖)𝜇2)𝜋𝑁,𝑖 = 𝜆𝜋𝑁−1,𝑖−1 + (𝑖 + 1)𝜇1𝑞𝜋𝑁,𝑖+1

+ 𝑖𝜇1 (1 − 𝑞)𝜋𝑁+1,𝑖 + 𝜇2 (𝑁 − 𝑖)𝜇2𝜋𝑁+1,𝑖−1 ; 𝑖 = 0, 1, . . . , 𝑁 , (4)

where 𝜋𝑁,𝑁+1 = 0 and 𝜋𝑁+1,−1 = 0 by definition.

The balance equations for all states where 𝑛 > 𝑁 have a slightly

different first term in the right-hand side.

(𝜆 + 𝑖𝜇1 + (𝑁 − 𝑖)𝜇2)𝜋𝑛,𝑖 = 𝜆𝜋𝑛−1,𝑖 + (𝑖 + 1)𝜇1𝑞𝜋𝑛,𝑖+1

+ 𝑖𝜇1 (1 − 𝑞)𝜋𝑛+1,𝑖 + 𝜇2 (𝑁 − 𝑖)𝜇2𝜋𝑛+1,𝑖−1 ; 𝑛 > 𝑁, 𝑖 = 0, 1, . . . , 𝑁 .

(5)

Again, 𝜋𝑛,𝑁+1 = 0 and 𝜋𝑛+1,−1 = 0 by definition.

We will solve the infinite set of equations (4) and (5) by trans-

forming them into a finite set involving 𝑁 + 1 generating functions

defined as

𝑔𝑖 (𝑧) =
∞∑
𝑛=𝑁

𝜋𝑛,𝑖𝑧
𝑛−𝑁

; 𝑖 = 0, 1, . . . , 𝑁 . (6)

Consider first the case 𝑖 = 0. Multiplying equations (5) by 𝑧𝑛−𝑁

and adding them to (4) produces the following equation,

[𝜆 + 𝑁𝜇2]𝑔0 (𝑧) = 𝜆𝑧𝑔0 (𝑧) + 𝜇1𝑞𝑔1 (𝑧) , (7)

which we shall rewrite as

𝑎0 (𝑧)𝑔0 (𝑧) − 𝜇1𝑞𝑔1 (𝑧) = 0 , (8)

where

𝑎0 (𝑧) = 𝜆(1 − 𝑧) + 𝑁𝜇2 .

When 𝑖 > 0, the resulting equations involve ‘boundary’ proba-

bilities. Multiplying by 𝑧𝑛−𝑁 and summing yields

[𝜆 + 𝑖𝜇1 + (𝑁 − 𝑖)𝜇2]𝑔𝑖 (𝑧) = 𝜆𝜋𝑁−1,𝑖−1 +𝜆𝑧𝑔𝑖 (𝑧) + (𝑖 + 1)𝜇1𝑞𝑔𝑖+1 (𝑧)

+ 𝑖𝜇1 (1 − 𝑞)
𝑧

[𝑔𝑖 (𝑧) −𝜋𝑁,𝑖] +
(𝑁 − 𝑖 + 1)𝜇2

𝑧
[𝑔𝑖−1 (𝑧) −𝜋𝑁,𝑖−1] , (9)

where the term involving 𝑔𝑖+1 (𝑧) does not exist if 𝑖 = 𝑁 . This

equation can be rewritten, after multiplying both sides by 𝑧 and

rearranging terms, in the form

𝑎𝑖 (𝑧)𝑔𝑖 (𝑧)− (𝑖+1)𝜇1𝑞𝑧𝑔𝑖+1 (𝑧)− (𝑁 −𝑖+1)𝜇2𝑔𝑖−1 (𝑧) = 𝑏𝑖 (𝑧) , (10)
where:

𝑎𝑖 (𝑧) = 𝜆𝑧 (1 − 𝑧) + 𝑖𝜇1 (𝑧 − 1 + 𝑞) + (𝑁 − 𝑖)𝜇2𝑧

for 𝑖 = 1, 2, . . . , 𝑁 and :

𝑏𝑖 (𝑧) = 𝜆𝑧𝜋𝑁−1,𝑖−1 − 𝑖𝜇1 (1 − 𝑞)𝜋𝑁,𝑖 − (𝑁 − 𝑖 + 1)𝜇2𝜋𝑁,𝑖−1

for 𝑖 = 1, 2, . . . , 𝑁 . Again, 𝑔𝑖+1 (𝑧) appears only when 𝑖 < 𝑁 .

The above set of simultaneous equations can be written in matrix

and vector form as follows.

𝐴(𝑧)g(𝑧) = b(𝑧) , (11)

where g(𝑧) is the column vector [𝑔0 (𝑧), 𝑔1 (𝑧), . . . , 𝑔𝑁 (𝑧)], b(𝑧) is
the column vector [0, 𝑏1 (𝑧), . . . , 𝑏𝑁 (𝑧)], and𝐴(𝑧) is the tri-diagonal
matrix

𝑎0 (𝑧) −𝜇1𝑞

−𝑁𝜇2 𝑎1 (𝑧) −2𝜇1𝑞𝑧

−(𝑁 − 1)𝜇2 𝑎2 (𝑧) −3𝜇1𝑞𝑧

. . .

−2𝜇2 𝑎𝑁−1 (𝑧) −𝑁𝜇1𝑞𝑧

−𝜇2 𝑎𝑁 (𝑧)


.

The solution of (11) is given by

𝑔𝑖 (𝑧) =
𝐷𝑖 (𝑧)
𝐷 (𝑧) ; 𝑖 = 0, 1, . . . , 𝑁 , (12)

Session 6: Theory of Performance ICPE ’22, April 9–13, 2022, Bejing, China

202

where𝐷 (𝑧) is the determinant of𝐴(𝑧) and𝐷𝑖 (𝑧) is the determinant

of the matrix obtained from 𝐴(𝑧) by replacing its 𝑖 + 1’st column

with the column vector b(𝑧) (it is customary to number the columns

from 1 to 𝑁 + 1, rather than from 0 to 𝑁).

Thus all generating functions are determined in terms of the

2𝑁 + 1 unknown probabilities that appear in the elements of b(𝑧):
𝜋𝑁−1,𝑖 , for 𝑖 = 0, 1, . . . , 𝑁 − 1 and 𝜋𝑁,𝑖 , for 𝑖 = 0, 1, . . . , 𝑁 . One

relation among these unknowns is obtained by setting 𝑧 = 0 in (8):

(𝜆 + 𝑁𝜇2)𝜋𝑁,0 − 𝜇1𝑞𝜋𝑁,1 = 0 . (13)

This coincides, of course, with (4) for 𝑖 = 0.

Also unknown are the state probabilities that do not appear in

𝑔𝑖 (𝑧): 𝜋𝑛,𝑖 , for 𝑛 = 0, 1, . . . , 𝑁 − 2 and 𝑖 = 0, 1, . . . , 𝑛. This makes

a total of (𝑁 + 1) (𝑁 + 2)/2 unknown constants that need to be

determined.

The balance equations (2) and (3), for 𝑛 = 0, 1, . . . , 𝑁 − 1 and

𝑖 = 0, 1, . . . , 𝑛, form 𝑁 (𝑁 + 1)/2 relations between the unknowns.

These, together with (13), leave us needing a further 𝑁 equations, of

which at least one must be non-homogeneous (i.e., have a non-zero

right-hand side).

A set of 𝑁 −1 additional equations are provided by the following

result.

Lemma. When the stability condition (1) holds, the polynomial
𝐷 (𝑧) has exactly 𝑁 − 1 real and distinct roots, 𝑧1, 𝑧2, . . ., 𝑧𝑁−1, in
the open interval (0,1). There are no other roots in the interior of the
unit disc.

The proof of this Lemma is in the Appendix.

Consider one of the generating functions, say 𝑔0 (𝑧). Since it is
finite on the interval (0,1), the numerator in the right-hand side

of (12), 𝐷0 (𝑧), must vanish at each of the points 𝑧1, 𝑧2, . . ., 𝑧𝑁−1,

yielding 𝑁 − 1 equations. Using a different generating function

would not provide new information.

The final, and only non-homogeneous equation, is the normaliz-

ing condition. All stationary probabilities 𝜋𝑛,𝑖 , for 𝑛 = 0, 1, . . ., and

all feasible 𝑖 , must sum up to 1. This can be written as

𝑁−1∑
𝑛=0

𝑛∑
𝑖=0

𝜋𝑛,𝑖 +
𝑁∑
𝑖=0

𝑔𝑖 (1) = 1 . (14)

The evaluation of 𝑔𝑖 (1), according to (12), is slightly complicated

by the fact that both 𝐷𝑖 (𝑧) and 𝐷 (𝑧) are 0 when 𝑧 = 1. One has to

divide those two polynomials by 𝑧 − 1 before evaluating them at

𝑧 = 1. That division can be carried out explicitly.

Replace the last row of 𝐷 (𝑧) by the sum of all rows; this does

not change its value. All elements of the new last row now have a

common factor 𝑧 − 1, allowing us to write

𝐷 (𝑧) = (𝑧 − 1)�̄� (𝑧) , (15)

where �̄� (𝑧) differs from 𝐷 (𝑧) only in the last row, which is now

the row vector

d(𝑧) = [−𝜆, 𝜇1 + (𝑁 − 1)𝜇2 − 𝜆𝑧, 2𝜇1 (1 − 𝑞) + (𝑁 − 2)𝜇2 − 𝜆𝑧,
. . . , 𝑁 𝜇1 (1 − 𝑞) − 𝜆𝑧] . (16)

A similar operation can be carried out with 𝐷𝑖 (𝑧). Replacing its

last row by the sum of all rows produces a common factor 𝑧 − 1 as

before, except in the case of the 𝑖 + 1’st element, which is the sum

of the elements of vector b(𝑧) appearing in (10). That sum is given

by

𝑁∑
𝑖=1

𝑏𝑖 (𝑧) = 𝜆𝑧
𝑁∑
𝑖=1

𝜋𝑁−1,𝑖−1−
𝑁∑
𝑖=1

[𝑖𝜇1 (1−𝑞)𝜋𝑁,𝑖+(𝑁−𝑖+1)𝜇2𝜋𝑁,𝑖−1] ,

(17)

and can be rewritten as

𝑁∑
𝑖=1

𝑏𝑖 (𝑧) = (𝑧 − 1)𝜆
𝑁∑
𝑖=1

𝜋𝑁−1,𝑖−1 = (𝑧 − 1)𝜆𝜋𝑁−1, · , (18)

where 𝜋𝑁−1, · is the marginal probability that there are 𝑁 − 1 jobs

present. Here we have used the equality

𝜆

𝑁∑
𝑖=1

𝜋𝑁−1,𝑖−1 =

𝑁∑
𝑖=1

[𝑖𝜇1 (1 − 𝑞)𝜋𝑁,𝑖 + (𝑁 − 𝑖 + 1)𝜇2𝜋𝑁,𝑖−1] , (19)

which balances the flow from 𝑁 − 1 to 𝑁 jobs, with the flow from

𝑁 to 𝑁 − 1 jobs.

Thus we can write

𝐷𝑖 (𝑧) = (𝑧 − 1)�̄�𝑖 (𝑧) , (20)

where �̄�𝑖 (𝑧) is 𝐷𝑖 (𝑧) with its last row replaced by d(𝑧), and the

𝑖 + 1’st element of that row replaced by 𝜆𝜋𝑁−1, ·. The values of 𝑔𝑖 (𝑧)
at 𝑧 = 1, in terms of the unknown probabilities, are obtained from

𝑔𝑖 (1) =
�̄�𝑖 (1)
�̄� (1)

; 𝑖 = 0, 1, . . . , 𝑁 , (21)

Having assembled and solved the set of equations determining

the unknown probabilities, we can compute performance measures.

In particular, the average number of jobs in the system, 𝐿, is given

by

𝐿 =

𝑁−1∑
𝑛=1

𝑛

𝑛∑
𝑖=0

𝜋𝑛,𝑖 +
𝑁∑
𝑖=0

[𝑔′𝑖 (1) + 𝑁𝑔𝑖 (1)] , (22)

The derivatives of 𝑔𝑖 (𝑧) at 𝑧 = 1 can be computed by following the

rules for differentiating a determinant. However, a simpler way is

to use the definition of a derivative:

𝑔′𝑖 (1) ≈
𝑔𝑖 (1) − 𝑔𝑖 (1 − 𝛿)

𝛿
; 𝑖 = 0, 1, . . . , 𝑁 , (23)

for some suitably small 𝛿 .

5 SENSITIVITY ANALYSIS
In this section, we study the sensitivity of the expected performance

indices to the moments of the job length distribution. The result

that we show is rather counter intuitive although it mainly rises

interesting theoretical observations rather than practical ones.

First, we recall that the M/G/1/PS queueing system enjoys the

insensitivity property, i.e., the stationary distribution of the number

of jobs in the queue (and hence all the expected stationary perfor-

mance indices) depends only on the first moment of the job length

distribution (see, e.g., [24]).

Conversely, the stationary distribution of the queueing system

M/G/1/FCFS depends on the first two moments of the job length

distribution and the expected response time is negatively affected

by its coefficient of variation as derived by the famous P-K for-

mula [12].

The scheduling discipline that we propose is a combination of

PS and FCFS, hence one may intuitively guess that its expected

Session 6: Theory of Performance ICPE ’22, April 9–13, 2022, Bejing, China

203

performance measures are independent of the moments of the job

length distribution higher than the second. It is very surprising that

this claim is not true.
This observation has theoretical interest but we argue that, for

practical purposes, the analysis relying only on the first two mo-

ments is sufficient for at least two reasons. First, in many practical

cases, the estimation of the moments higher than the second of the

service demands may be difficult and many techniques rely on the

first or on the first two moments (see, e.g., [8, 23] and [25] for an

example of estimation of higher moments). Second, although we

observe a discrepancy between the predicted performance indices

of two distributions that share the first two moments but have

different following ones, these are sufficiently small to make the

use of only the first two moments accurate enough for practical

purposes.

In order to study the sensitivity property of the FCFS-PS sched-

uling discipline, we use a matrix geometric solution based on the

observation that we are considering a QBD process. With respect

to the generating function method, this allows us to study Coxian

distributions with more than two phases. The advantages of the

generating function approach with respect to the QBD are discussed

in Remark 1 at the end of this section.

5.1 Matrix geometric solution
The queueing process described in Section 3 can be seen as a QBD

where ‘levels’ correspond to the number of jobs present in the FCFS

queue.

In this section, we consider arbitrary 𝐾 > 0 stages of service in

the Coxian distribution.

Each level is described by the state of the jobs in service. We

resort to the state representation that counts the number of jobs in

service the are in each Coxian stage (see, e.g., [3]).

The state is described by the vector (𝑛𝐹 , 𝑛1, . . . , 𝑛𝐾) where 𝑛𝐹
is the number of jobs queued in the FCFS buffer, 𝑛𝑖 , 𝑖 = 1, . . . , 𝐾 ,

is the number of jobs in the PS buffer being served at stage 𝑖 . The

first component of this state representation is the level of the QBD.

When 𝑛𝐹 > 0, an arrival with intensity 𝜆 causes a passage from

level 𝑛𝐹 to 𝑛𝐹 + 1, while, if 𝑛𝐹 = 0, the passage of level occurs

only if

∑𝐾
𝑖=1

𝑛𝑖 = 𝑁 , otherwise it causes an increment in the first

component of the PS queue, 𝑛1.

The service at stage 𝑖 in state (𝑛𝐹 , 𝑛1, . . . , 𝑛𝐾) is given at rate

𝜇𝑖𝑠 (𝑛)𝑛𝑖/𝑛, where 𝑛 =
∑𝐾
𝑗=1

𝑛 𝑗 .

When there is at least on job in the FCFS queue, the state of the

PS part is a vector with 𝐾 components that sum to 𝑁 . Thus, the

number of possible states in the PS part when there is at least one

job in the FCFS queue is:

𝐷 =

(
𝑁 + 𝐾 − 1

𝑁

)
.

The infinitesimal generator has the following block-structure:

Q =

©­­­­«
B00 B01 0 0 0 0 · · ·
B10 A1 A2 0 0 0 · · ·
0 A0 A1 A2 0 0 · · ·

. . .
. . .

. . .

ª®®®®¬
. (24)

Blocks A0, A1, A2 have size 𝐷 × 𝐷 and states inside are disposed

in lexicographic order. Block B00 describes level 0 of the QBD, i.e.,

when there is not any job in the FCFS part. The number of PS jobs

present ranges from 0 (the empty queue) to 𝑁 . Taking into account

the possible stage of service of each job, we have that the size of

square matrix B00 is:

𝐷0 =

𝑁∑
𝑗=0

(
𝑗 + 𝐾 − 1

𝑗

)
=
𝑛 + 1

𝑘

(
𝑘 + 𝑛
𝑛 + 1

)
.

The sizes of B01 and B10 are 𝐷 × 𝐷0 and 𝐷0 × 𝐷 , respectively.
Let the rate matrix R be the solution of the equation:

A1 + RA1 + R2A0A−1

1
= 0 ,

that can be numerically derived thanks to the logarithmic reduction

algorithm [13].

Under stability conditions, the spectral radius of R is strictly

lower than 1 and the following relation holds:

𝝅𝑖 = 𝝅𝑖−1R ,

where 𝝅𝑖 denotes the stationary probabilities of the states in level

𝑖 > 1. The solution for levels 0 and 1 are found by solving the

following linear system:

(𝝅0, 𝝅1)
(
B00 B01

B10 A1 + RA0

)
= (0, 0) .

Since this system is homogeneous, it has to be normalised to ensure

that the probabilities sum to 1, and the normalising constant is

given by:

𝛼 = |𝝅0 | + |𝝅1 (I − R)−1 | ,
where I is the identity matrix and | · | is the L1 norm operator.

Once we can compute the stationary distribution of the queue,

we can obtain the expected number of jobs in the system in closed

form. Let 𝜙 (𝝅0) be the expected number of jobs in the systems

when the FCFS part is empty, then:

𝐿 = 𝜙 (𝝅0) + (1 − |𝝅0 |)𝑁 + 𝝅1 (I − R)−2 . (25)

The derivation of Equation (25) follows the standard methods of

matrix geometric analyses.

Remark 1 (Comparison of the solution methods). The gener-
ating function solution, when applicable, is exact and efficient. In the
case of a 2-phase Coxian distribution, it requires the determination of
𝑁 − 1 roots in the interval (0,1) of a polynomial of degree 2𝑁 + 1, and
then a solution of a set of (𝑁 + 1) (𝑁 + 2)/2 linear equations. That
solution could be generalized to more than 2 phases, but the increase
in complexity, due to both higher polynomial degree and larger set of
equations, would be considerable. Moreover, when 𝑁 is large, some of
the roots tend to bunch together, which causes the resulting matrix to
become ill-conditioned. We have observed that, for the 2-phase Coxian,
this happens when 𝑁 is larger than about 20.

The matrix-geometric solution is also, in principle, exact. It requires
the determination of a𝐷×𝐷 matrix 𝑅, and a solution of𝐷0+𝐷 linear
equations. In practice, the computation of 𝑅 is approximate, since
it involves an iterative algorithm. The numerical complexity of that
computation increases quite steeply, not only with𝐷 , but also with the
offered load. On the other hand, the matrix-geometric solution is easier
to generalize to more than two phases. That is why we have adopted
it for the evaluation of systems with 3-phase Coxian distribution.

Session 6: Theory of Performance ICPE ’22, April 9–13, 2022, Bejing, China

204

0 1 2 3 4 5 6
t

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

pd
f

pdf of job length distribution

COX2
COX3

Figure 4: pdfs of COX2 and COX3

5.2 Sensitivity to the moments higher than the
second of the job length distribution

In order to show that the PS-FCFS discipline is sensitive to moments

higher than the second (in contrast with PS and FCFS) we consider

two Coxian distributions and no state dependent service rate, i.e.,

𝑠 (𝑛) = 1 for all 𝑛 > 0.

The first, identified by COX2, consists of two phases and we

have 𝑞1 = 0.2 and 𝜈1 = 2, 𝜈2 = 0.3. The second, identified by

COX3, consists of three phases with 𝑞1 = 8.97159 · 10
−3
, 𝑞2 =

3.6498 · 10
−2

and 𝜈1 = 0.873685, 𝜈2 = 56.656, 𝜈3 = 0.0149258. The

probability density functions (pdfs) are plotted in Figure 4. The

first and seconds moments of COX2 and COX3 are the same, i.e.,

𝐸 [𝐶𝑂𝑋2] = 𝐸 [𝐶𝑂𝑋3] = 1.16667 and 𝐸 [𝐶𝑂𝑋2
2] = 𝐸 [𝐶𝑂𝑋3

2] =

5.6111. However, the other moments are, in general, different, e.g.,

𝐸 [𝐶𝑂𝑋2
3] = 52.8611 and 𝐸 [𝐶𝑂𝑋3

3] = 610.272, 𝐸 [𝐶𝑂𝑋2
4] =

698.315 and 𝐸 [𝐶𝑂𝑋3
4] = 161, 179.

Figure 5 shows the slowdown of the PS-FCFS discipline with

respect to the simple PS. Since the coefficient of variation of the job

size is larger than 1 and the PS is assumed not to give any speed

penalty, obviously a higher parallelism brings benefits to the ex-

pected response time and PS-FCFS cannot have better performance

than the simple PS.

Moreover, we observe that for 𝑁 = 1 (purely FCFS system) and

𝑁 → ∞, COX2 and COX3 have the same slowdown with respect to

PS since their first two moments are the same. The interesting part

is that, when the two disciplines are mixed, they behave differently

with COX3 enjoying slightly quicker that benefits of the combined

discipline.

In moderate and heavy load conditions, the difference in the

slowdown is below 10%.

6 CASE STUDIES
In this section, we propose three case studies. The first one aims

at illustrating how the model can be used to estimate the optimal

multiprogramming level when the penalty of context switches

depends on the number of parallel processes.

The second and the third case studies use data retrieved from the

literature to show two applications of the models. In the case study

of Section 6.2, we assume a system scheduler in which the time

slice is reduced proportionally to the number of ready processes.

This is done to allow interactive processes to be more reactive with

respect to the condition of a fixed time slice.

In the case study of Section 6.3, weworkwith a RR scheduler with

fixed time-slice. With respect to the previous case, the slowdown

due to the the context switches is the same for two or more ready

processes.

6.1 Model driven optimisation of PS-FCFS
The first example is introduced to describe how the queueing model

presented in Section 3 can be used to determine the optimal level

of multiprogramming of the system when the time slice lenght is

inversily proportional to the number of ready concurrent processes.

Recall that, the combined PS-FCFS policy is worth using only

when the coefficient of variation of the job lengths is greater than 1.

Otherwise, a straightforward FCFS policy, i.e. setting the threshold

𝑁 = 1, is best. The question that arises in this connection is “for

a given offered load and (high) cefficient of variation, how should

one set the threshold 𝑁 ?”

To illustrate the optimisation procedure, we chose first an exam-

ple of a 2-phase Coxian distribution where the average job length,

1/𝜈1 +𝑞/𝜈2, is 1. This involves no loss of generality. In this case, we

set 𝜈1 = 2, 𝜈2 = 0.4 and 𝑞 = 0.2. That is, phase 1 accounts for half

of the average job length; phase 2 is 5 times longer but is present

in only a fifth of the jobs. The second moment of the distribution,

and hence the coefficient of variation, is𝑀2 = 3.5.

Suppose, to start with, that the useful service capacity does not

depend on the number of jobs sharing the processor: 𝑠 (𝑛) = 1 for all

𝑛. In Figure 6a, the average number of jobs in the system is plotted

against the threshold 𝑁 , for two different arrival rates, 𝜆 = 0.6 and

𝜆 = 0.8. The results are obtained by applying the exact solution

using the generating functions method.

It is to be expected that each plot should approach a horizontal

asymptote corresponding to the performance of the pure PS policy.

When the offered load is 0.6, that value is 𝐿 = 1.5, while for the 0.8

load it is𝐿 = 4.What is less obvious is how quickly those asymptotes

are approached. Under the moderate load, there is practically no

difference in performance between 𝑁 = 8 and 𝑁 = ∞; even under

the heavier load, it is enough to set 𝑁 = 15 in order to get almost

the full benefit of the PS policy.

Now, consider the effect of speed penalties imposed by context

switching. For the sake of this exposition, we shall assume that the

useful service capacity decreases with the number of jobs sharing

the processor according to function 𝑠 (𝑛) = 30/(29 +𝑛) (similarly to

what is proposed in [10]). In other words, the speed is 1 for 𝑛 = 1,

and it drops by about 25% when 𝑛 = 10.

We can expect a trade-off between the benefits of the PS policy

and the loss of service capacity due to context switching. In general,

there should be an optimal value of 𝑁 . That trade-off is illustrated

in Figure 6b, where 𝐿 is plotted against 𝑁 for an offered load of

0.6, and two different coefficients of variation. One as in the first

example, and one where the second phase is 2 times larger and its

frequency is 2 times smaller: 𝜈2 = 0.2, 𝑞 = 0.1. That increases the

second moment to𝑀2 = 6.

The optimal PS threshold is 𝑁 = 3 when 𝑀2 = 3.5, and 𝑁 = 6

when 𝑀2 = 6. Indeed, the larger the coefficient of variation, the

Session 6: Theory of Performance ICPE ’22, April 9–13, 2022, Bejing, China

205

0 5 10 15 20 25 30
N

1.0

1.2

1.4

1.6

1.8

2.0

E
[R

FC
FS

+
P

S
]/

E
[R

P
S
]

Slowdown of FCFS-PS with COX2 and COX3 with respect to PS ρ = 0.3

COX2
COX3

(a) 𝜌 = 0.3

0 5 10 15 20 25 30
N

1.0

1.2

1.4

1.6

1.8

2.0

E
[R

FC
FS

+
P

S
]/

E
[R

P
S
]

Slowdown of FCFS-PS with COX2 and COX3 with respect to PS ρ = 0.5

COX2
COX3

(b) 𝜌 = 0.5

0 5 10 15 20 25 30
N

1.0

1.2

1.4

1.6

1.8

2.0

E
[R

FC
FS

+
P

S
]/

E
[R

P
S
]

Slowdown of FCFS-PS with COX2 and COX3 with respect to PS ρ = 0.7

COX2
COX3

(c) 𝜌 = 0.7

0 5 10 15 20 25 30
N

1.0

1.2

1.4

1.6

1.8

2.0

E
[R

FC
FS

+
P

S
]/

E
[R

P
S
]

Slowdown of FCFS-PS with COX2 and COX3 with respect to PS ρ = 0.9

COX2
COX3

(d) 𝜌 = 0.9

Figure 5: Slowdown of COX2 and COX3 with respect to PS as function of the number of parallel servers

2 4 6 8 10 12 14
N

0

1

2

3

4

5

6

7

8

L

Occupancy of PS-FCFS

ρ = 0.8
ρ = 0.6

(a) Effect of PS threshold: no speed penalty

2 4 6 8 10 12 14 16
N

0

1

2

3

4

5

L

Occupancy of PS-FCFS

M2 = 6
M2 = 3.5

(b) Effect of PS threshold: decreasing service capacity

Figure 6: Behaviour of PS-FCFS with and without speed penalty

Session 6: Theory of Performance ICPE ’22, April 9–13, 2022, Bejing, China

206

bigger the incentive to use the PS policy. However, there always

comes a point when the decrease in service capacity outweighs the

benefits of PS. Moreover, the heavier the load, the sooner that point

is reached.

6.2 Very heavily-tailed job sizes with scheduler
with dynamic time-slice

In this case study, we use themeasurements taken in [14]. According

to the application type, the indirect costs of the context switches

are evaluated from 2𝜇𝑠 to one millisecond, according to the use of

the cache. We adopt the results obtained from the linear scan of

vectors which is a popular operation performed in many real world

applications, i.e., we fix a context switch (indirect) cost of 500𝜇𝑠 .

More generally, we can give an explicit form of 𝑠 (𝑛) as follows.
To simplify the reasoning, we assume a cache system with only one

level (e.g., consider only L3 cache). We call 𝑛0 is the largest number

of processes that can use the cache without serious trashing effects,

and 𝑛1 the largest number of jobs that fits in the main memory.

Given a fixed time-slice 𝑆 , we have:

𝑠 (𝑛) =


1 if 𝑛 ≤ 𝑛0

𝑆
𝑆+𝑇0

if 𝑛0 < 𝑛 ≤ 𝑛1

𝑆
𝑆+𝑇1

if 𝑛 > 𝑛1

,

where 𝑇0 and 𝑇1 are the costs of restoring one process’ cache or

memory space from the disk, respectively. If 𝑆 = 𝑎/𝑛, then we have:

𝑠 (𝑛) =


1 if 𝑛 ≤ 𝑛0

𝑎
𝑎+𝑛𝑇0

if 𝑛0 < 𝑛 ≤ 𝑛1

𝑎
𝑎+𝑛𝑇1

if 𝑛 > 𝑛1

, (26)

The reasoning can be extended to account for more levels of cache.

Notice that many scheduler implementations have a minimum time-

slice to avoid extremely frequent context switches. However, since

we will see that the optimum number of concurrent processes is

quite small, we can abstract out these details.

Now, assume that 𝑎 = 50𝑚𝑠 , and that we want to avoid swapping

of the main memory by design, (i.e., the level of multiprogramming

will be kept small enough to accommodate all the processes in the

main memory), then we have:

𝑠 (𝑛) = 50000

49500 + 500𝑛
= 1/(0.99 + 0.01𝑛) .

For example, with 10 jobs in the system the speed of service is

approximately 92% of that measured for a single thread.

The job service demand is assumed to follow a bounded Pareto

distribution as widely studied in the literature (see, e.g, [6, 20] and

the references therein) for the jobs processes in Unix workstations.

Coherently with these measurements, we assume 𝛼 = 1.2 and jobs

range from a service demand of 1𝑠 to 10
6
s. Thus, the cdf of service

demand is given by:

𝐹 (𝑥) = 1 − (𝑥𝑚/𝑥)𝛼
1 − (𝑥𝑚/𝑥𝑀)𝛼 , 𝑥𝑚 ≤ 𝑥 ≤ 𝑥𝑀 ,

where 𝑥𝑚 = 1𝑠 , 𝑥𝑀 = 10
6𝑠 and 𝛼 = 1.2. The mean of this distribu-

tion is 𝜇−1 = 5.62s and the coefficient of variation is 54.7263. The

coefficient of variation is much larger than that of the exponential

distribution, so the PS-FCFS discipline is worth of investigation.

0 5 10 15 20 25 30
N

100

101

102

103

104

L

Expected occupancy

ρ = 0.8
ρ = 0.75
ρ = 0.7
ρ = 0.6
ρ = 0.5
ρ = 0.4
ρ = 0.2

Figure 7: Expected number of jobs in the queue with PS-
FCFS policy. The offered load 𝜌 is computed with respect to
the maximum speed of the server, i.e., as if the policy were
FCFS, or 𝑁 = 1. Y-axis is in logarithmic scale

A simple fitting procedure gives the following values for the

COX2 random variable:

𝑞 = 10
−6 , 𝜇1 = 0.185𝑠−1 , 𝜇2 = 4.60 · 10

−6𝑠−1 .

The very heavy tail of the distribution is evident from the low

probability of accessing to the second phase of the Coxian random

variable, and the very slow speed of this phase.

It is worth of notice that simulations of these types of distribu-

tions can be very time consuming since the effect of jobs accessing

the second phase is very important in determining the mean per-

formance indices but, on the other hands, these appear rarely in

the arrival stream. As a consequence, very long simulations may

be required to reach an accurate estimation of the stationary per-

formance indices.

Figure 7 shows the expected number of jobs in the system as

function of the maximum multiprogramming level, 𝑁 for several

load factors. The load factor is computed as:

𝜌 =
𝜆

𝜇 · 𝑠 (1) ,

i.e., 𝜌 is the load factor of the FCFS policy, without considering the

speed penalty.

The plot of Figure 7 shows several important properties of the

PS-FCFS discipline. The first thing that we notice is that for low

intensity workloads (𝜌 = 0.2, 0.3), a low level of multiprogramming,

i.e., 𝑁 ≃ 5, is sufficient to drastically reduce the expected response

time (notice that the y-axis is in logarithmic scale). However, in

these conditions, one may increase the level of multiprogramming

without worrying too much about incurring the penalties of the

context switches and making the PS discipline less efficient.

This is due to the fact that, even for large 𝑁 , the low intensity

workload makes the probability of observing many jobs in the sys-

tem (and hence a strong reduction in the service speed) negligible.

With 𝜌 = 0.7, the model shows that values of 𝑁 between 15 and

25 can be considered practically optimal for the minimization the

Session 6: Theory of Performance ICPE ’22, April 9–13, 2022, Bejing, China

207

expected response time, as it becomes evident from the plateau of

the curve.

The benefits for higher load factors, 𝜌 = 0.75 and 0.8, are lower

than in the previous cases, but still important. The plateau with the

optimal values of 𝑁 becomes much narrower and high values of 𝑁

may bring the queue to instability.

These observations indicate that, in all cases, a relatively small

value of 𝑁 would exploit the advantages of the PS policy. Moreover,

the higher the load, the more important it is not to overestimate

the threshold 𝑁 .

In conclusion, this case study reveals an important insight of

PS-FCFS policy: in practice, the maximum level of multiprogramming
should be low.

Although, theoretically, the optimal value of 𝑁 decreases with

growth of the offered load, in practice in low-load conditions, small

values of 𝑁 are sufficient to enjoy most of the benefits of PS. This

is because, even if we choose larger values for 𝑁 , the small load

factor makes very unlikely the event of observing many parallel

jobs.

Optimal 𝑁 tends to be small even in heavy load. This is due to

the fact that the slowdown due to the context switches becomes

more important on heavy load as a consequence of the non-linearity

of the variation of the expected response time with respect to the

system load factor.

6.3 Fixed time-slice round-robin with memory
limitation

Fixed time-slice RR is still available in Linux and Unix systems once

the scheduling discipline for the process is set to SCHED_RR. This
setting overrides the default policy and in general required admin-

istrator privileges to be set. The time-slice duration for SCHED_RR
processes can be controlled by means of system setting.

In this case study, we assume a fixed time-slice RR and consider

a job size distribution with lower variance than the previous, i.e.:

𝑞 = 10
−4, 𝜇1 = 0.185𝑠−1 , 𝜇2 = 4.651 · 10

−4 .

In this case, we still have 𝜇−1 = 5.62s and the coefficient of variation

is approximately 5.49 > 1. As in the previous case, the context

switch cost is set to 500𝜇𝑠 while the fixed context switch time-slice

is 5𝑚𝑠 . We can derive 𝑠 (𝑛) easily:

𝑠 (𝑛) =
{

1 if 𝑛 = 1

5000/(5000 + 500) = 0.91 if 𝑛 > 1

.

The experiments with different offered load are shown in Figure 8.

Both the plots show the penalty for 𝑁 = 2 that is due to the cache

trashing effect introduced by the RR. Since the context switch cost

does not become more severe as the number of parallel processes

grows, the curves asymptotically tend to the expected occupancy

of a PS queue whose service rate is 91% of the nominal one.

Figure 8a shows that formoderate/highworkloads (up to 𝜌 = 0.7),

a maximum multiprogramming level of 𝑁 = 10 is sufficient to

obtain the benefits of the PS discipline to reduce the expected

response time. Compared to a pure PS policy, PS-FCFS ensures that

the number of concurrent running processes is lower or equal to

𝑁 . For example, if we assume 𝜌 = 0.7, we see in Figure 8a that

𝑁 = 10 is sufficient to drastically improve the expected response

time. Thus, the main memory of the system should be sufficiently

large to accommodate 10 processes. In contrast, if we use a pure

PS scheduling, the probability of having more than 10 processes

is (0.7/0.91)11 ≃ 5.6%
2
. In other words, with the same amount of

memory, we would have a non-negligible probability of observing

page swapping that would drastically reduce the performance of

the computation.

Very high workloads require higher levels of multiprogramming

because the curve approaches the asymptotic line more slowly. This

is depicted in Figure 8b. However, we should consider that a offered

load of 𝜌 = 0.88 implies a load factor perceived by the processor

sharing of 0.88/0.91 ≃ 97%, i.e., we are handling an extreme case.

A final interesting observation regards the non-monotonicity

of expected response time with respect to the maximum multipro-

gramming level 𝑁 . Especially in heavy load, for small value of 𝑁 ,

it may happen that the benefits of PS among the 𝑁 jobs are not suf-

ficient to compensate the penalty of the speed reduction due to the

indirect costs of the context switch. For example, for 𝜌 = 0.88, even

setting 𝑁 = 40 is not sufficient to have a lower expected response

time than the simple FCFS.

7 RELATEDWORK
The cost of the context switch has drawn the attention of many

researchers. From the application perspective, several authors have

investigated the direct and indirect costs of this operation in various

architectures and with various applications (see, e.g., [4, 14, 15])

following the approach described in the seminal work by Ouster-

hout [19].

Modern hardware architecture and the adoption of lightweighted

threads make the direct costs of context switches very small [18].

However, their indirect costs are significant especially for certain

workload types [1, 9].

In the literature, the low-level optimisation procedures that have

been proposed to balance the advantages of the RR policy with

its costs mainly focus on the definition of the appropriate time-

slice (see e.g., [9, 21]). Long time-slices reduce the number of context

switches but, on the other hand, they penalise interactive processes

that may have to wait for the entire line of ready processes.

As a result of these and similar investigations, Linux CFS ap-

plies a combination of dynamic time-slice computation and priority

assignment to handle the context switches.

From a higher level perspective, compilers are being designed to

efficiently handle lightweight context switching in order to reduce

the costs of parallel programming [5].

However, in our work, we study the problem at an even higher

level. In fact, we do not aim to modify the compilers or the oper-

ating system configuration, but to provide a model to support the

software developers in the decision of what is the optimal number

of processes/threads that have to be launched in parallel in the

system in order to minimise the response time or the hardware

costs.

To the best of our knowledge, this is the first work that applies

queueing theory to the problem of optimising the context switches,

and the model that we propose is novel.

2
This can be easily obtained, thanks to the insensitivity property, as the probability

that a M/M/1 has more than 10 jobs in steady-state.

Session 6: Theory of Performance ICPE ’22, April 9–13, 2022, Bejing, China

208

0 5 10 15 20 25 30
N

100

101

102

L

Expected occupancy

ρ = 0.8
ρ = 0.75
ρ = 0.7
ρ = 0.6
ρ = 0.5
ρ = 0.4

(a) Expected number of jobs in the queue with PS-FCFS policy. The
offered load 𝜌 is computed with respect to the maximum speed of
the server, i.e., as if the policy were FCFS, or 𝑁 = 1. Y-axis is in loga-
rithmic scale

0 5 10 15 20 25 30 35 40
N

0

100

200

300

400

L

Expected occupancy

ρ = 0.88
ρ = 0.86
ρ = 0.84
ρ = 0.82

(b) Expected number of jobs in the queue with PS-FCFS policy. The
offered load 𝜌 is computed with respect to the maximum speed of
the server, i.e., as if the policy were FCFS, or 𝑁 = 1. Y-axis is in linear
scale

Figure 8: Behaviour of PS-FCFS with fixed time-slice RR

Mixing of queueing disciplines has been previously studied in the

context of age-based queueing policies (see., e.g., [2, 7, 16] and the

references therein), but, in this work, we do not require to measure

the age of the jobs.

8 CONCLUSION
The trade off between the benefits of the pseudo-parallel execution

of threads and the costs of the context switches that they require

has been known for a long time [19].

In this work, to the best of our knowledge, we provide the first

quantitative model that studies the trade off between the expected

response time reduction given by the PS policy with respect to

FCFS in heavily tailed job sizes, and the slowdown caused by direct

and indirect costs of context switches.

The scheduling discipline that we adopt and study consists in

allowing a maximum multiprogramming level 𝑁 in a RR scheduler

and store the remaining jobs in a FCFS queue.

The model allows the programmer to determine the optimal

value of 𝑁 considering the expected response time and possibly

the costs for the system set up.

Our investigation reveals that in most practical cases, a low

value of 𝑁 (lower than 20) is sufficient to obtain the benefits of the

PS discipline without wasting too much time in context switches

or without requiring huge memory space to accommodate many

parallel processes while avoiding memory swaps.

From the theoretical point of view, it is interesting to note that,

while the M/G/1 and M/G/1/PS queues are sensitive to the first two

and only first moments of the job size distribution, respectively, the

performance of the M/G/1/PS-FCFS queue depends also on further

moments.

However, for practical scenarios, the solution considering only

the first two moments is an excellent approximation of the exact

one, and allows the modeller to obtain an accurate estimation of

the optimal value of 𝑁 in a computationally efficient way.

REFERENCES
[1] A. Agarwal, J. Hennessy, and M. Horowitz. Cache performance of operating

system and multiprogramming workloads. ACM Trans. on Computer Systems,
6(4):393–431, 1988.

[2] M. Akbari-Moghaddam and D. G. Down. SEH: size estimate hedging for single-

server queues. In Proc. of Quantitative Evaluation of Systems (QEST), pages
168–185, 2021.

[3] F. Baskett, K. M. Chandy, R. R. Muntz, and F. G. Palacios. Open, closed, and mixed

networks of queues with different classes of customers. J. of ACM, 22(2):248–260,

1975.

[4] F. M. David, J. C. Carlyle, and R. H. Campbell. Context switch overheads for Linux

on ARM platforms. In Proc. of the USENIX Workshop on Experimental Computer
Science (ExpCS), page 3, 2007.

[5] S. Dolan, S. Muralidharan, and G. David. Compiler support for lightweight

context switching. ACM Trans. on Architecture and Code Optimization, 9(4):1–25,
2013.

[6] M. Harchol-balter and A. B. Downey. Exploting process lifetime distributions for

dynamic load balancing. ACM Trans. on Computer Systems, 15(3):253–285, 1996.
[7] E. Hyytiä and S. Aalto. On round-robin routing with FCFS and LCFS scheduling.

Perform. Evaluation, 97:83–103, 2016.
[8] E. Incerto, A. Napolitano, and M. Trobastone. Learning queuing networks via

linear optimization. In Proc. of ACM/SPEC Int. Conf. on Performance Engineering
(ICPE), pages 51–60, 2021.

[9] N. Jammula, Qureshi M, A. Gavrilovska, and J. Kim. Balancing context switch

penalty and response time with elastic time slicing. In Proc. of Int. Conf. on High
Performance Computing, pages 1–10, 2014.

[10] K. Kant. Introduction to Computer System Performance Evaluation. Mcgraw Hill

Computer Science Series. Mcgraw Hill, 1992.

[11] M. Kerrisk. The Linux programming interface. A Linux and Unix system program-
ming handbook. No Starch Press, 2010.

[12] A. Y. Khintchine. Mathematical theory of a stationary queue. Matematicheskii
Sbornik, 39(4), 1932.

[13] G. Latouche and V. Ramaswami. A logarithmic reduction algorithm for quasi-

birth-death processes. J. of Applied Probability, 30(3):650–674, 1993.
[14] C. Li, C. Ding, and K. Shen. Quantifying the cost of context switch. In Proc. of the

USENIX Workshop on Experimental Computer Science (ExpCS), pages 1–4, 2007.
[15] F. Liu, F. Guo, Y. Solohin, and A. Eker. Characterizing and modeling the behavior

of context switch misses. In Proc. of Int. Conf. on Parallel Architectures and
Compilation Techniques (PACT), pages 91–101, 2008.

[16] A. Marin, S. Rossi, and C. Zen. Size-based scheduling for TCP flows: Implemen-

tation and performance evaluation. Comput. Networks, 183:107574, 2020.
[17] J. C. Mogul and A. Borg. The effect of context switches on cache performance. In

Proc. of the Forth International Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS-IV), pages 75–84, 1991.

[18] G. Neiger, A. Santoni, F. Leung, D. Rodgers, and R. Uhlig. Intel virtualization tech-

nology: Hardware support for efficient processor virtualization. Intel Technology

Session 6: Theory of Performance ICPE ’22, April 9–13, 2022, Bejing, China

209

Journal, 10(3), August, 2006.
[19] J. K. Ousterhout. Why aren’t operating systems getting faster as fast as hardware?

In Proc. of the USENIX Summer Conference, pages 247–256, 1990.
[20] K. Psounis, P. Molinero-Fernandez, B. Prabhakar, and F. Papadopoulos. Systems

with multiple servers under heavy-tailed workloads. Performance Evaluation,
62:456–474, 2005.

[21] G. S. Rao, N. Srinivasu, S. V. N. Srinivasu, and G. R. K. Rao. Dynamic time slice

calculation for round robin process scheduling using NOC. Int. J. of Electrical
and Computer Engineering (IJECE), 5(6):1480–1485, 2015.

[22] K. A. Robbins and S. Robbins. UNIX Systems Programming. Prentice-Hall, 2003.
[23] S. Spinner, G. Casale, F. Brosig, and S. Kounev. Evaluating approaches to resource

demand estimation. Performance Evaluation, (92):51–71, 2015.
[24] P.G. Taylor. Insensitivity in stochastic models. In R. J. Boucherie and N. M.

van Dijk, editors, Queueing Networks: a Fundamental Approach, pages 121–140.
Springer, 2011.

[25] R. Wang, G. Casale, and A. Filieri. Service demand distribution for microservices

using markovian arrival processes. In Proc. of Int. Conf. on Quantitative Evaluation
of Systems (QEST), pages 310–328, 2021.

[26] V. M. Weaver. Linux perf_event features and overhead. In Proc. of FastPath
Workshop, page 7, 2013.

APPENDIX
Proof of Lemma.

Consider the sequence of 𝑁 + 1 polynomials formed by the

principal diagonal minors of the determinant 𝐷 (𝑧). That is, define
𝑄0 (𝑧) = 𝑎0 (𝑧) (27)

𝑄1 (𝑧) = 𝑎1 (𝑧)𝑎0 (𝑧) − 𝜇1𝑞𝑁 𝜇2 (28)

𝑄𝑖 (𝑧) = 𝑎𝑖 (𝑧)𝑄𝑖−1 (𝑧) − 𝑖𝜇1𝑞𝑧 (𝑁 − 𝑖 + 1)𝜇2𝑄𝑖−2 (𝑧) (29)

; 𝑖 = 2, 3, . . . , 𝑁 .

The last polynomial in the sequence,𝑄𝑁 (𝑧), is 𝐷 (𝑧). The following
properties hold.

(1) 𝑄0 (𝑧) > 0 in the interval (0,1).

(2) The degree of 𝑄𝑖 (𝑧) is 2𝑖 + 1, 𝑖 = 0, 1, . . . , 𝑁 .

(3) If 𝑄𝑖−1 (𝑧) = 0 for some 𝑧, then 𝑄𝑖−2 (𝑧) and 𝑄𝑖 (𝑧) have
opposite signs at that point, 𝑖 = 2, 3, . . . , 𝑁 . This follows

from (29).

These properties imply that 𝑄0 (𝑧), 𝑄1 (𝑧), . . ., 𝑄𝑁 (𝑧) is a gen-
eralised Sturm sequence for the polynomial 𝐷 (𝑧). However, we
cannot apply Sturm’s theorem directly, because (a) 𝑄𝑁 (1) = 0, and

(b)𝑄𝑁−1 (𝑧) is not the derivative of𝑄𝑁 (𝑧). Instead, we shall exploit
the properties of the sequence.

Setting 𝑧 = 0 in𝑄𝑖 (𝑧) and using the definitions of 𝑎𝑖 (𝑧) together
with the recurrences (27), (28), (29), shows that 𝑄0 (0) = 𝜆 + 𝑁𝜇2;

𝑄1 (0) = −𝜇1 [𝜆(1 − 𝑞) + 𝑁𝜇2]; 𝑄𝑖 (0) = −𝑖𝜇1 (1 − 𝑞)𝑄𝑖−1 (0), 𝑖 =
2, 3, . . . , 𝑁 . That is, 𝑠𝑖𝑔𝑛[𝑄𝑖 (0)] = (−1)𝑖 , 𝑖 = 0, 1, . . . , 𝑁 .

Similarly, setting 𝑧 = 1 in𝑄𝑖 (𝑧) yields𝑄𝑖 (1) = 𝑁 (𝑁 −1) · · · (𝑁 −
𝑖)𝜇𝑖

2
, for 𝑖 = 0, 1, . . . , 𝑁 . Consequently, 𝑠𝑖𝑔𝑛[𝑄𝑖 (1)] = 1 for 𝑖 =

0, 1, . . . , 𝑁 − 1.

Starting with 𝑄0 (𝑧), which is linear, we note that it is positive

at 𝑧 = 1 and negative at 𝑧 = ∞. Hence, its single root, 𝑧0,1, is

greater than 1. Next, 𝑄1 (𝑧), which is of degree 3, is negative at

𝑧 = 0, positive at 𝑧 = 1, negative at 𝑧 = 𝑧0,1 (according to (28)),

and positive at 𝑧 = ∞. Hence, it has three distinct real roots, 𝑧1,1,

𝑧1,2 and 𝑧1,3, of which the first is between 0 and 1, the second is

between 1 and 𝑧0,1 and the third is between 𝑧0,1 and ∞.

At those three points, the sign of 𝑄2 (𝑧) is (-,-,+), respectively,
according to (29). Hence, the degree 5 polynomial 𝑄2 (𝑧) has a real
root in each of the intervals (0, 𝑧1,1), (𝑧1,1, 1), (1, 𝑧1,2), (𝑧1,2, 𝑧1,3),
(𝑧1,3,∞).

Continuing in this manner, we find that for 𝑖 = 3, 4, . . . , 𝑁 − 1,

the 2𝑖 + 1 zeros of 𝑄𝑖 (𝑧), 𝑧𝑖,1, 𝑧𝑖,2, . . ., 𝑧𝑖,2𝑖+1, are real and distinct;

the first 𝑖 of them lie in the consecutive intervals between points

0, 𝑧𝑖−1,1, 𝑧𝑖−1,2, . . ., 𝑧𝑖−1,𝑖−1, 1; the other 𝑖 + 1 are in the intervals

between points 1, 𝑧𝑖−1,𝑖 , 𝑧𝑖−1,𝑖+1, . . ., 𝑧𝑖−1,2𝑖−1) , ∞. Moreover, the

sign of 𝑄𝑖+1 (𝑧) at point 𝑧𝑖,𝑠 is (−1)𝑖+𝑠+1
for 𝑠 = 1, 2, . . . , 𝑖 , and

(−1)𝑠−𝑖 for 𝑠 = 𝑖 + 1, 𝑖 + 2, . . . , 2𝑖 + 1.

The final polynomial, 𝑄𝑁 (𝑧) = 𝐷 (𝑧), of degree 2𝑁 + 1, has a

root in each of the consecutive intervals between points 0, 𝑧𝑁−1,1,

𝑧𝑁−1,2, . . ., 𝑧𝑁−1,𝑁−1; it is negative at 𝑧𝑁−1,𝑁−1 and is 0 at 𝑧 = 1.

The positions of the other 𝑁 + 1 roots depend on the value of the

derivative 𝐷 ′(1). If it is positive, then for some sufficiently small

𝜀, 𝐷 (1 − 𝜀) < 0 and 𝐷 (1 + 𝜀) > 0; in that case, the other 𝑁 + 1

roots are in the consecutive intervals between points 1 + 𝜀, 𝑧𝑁−1,𝑁 ,

𝑧𝑁−1,𝑁+1, . . ., 𝑧𝑁−1,2𝑁−1,∞. If, on the other hand, 𝐷 ′(1) < 0, then

for some sufficiently small 𝜀, 𝐷 (1 − 𝜀) > 0 and 𝐷 (1 + 𝜀) < 0; that

would mean that there is an extra, 𝑁 ’th root in the interval (0,1)

and only 𝑁 roots greater than 1.

According to (15), we have 𝐷 ′(1) = �̄� (1). That quantity can be

obtained in closed form by performing he following steps: add the

first row of �̄� (1) to the second, the resulting second row to the

third, . . ., the 𝑁 − 1st to the 𝑁 th; add rows 2, 3, . . . , 𝑁 and subtract

them from row 𝑁 + 1. This leads to the expression

�̄� (1) =

�������������

𝑁𝜇2 −𝜇1𝑞

0 (𝑁 − 1)𝜇2 −2𝜇1𝑞

0 (𝑁 − 2)𝜇2 −3𝜇1𝑞

. . .
. . .

𝜇2 −𝑁𝜇1𝑞

−𝜆 𝜇1 − 𝜆 2𝜇1 − 𝜆 𝑁 𝜇1 − 𝜆

�������������
.

(30)

Expanding this determinant along the elements of the last row

yields, with a little manipulation,

�̄� (1) = 𝐷 ′(1) = 𝑁 !(𝜇1𝑞 + 𝜇2)𝑁−1 [𝑁𝜇1𝜇2 − 𝜆(𝜇1𝑞 + 𝜇2)] . (31)

The term in square brackets in the right-side of (31) is positive

exactly when the stability condition (1) is satisfied. Therefore, under

that condition,𝐷 (𝑧) has𝑁 −1 distinct real roots in the open interval

(0,1), and no other roots in the interior of he unit disc. The Lemma

is established and a normalizeable solution to the balance equations

exists.

Session 6: Theory of Performance ICPE ’22, April 9–13, 2022, Bejing, China

210

	Abstract
	1 Introduction
	2 Motivations and applications
	3 The FCFS-PS model
	4 Generating function solution for two phase Coxian service demand
	5 Sensitivity analysis
	5.1 Matrix geometric solution
	5.2 Sensitivity to the moments higher than the second of the job length distribution

	6 Case studies
	6.1 Model driven optimisation of PS-FCFS
	6.2 Very heavily-tailed job sizes with scheduler with dynamic time-slice
	6.3 Fixed time-slice round-robin with memory limitation

	7 Related work
	8 Conclusion
	References

