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ABSTRACT
The High-Level Synthesis (HLS) tools aid in simplified and faster
design development without familiarity with Hardware Descrip-
tion Language (HDL) and Register Transfer Logic (RTL) design
flow. However, it is not straight forward to associate every line of
source code to a clock-cycle of synthesized hardware design. On
the other hand, the traditional RTL-based design development flow
provides the fine-grained performance profile through waveforms.
With the same level of visibility in HLS designs, the designers can
identify the performance-bottlenecks and obtain the target perfor-
mance by iteratively fine-tuning the source code. Although, the
HLS development tools provide the low-level waveforms, inter-
preting them in terms of source code variables is a challenging
and tedious task. Addressing this gap, we propose an automated
profiler tool, HLS_Profiler, that provides performance profile of
source code in a cycle-accurate manner. The HLS_Profiler tool is
non-intrusive and collectively uses the ⟨static analysis, dynamic
trace⟩ of the source code to present the performance profile report
to attribute latent clock cycles to each line of source code. Addition-
ally, we developed a set of associative rules to maintain correctness
in performance profile of the HLS design. To verify correctness,
we demonstrate the HLS_Profiler tool on MachSuite Benchmarks
and an industry-grade recommendation application. The proposed
HLS_Profiler framework provides visibility into the cycle-by-cycle
hardware execution of source-code and aids the designer in making
performance-centric decisions.

CCS CONCEPTS
• Hardware → Software tools for EDA; Board- and system-
level test; • Computing methodologies→Model verification
and validation; • General and reference → Evaluation.
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1 INTRODUCTION
Performance profilers are software development tools designed to
assist in performance analysis of applications and improve poorly
performing sections of code. They provide measurements on time-
taken by a routine to execute, proportion of total time spent on it,
its parent routine etc. These practices are quite common in soft-
ware paradigm as matured profiling tools are available. However,
it is not the case in hardware development, mainly FPGAs (Field
Programmable Gate Arrays).

FPGAs are becoming a popular choice as an application accel-
erator due to its support for deep pipelines as well as low latency
realisations. The datapath based design in FPGAs is favourable
to performance sensitive applications. The traditional hardware
development encompasses coding the design in Hardware Descrip-
tion Languages (HDLs), such as Verilog and VHDL, and define the
Register Transfer Logic (RTL) datapath from input to output and
achieve the desired functionality. A recent approach for hardware
design development is through High Level Synthesis (HLS) tools
[7, 17]. With HLS, the design development productivity improves as
it supports high-level languages (C/C++) and the process of creating
HDL description, defining RTL datapath, operation scheduling etc.
are abstracted away from the developer. The HLS development flow
includes HLS compiler for generating HDL description of source
code and include co-simulation for cycle-accurate functional anal-
ysis as shown in Fig. 1. It should be noted that HLS development
requires an additional step of implementation to generate the FPGA
executable.

Although the HLS development flow provides a simplified, faster
and highly abstracted way for hardware design developments, of-
ten, better parallel or pipelined algorithms may be designed which
are better suited to the FPGA architecture [1]. The special directives
(e.g. #pragma in Xilinx HLS tools[17]) available in HLS tools help in
design space exploration to improve the design micro-architecture
and FPGA hardware matching, but their efficient use depends on
the programming abilities and experience of the developer. How-
ever, as is the case in software design, the performance profile of
hardware design can help identify the performance bottlenecks and
aid the developer in fine-tuning the design performance. Vivado
HLS [17] and Intel HLS [7] are popular HLS tools used in industry.
These HLS tools provide the overall latency of the source code
along with the cycle-count at the loop or sub-function level but
the cycle accounting for every line of source code is not available.
Though, it is possible to relate the synthesized HDL to clock cycles
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Figure 1: Representative Diagram of Profiling flow for HLS-
based FPGA design.

through waveforms, but associating the source code statements
to the sythesized HDL is not straight-forward, since a single C
statement can be expressed as multiple HDL signals triggering one
another while being spread across multiple clock cycles.

The missing correspondence between source-code and perfor-
mance information can be addressed by line-by-line profiling. This
concept is not new and is available in software through tools like
gprof [5]. The profilers can outline how much time has been spent
in each line of code. However, this information is difficult to obtain
for highly-parallel superscalar-like architectures. Additionally, it
is normal for one line of source code to translate into many lines
of assembly instructions, that can be scheduled with out of order
parallelism. Depending on the ISA scheduling, it is possible that
more than one line of code are executing in a single clock cycle. For
brevity, the authors do not discuss the profiling principles adopted
by gprof. [13, 18, 19] indicates that profiling tools are intrusive in na-
ture and often introduce performance overheads. This is because of
the additional profiling instructions that are added in the compiled
application code to collect the required data. Apart from profiling
tools, use of ‘print’ statements in software is a commonmethod used
to collect profile data. On hardware platforms like FPGA, HLS_Print
framework [14] can be used to derive profiling information. Simi-
lar to other profiling framework, HLS_Print is intrusive in nature
and introduces additional circuitry in the application. Moreover, it
requires the time-consuming implementation followed by program-
ming the FPGA and application test on hardware. On hardware
platforms like FPGA, this is a step can be avoided since cycle accu-
rate simulators are available. The design signal waveforms can be
viewed in the simulator to estimate the profile of the application.
The signals are part of the RTL design that is generated by the
HLS compiler. However, these signals are not easily relatable to the
HLS source code. This problem does not arise with applications
implemented directly in RTL since the developer decides the design
flow and appropriates operations based on his/her understanding
of data dependencies. This is not the case in HLS since the RTL
design is compiler generated with little direct correspondence to
source code. However, if RTL signals could be traced back to the
source code, it would have been possible to profile an HLS based
application using RTL simulations without design implementation
and actual application run.

Non-intrusive software simulators like Marssx86 [8] can simu-
late a software execution on a processor on a cycle-by-cycle basis
on an x86 processor. However, they are known to execute slowly as

Figure 2: FPGA Internal Resources.

they add virtualization layer between the application and processor
hardware. This makes such software simulators impractical for
industry deployment, but finds some utility in the research commu-
nity working on new processor hardware designs. However, in the
area of hardware design, simulation is part of standard industry
process. The HLS_Profiler uses RTL signal waveforms dumped by
the simulator to profile HLS designs.

To support profiling in HLS-based designs, we developed HLS_
Profiler framework, an automated and non-intrusive performance
profiling tool that provides a cycle-by-cycle association to every
line of source code (SC) for the entire application execution time.
The HLS_Profiler based approach for profiling collects waveforms,
source code and HDL files from HLS developement flow and trans-
lates it to profiling information as shown in Fig. 1. Profiler frame-
work is based on static analysis and dynamic trace, available from
the HLS compilers, that is used along with associative rules to gen-
erate cycle-accurate profiles. The framework is built and tested on
Xilinx HLS development tool.

We summarize the contributions of this work as follows:
• An automated and non-intrusive performance profiling tool,
HLS_Profiler, for HLS based application.

• Showcase clock-wise variation of source code variables with
its value and line numbers enabling fine-grained visibility.

• Developed associative rules for accurate performance re-
ports.

• Bottleneck identification and elimination on an industrial
application on session-based recommendation.

• Functional verification of the framework onMachSuite Bench-
marks.

The rest of the paper is organised as follows. The HLS devel-
opment flow preliminaries are discussed in Section 2 followed by
proposed HLS_Profiler framework is discussed in 3. This section
includes details on HLS_profiler algorithm and associative rules.
Section 4 presents evaluation of HLS_profiler on Machsuite bench-
marks and industrial application of recommendation system. Fol-
lowing this, Section 5 and Section 6 presents the related work and
limitation of this work, respectively. Conclusion and future work
are presented in Section 7.

2 PRELIMINARIES
In this section, we present a brief discussion on profiling and HLS
development flow concepts.
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1 void f unc_ foo ( in t A, in t C) / / C
p a s s e d as 7 from main

2 {
3 in t B=6 , i = 0 ;
4 A=B+C ;
5 while ( i <2 )
6 {
7 C=C++; i ++ ;
8 }
9 }

Figure 3: Sample Program (a) HLS code with its (b) synthesized RTL Design and, (c) State machine diagram.

2.1 Source code Profiling
Code profiling entails dynamic program analysis that captures code
execution statistics including space (memory) or time complexity,
frequency and duration of function calls etc. The profiling infor-
mation aids in program optimization and is commonly achieved
by instrumenting either the program source code or its binary exe-
cutable form using profiler tools. The output of the profiler can be a
statistical summary of the code with profiling data (for example #of
times a line of code is executed) annotated against the source code.
On the other hand, performance issues in parallel programs often
depend on the time relationship of events and thus require a full
trace of code execution. Profilers work on the principle of sampling
and instrumentation where the former supports low-profiling gran-
ularity as compared to the latter. A sampling profiler probes the
program call stack at regular intervals using interrupts. Sampling
profiles are less numerically accurate and specific, but allow the
target program to run at near full speed. Instrumentation technique
effectively adds instructions to the target program to collect the
profiling information. However, code instrumenting can cause per-
formance changes, and may in some cases lead to inaccurate results.
The instrumentation can be added manually or automatically at
the source-code, intermediate-code or compiled executable level.

2.2 FPGA Resources and Datacenter Ecosystem
Modern FPGAs are offering competitive performance, low latency,
sophisticated networking, high-memory bandwidth and the capabil-
ity to support heterogeneous compute. Owing to these advantages,
FPGAs have entered the datacenter space with CPUs and are in-
creasingly supporting complex algorithms on its own or through
hybrid systems. The FPGA device, memories (on-chip and offchip),
network components (QSFP) etc. form an FPGA sub-system that
interacts with CPUs and peripherals. The FPGA device is the pro-
grammable silicon that realizes the desired functionality. Internally,
there exist a matrix of logic blocks (Look-up table (LUT) arrays,
Block RAMs, DSP, Flip-flops (FFs), Multiplexers) connected through
programmable interconnects and I/Os (see Fig. 2). The LUTs mimic
logic gate combinations and the FFs are used as a form of storage.
DSP (Digital Signal Processor) slices are used to implement sig-
nal processing functions. The Block RAMs (BRAMs) are embedded
memory elements to provide on-chip storage for a set of data. Other
memories include, High Bandwidth memory (HBM) and DDR that
provide storage for large data and has high-bandwidth for low la-
tency memory accesses. For instance, Alveo U280[16] offers 8GB of

HBM and up to 460 GB/s bandwidth to provide high-performance
and adaptable acceleration.

2.3 HLS Synthesis
In general, hardware design developers express the design task as
sub-tasks and every sub-task is implemented as a module. There-
fore, the overall design task contains a hierarchy of modules and
module interconnection is defined through RTL datapath. Figure
3(a) and 3(b) represent a sample C code and its HLS generated
RTL datapath. As part of HLS Synthesis, the HLS compiler con-
verts application source code developed in high-level language to
low-level HDL implementation and it does so mainly by following
three steps. 1) Scheduling 2) Binding, and 3) Control extraction [15].
The logic operations are distributed through the clock cycles in
scheduling and the number of such operations depends on the clock
frequency, optimization directives and FPGA technology library.
Binding assigns hardware resources for carrying out the logic op-
eration which are scheduled using a state machine by the control
extraction step. The state transitions shown in Fig. 3(c) captures the
operation scheduling for code in 3(a). The three states represents
idle, ‘a’ update and ‘c’ update operations triggered by events (Event’
1-4).

2.4 Static Analysis Reports
In addition to the low-level RTL implementation, the HLS compiler
generates a synthesis report and Design Analysis Report (DAR)
during synthesis. The synthesis report contains a summary of im-
plemented design and presents the % of FPGA resource used, the
overall latency and design violations. The design datapath, its state
transitions, event scheduling and resource binding is captured in
the design analysis report (DAR). Collectively, the synthesis report
and DAR constitute the static analysis of the design. This is because
the design aspects captured by these reports do not change during
execution.

2.5 C/RTL Co-Simulation
C/RTL co-simulation uses the C test bench to automatically verify
the RTL design. The HLS compiler generates the input test vec-
tors based on the C test bench and use them for RTL simulation
of the synthesized RTL. The RTL simulation output is stored as
output vectors that are verified for correctness by the C test bench.
The designer can review the waveform (see Fig. 4) from C/RTL co-
simulation using the Wave Viewer to analyse the temporal changes
of design RTL signals. The temporal changes of RTL signals can also
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Figure 4:Waveformpresenting temporal changes inRTL sig-
nals of sample function: func_foo.

Table 1: VCD dump for sample program: func_foo

CC# ap_rst A C_o ap_start ap_done ap_idle
1 1 6 X 0 0 1
2 0 6 X 0 0 1
3 0 6 X 1 0 0
4 0 6 X 1 0 0
5 0 13 X 1 0 0
6 0 X 7 1 0 0
7 0 X 7 1 0 0
8 0 8 7 1 0 0
9 0 X 8 1 0 0
10 0 X 8 1 0 0
11 0 9 8 1 0 0
12 0 9 9 1 1 0

be captured in form of VCD (Value Change Dump) report. The VCD
report contains the value of RTL signals at every time-stamps for
entire simulation duration. The C/RTL Co-simulation denotes the
dynamic behaviour of the design and depends on run-time value of
the design variables. The VCD table for func_foo program is shown
in Table 1. The table indicates cycle-by-cycle changes of RTL design
signals (A, C_o) and handshake signals (ap_rst, ap_start, ap_done
and ap_idle). The function execution start at clock cycle (CC)# 3
when ap_start is asserted and finishes at CC# 12 with ap_done = ‘1’.
The design signal A takes value B+C (= 13) at CC# 5. C_o increments
are seen through CC# 9-12. It is interesting to note, that A changes
value in CC# 8 and 11 as well. However, the functional correctness
is maintained by its valid signal, A_ap_vld. The A value is valid only
when A_ap_vld is ‘HIGH’. Thus, A transitions are CC# 8 and 11 are
invalid. The ap_rst and ap_idle indicates reset and idle conditions,
respectively, of function.
Abbreviations used throughout this paper:CC- clock cycle, SC-
source code, SC_Ln#- Source code line number, SC_var- variable
in source code, VCD- Value Change Dump, SII- Static Information
Interpreter, DTI- Dynamic Trace Interpreter, RTL- register transfer
logic, HDL- hardware description language, ASC_tab- Association
table, DAR- Design Analysis Report.

3 HLS_PROFILER: FRAMEWORK
The HLS compiler generates the RTL equivalent of the C source
code and represent the source code variable and RTL signal asso-
ciation in the form of static information. The dynamic behaviour
captured in form of RTL waveforms do not exhibit direct relation
to C source code variables. This disconnect observed in the HLS

Figure 5: Representative diagram of HLS_Profiler Frame-
work.

development tools acts as a deterrent to performance fine-tuning of
HLS designs. In our approach, we associate every line of C-source
code (SC_Ln#) to a clock cycle (CC) through our profiling frame-
work, called HLS_Profiler. The HLS_Profiler framework (shown in
Fig. 5) uses reports generated by the HLS compiler during synthesis
and co-simulation, and present a fine-grained performance profile
of designs developed using HLS development tools. In addition to
HLS compiler generated reports, the HLS_Profiler makes use of
associative rules to suppress invalid transitions that were otherwise
getting captured in the performance profile.

Figure 6 contains a sample application code. The source code
has a function (func_A) with three variables, a, b and c, among
them a and c updates their value during function execution. The
HLS compiler generates the RTL architecture for this source code
during synthesis. The performance profile shown in Fig. 6 reports
temporal changes in the RTL signals for design execution time 40𝜇s
(or 4 CC) when the design operates at 100 MHz. For representation
purpose, we have shown only those RTL signals that are changing
their value while code execution i.e. signals a and c with their Line #.
The summary profiling information presented in tabular format in
Fig. 6 indicates the SC Ln# active at every clock cycle and abstracts
away the SC value related details. This table can also be represented
in such a way another way such that there is only one row per
source code line with the number of clock cycles it appeared in
shown against it. This can be easily simplified with the second
column representing the % contribution to the overall run time.
However this simplification will not be detailed in this paper, due
to lack of space. The state machine for func_A source contains three
states and is shown in Fig. 7. State #1 includes reading a. State# 2
computes the updated values for a and c followed bywrite operation
of updated variables. The state transition is triggered by events and
contains dependence and condition checks. Event’1 is a condition
check for loop exit in this case. The change of RTL signal value in a
certain clock cycle is connected to its equivalent line of source code
being executed. Extraction of this connection and determination
of whether the corresponding SC_Ln# is active/inactive forms the
basis of the HLS_Profiler algorithm.

3.1 Performance Tuning using HLS_Profiler:
User View

Developer can tune the performance of the design usingHLS_Profiler
following simple steps as listed below:

1. Inputs: Source code, Test Bench, Synthesis Frequency and
Top Function Name.
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1 void func_A ( in t c )
2 {
3 in t a =5 ; b =10 ; i = 0 ;
4 while ( i <2 )
5 {
6 c = a^2 + b ;
7 a = c ;
8 i ++ ;
9 }
10 }

Performance Profile
Time CC# SC Ln# SC Var Sig_Val
0 0 - a 5
0 0 - b 10
0 0 - c 0
0 0 - i 0
10 1 6 c 35
20 2 7 a 35
20 2 8 i 1
30 3 6 c 1235
40 4 7 a 1235
40 4 8 i 2

Summary
CC# SC Ln#
1 6
2 7,8
3 6
4 7,8

Figure 6: HLS_Profiler framework sample input and output.

Figure 7: State machine for func_A source code

2. Run the HLS_Profiler script.
3. Performance profile of the source code is available in a text

file.
4. Identify, optimize bottleneck and update source code with

appropriate pragma directive.
5. Repeat Steps 2-4 till performance target is met.

The HLS_Profiler framework takes the C source code, C test bench,
synthesis frequency and top function name as user inputs. These in-
puts are processed by the HLS_Profiler script to generate the Source
code Performance Profile. As part of the automation, HLS_Profiler
creates an HLS project followed by synthesis and co-simulation
using the HLS compiler and user inputs. The framework collates
the HLS compiler generated static and dynamic information to pro-
vide the performance profile for the all the design execution clock
cycles.

3.2 HLS_Profiler Algorithm
The HLS_Profiler framework defines associations between line of
code and clock cycle. Additionally, it highlights the source code
variable and its value at every clock. We present the algorithm for
defining the aforementioned associations in this section. The Pro-
filer algorithm uses static and dynamic information made available
by the HLS compiler along with special associative rules to establish
accurate SC-CC mapping. The HLS_profiler flow diagram is shown
in Fig. 8. The algorithm takes design source code, compiled RTL
files, waveforms and synthesis report as inputs. The latter three
inputs are generated using HLS compiler. The synthesis report con-
tains state transitions, state-wise operations, its concise name and
SC_vars in raw form. Concise name is a representative name for
RTL/SC signals used in DAR report.

The outputs created by various blocks in HLS_Profiler frame-
work is shown in Fig. 9 and linked by number correspondences to
Fig. 8. We pre-process this information and express it in form of
data structure (pp_DAR). The operations further contain its type,
(out) operands, predicate and SC_Ln#. Processed DAR is used to
extract the static information for the RTL signals in the Static In-
formation Interpreter(SII) block discussed in sec. 3.2.1. SII block
creates association table that contains # of state, state-wise active
RTL signals with their SC variables and SC Ln#. The association ta-
ble (ASC_tab) and VCD data are used by Dynamic Trace Interpreter
(DTI) block. DTI performs necessary checks on the VCD temporal
information to retain only valid RTL signals into the performance
profile. We developed associative rules to address shortcomings of
SII+DTI-alone approach. These blocks are discussed in detail in the
following sections.

Algorithm 1 Static Information Interpreter
1: Inputs: DAR report
2: pp_DAR = pre-process(DAR)
3: for i in len(pp_DAR.state) do
4: state = pp_DAR.state[i].read();
5: for j in len(pp_dar.state[i].op_st) do
6: Record op_st[j].out, op_st[j].predicate, op_st[j].SC_Ln#
7: //STEP I: Create RTL-SC_Ln# table
8: Identify RTL_var for op_st[j].out in pp_dar.RTL_var
9: //STEP II: Create Concise name-SC_var table
10: Identify SC_var for op_st[j].out in pp_dar.sc_var
11: RTL-SC_Ln#.insert({op_st[j].out,RTL_var,op_st[j].predicate,op_st[j].SC_Ln#})

12: concise-SC_var#.write() = {op_st[j].out,SC_var};
13: end for
14: end for
15: ASC_tab = join (RTL-SC_Ln#, concise-SC_var) on op_st.out

3.2.1 Static Information Interpreter (SII) Block. The synthesized
RTL and source code linkages that do not change with the code
execution or dynamic run are considered static correspondences.
The Profiler algorithm uses Static Information Interpreter(SII) block
to identify these correspondence. SII block takes processed DAR as
input and generates an association table (ASC_tab: structure shown
in Fig. 9). The ASC_table is obtained from Algorithm 1 in two-steps.
In the first step, the RTL-SC Ln# mapping is created (Ln# 7-8 in
Algorithm 1) followed by concise-SC_variable association (Ln# 10
in Algorithm 1) in the second step. The DAR contains the # of states,
state-wise distribution of operations with its operands, and RTL-SC
association. The states control the design execution and a group of
data-independent operations can be clubbed in a single state. These
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Figure 8: The HLS_profiler Algorithm block diagram.

Figure 9: HLS_profiler intermediate and final output structures.

operations type can broadly be array element address calculation,
read, store and compute, where compute includes mathematical
(addition, multiplication, shift etc.) and logical (AND, OR, NOT etc.)
functions. Every operation is characterized by its type, operands and
predicate. A concise name, which is the prefix of the RTL signal, is
used to indicate operands. A RTL signal that is available both as wire
and reg, will share the same concise name. The mapping of concise
name to RTL name is also present in DAR. Predicate denotes the
pre-requisite condition for the operation and can take value ‘TRUE’,
or operand expression. When ‘TRUE’ the operation gets computed
unconditionally and whereas predicated containing expressions
constitute conditional compute. In this case, the compute is done
only when the predicate expression evaluates ‘TRUE’. It should
be noted, the predicate expression is static but its evaluated value
depends on run-time behavior of the design.

The SC variable association with their RTL signals is available
in DAR in raw format. The raw information is processed by pre-
process block (shown in Fig. 8) and expressed in table format. The
SII block components, RTL_SC_Ln# and RTL_SC_var are derived
from the pre-processed DAR tables. The RTL_SC_Ln# structure (see
Fig. 9) contains RTL name of operand with its state and predicate.
The RTL_SC_var structure links operand with SC_var. These two
structures are joined on operand concise name to generate the

ASC_tab that contains RTL signal mapping to SC_Ln# and SC_var
(Ln# 15 in Algorithm 1).

We take func_A code in Fig. 6 as an example to explain the struc-
tures generated in SII block. The operations scheduled in state# 2
(see Fig. 7 includes addition, multiplication, comparison and multi-
plexing as tabulated in Table 2. This information is present in DAR
in raw form as shown in last row of the table for operation# 15.
The operands are present as concise names. The predicate variable
for addition and multiplication is the comparison signal at Ln# 4.
The SII block algorithm converts information available in Table 2
to association table shown in Table 3. For instance, operand a_asgn
has two RTL signals (a_asgn_phi_fu_74 and a_asgn_reg_70). Addi-
tionally, it has predicate ‘TRUE’, Ln# 7 and corresponding SC_var is

Table 2: Operations scheduled in State# 2 for func_A code

Op# Type oprnd Pred SC_Ln#
11 phi i TRUE -
12 phi a_asgn TRUE 7
13 add i_1 TRUE 8
14 icmp icmp_ln4 TRUE 4
15 mul mul_ln6 !icmp_ln4 6
16 add add_ln6 !icmp_ln4 6
icmp- comparison, phi- multiplexer
Op 15–⟩ "%mul_ln6 = mul i32 %a_asgn,i32 %a_asgn"
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a. The intermediate tables: RTL-SC Ln# and concise-SC_var Tables
correspondences are shown in Tables 4 and 5, respectively. The
entire output would contain RTL signals, predicates, and SC Ln#
correspondences for all states and is not shown here for brevity.

Algorithm 2 Dynamic Trace Interpreter (DTI)
1: Input: VCD and ASC_table
2: for i in len(VCD) do
3: Single_CC_data = VCD_record[i].read();
4: active_state = Single_CC_data.RTL_state_sig.read();
5: active_RTL = ASC_tab.active_state.RTL_sig.read();
6: active_RTL_Pred = ASC_tab.active_state.Pred.read();
7: for j in len(active_RTL) do
8: if eval(active_RTL_Pred[j]) == ‘TRUE’ then
9: Add perf_record: Record[k]=active_RTL[j]; k++;
10: end if
11: end for
12: end for

3.2.2 Dynamic Trace Interpreter (DTI). The Dynamic Trace Inter-
preter block processes run-time information of the design and links
source code with the clock cycles. The design execution is parti-
tioned into states by the HLS compiler and state transitions are
triggered by events and clock ticks. The DTI algorithm (see Al-
gorithm 2) uses the temporal changes (signal values) in the RTL
signals present in the VCD, termed as VCD_record. The algorithm
tracks current execution state at a CC (Ln# 3). Once the state is iden-
tified, the algorithm filters the RTL signals active in that state from
the ASC_table obtained from SII block (Ln# 4). The predicate of the
filtered RTL is evaluated (Ln# 6-8). The RTL signals for which pred-
icate evaluates ‘TRUE’ are added into the performance profile (Ln#
9). The performance profile entry contains CC#, SC_var, SC_Ln#
and signal value. The CC# and signal value fields are obtained from
dynamic analysis whereas static information provides the SC_var
and SC_Ln#.

To summarize, the HLS_profiler framework associates source
code line numbers and variables to clock cycles. The reports gen-
erated by the HLS compiler, are processed to create DAR tables
that are further used by SII and DTI blocks, together which form
the basic HLS_profiler algorithm. It should be noted that generated
DAR tables may have some resemblance to LLVM IR but they are
not same. The DAR tables are used to uncover source code and RTL
relations.

Table 3: ASC Table output

State# RTL Sig_name Pred SC_Ln# SC_var
1 Entries related to a read

i_phi_fu_63 TRUE - i
i_reg_59 TRUE - i
a_asgn_phi_fu_74 TRUE 7 a
a_asgn_reg_70 TRUE 7 a
i_1_fu_81 TRUE 8 i
i_1_reg_110 TRUE 8 i
icmp_ln4_fu_87 TRUE 4 -
mul_ln6_fu_93 !icmp_ln4_fu_87 6 -

2

add_ln6_fu_99 !icmp_ln4_fu_87 6 a
3 Entries related to a, c write

Table 4: ASC_tab: RTL-SC Ln# Mapping

Oprnd
(concise_name) RTL Sig_name Pred SC_Ln#

i_phi_fu_63i i_reg_59 TRUE -

a_asgn_phi_fu_74a_asgn a_asgn_reg_70 TRUE 7

i_1_fu_81i_1 i_1_reg_110 TRUE 8

icmp_ln4 icmp_ln4_fu_87 TRUE 4
mul_ln6 mul_ln6_fu_93 !icmp_ln4_fu_87 6
add_ln6 add_ln6_fu_99 !icmp_ln4_fu_87 6

Table 5: ASC_tab: Concise-SC_var Mapping

Concise_name SC_var
a_read a
a_asgn a
add_ln6 a

i i
i_1 i

3.3 Shortcomings of basic SII+DTI algorithm
We presented the usefulness of SII and DTI blocks to obtain the
performance profile in the above sections. But the associations
present in SII and DTI are not absolute and can vary depending on
HLS compiler behavior. Since the HLS compiler is closed source,
it is not possible to alter its way of operation. However, these
inconsistencies at the compiler output can add confusion to the
developer’s analysis of the performance profile. We present an
example code (binary search) to corroborate this. In the context
of this paper, the performance report correctness is estimated by
metrics: False Positive (FP) and False Negative (FN). A profiler
record is considered an FP when a SC_Ln# (or SC_var) denoted
against a CC is incorrect. FN record indicates missing SC_Ln# (or
SC_var). For an accurate performance profile, FP and FN count
should be zero.

The task of the binary search program (see Fig. 10)(a) is to return
the index of the input (probe) if found in the sorted input array
(ordered_data). It contains a while loop (Ln# 7 in Fig. 10) that exe-
cutes till probe is found or end of ordered_data is reached. There
is branch statement (Ln# 8-18) inside while loop, that updates the
found variable (Ln# 9), the search indices (Ln# 15, 16) or exits the
function (Ln# 11) based on condition checks. Additionally, we see
nested branches in the form of if-else (Ln# 14-16) pair inside the
else statement.

The datapath in DAR for the binary search program is shown in
Fig. 10(b). The RTL contains three comparators to realise if, elseif
and else->if conditions. It further contains registers for found, low,
high and a memory for ordered_data. Since the source contains
nested branches, the comparators have an enable input that is con-
trolled by other comparator outputs. The register write operation
are controlled by comparator outputs. For instance, found takes the
value low when output sel1 is ‘1’, otherwise it is ‘-1’. We observe
that mid is input to high and low signals. The mid+1 value is cal-
culated and made available at low register input regardless of the
comparator outcome. This behavior is captured in the performance
profile presented in Fig. 10(d). CC# 17, Ln#16 is active even when
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1 in t b i n _ s e a r c h ( in t o rd e r ed_da t a [ 8 ] , in t probe )
2 {
3 in t mid ;
4 in t found = −1 ;
5 in t low = 0 ;
6 in t high = 7 ;
7 while ( found < 0 ) {
8 i f ( probe == o rd e r ed_da t a [ low ] )
9 found = low ;
10 e l se i f ( low == high )
11 break ;
12 e l se {
13 mid = ( low + high ) / 2 ;
14 i f ( probe <= o rd e r ed_da t a [ mid ] )
15 high = mid ;
16 e l se low = mid + 1 ;
17 }
18 }
19 return found ;
20 }

Performance Profile
CC# SC_Ln# SC_var SC_var value Remark

- found -1
- high 7
- low 0

15
(S
t1

)

- probe 3755034
7 <cmp for while> - TRUE
8 ordered_data 2133345 <probe
8 <cmp if> - FALSE
10 <cmp else if> - FALSE16

(S
t2

)

13 mid <compute> 3
14 ordered_data 5114060 >probe
14 <cmp else–⟩ if - TRUE

17
(S
t3

)

16 low <compute> 4
18 7 <cmp for while> - TRUE

(St 4) 15 high <write> 3
7 <cmp for while> - TRUE
8 ordered_data 2133345 <probe
8 <cmp if> - FALSE
10 <cmp else if> - FALSE19

(S
t2

)

13 mid <compute> 1
14 ordered_data 2133347 <probe
14 <cmp else–⟩ if - FALSE

20
(S
t3

)

16 low <compute> 2
21 7 <cmp for while> - TRUE

(St 5) 16 low <write> 2
7 <cmp for while> - TRUE
8 ordered_data 3755034 =probe
8 <cmp if> - TRUE

22
(S
t6

)

9 found <write> 2

Figure 10: The Binary_search Program (a) C source code, (b) RTL datapath, (c) State machine, and (d) Performance Profile

<cmp else->if> evaluates ‘TRUE’. According to the SC, when Ln# 14
evaluates ‘TRUE’, Ln# 15 is active and Ln#16 is inactive. However,
functionally the RTL behaves correctly as either high or low regis-
ters (and not both) are updated in the following clock cycle. The
HLS compiler pre-computes the high and low signals and schedules
its computation in the same CC since there is no data dependency
between them. However, their computation causes signal changes
in the VCD and is captured in the performance profile obtained by
basic SII+DTI algorithm.

From the binary_search case study we made two observations
that challenged the performance profile correctness. Firstly, the
Ln# for high update (Ln #15) was not present in the DAR, since
the compiler compute mid at Ln #13 and treats high as duplicate
statement. This results in a FN when ‘if’ evaluates ‘TRUE’. Sec-
ondly, we observe that the expression mid+1 was always executing
regardless of ‘if’ comparison output. This computation triggered a
FP transition in the temporal variations of VCD report.

3.4 Associative Rules
Based on our experience, the static analysis and dynamic trace
information alone were not able to maintain correctness in the

performance profile. To address this, we define a set of associative
rules, that works along with the SII and DTI blocks to ensure cor-
rect performance profile output. The HLS_profiler algorithm with
SII+DTI integrated with associative rules is presented as Algorithm
3.

3.4.1 Static Rules. SHIFT operation rule: HLS does not provide the
RTL signal to C variables correspondence whenever the shift opera-
tion is realised in RTL. We address this in the profiler by recording
Ln# of operands that have operation type ashr/trunc/bitconcate-
nate. Let us call this set of Ln# as shift_Ln#. The SC is parsed (see
Parser block in Fig. 8) to record the SC_var present at left hand side
of equality for all enteries in shift_Ln#. This gives us the required
operand concise name to SC_var correspondence.

3.4.2 Sub-Function Selector. It is common for a source code to con-
tain sub-functions. The sub-function routines gets executed when
sub-function calls are encountered and remains inactive while other
sections of the source code are executing. However, we observed
spurious transitions from inactive sub-functions in HLS designs.
This can also be attributed to the pre-emptive nature of hardware
designs that compute forthcoming operations in advance. Such
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Algorithm 3 HLS_Profiler Algorithm
1: Input: Source code (SC), HDL files, DAR and VCD data
2: ASC_tab = SII(DAR)
3: concise_SC_var_rule={Shift_op(DAR)}
4: ASC_tab = join(concise_SC_var_rule, ASC_tab) on concise name
5: Perf_record = DTI(VCD, ASC_tab)
6: for i in len(Perf_record) do
7: Rec = Perf_record[i].read()
8: if sub_functions in SC then
9: for j in len(sub_func) do
10: if Rec.SC_Ln# in sub_func[j] then
11: if sub_func[j].ap_start != ‘HIGH’ then
12: Purge Perf_record[i]
13: else
14: Retain Perf_record[i]
15: end if
16: end if
17: end for
18: end if
19: if branch in SC then
20: for k in len(branch) do
21: if_rec= source_if(branch[k])
22: if Rec.SC_Ln# in if_rec.if_cond or if_rec.elsif_cond or if_rec.else then
23: if eval(if_rec.if_pred) != ‘TRUE’) and Rec.SC_Ln# in if_rec.if_cond

then
24: Purge Perf_record[i]
25: else if eval(if_rec.elsif_pred) != ‘TRUE’ and Rec.SC_Ln# in

if_rec.elsif_cond ) then
26: Purge Perf_record[i]
27: else if (Rec.SC_Ln# absent in if_rec.else) then
28: Purge Perf_record[i]
29: else
30: Retain Perf_record[i]
31: end if
32: end if
33: end for
34: end if
35: end for

transitions are false positives and disturbs the correctness of per-
formance profile report.

We use the handshake signals created by the HLS compiler to
address this irregularity. The handshake signals [17] constitute
of ap_start, ap_idle, ap_done etc. and their function is to report
status of the module i.e. running, idle or finished. The handshake
signals are created for every HDL module. The algorithm (Ln# 8-17
in Algorithm 3) tracks the current status of all the HLS modules
for every clock cycle. A module is considered active between the
ap_start and ap_done events. If a signal transition captured in VCD
belongs to an inactive module, it is suppressed and treated as a false
positive.

3.4.3 If-Else Interpreter. Source code contains branching state-
ments such as if-else constructs depends on the run-time infor-
mation to select the branch that executes. However, due to the
parallel and pre-emptive mode of operation, the HLS compiler can
schedule mutually exclusive branches in the same state. The func-
tional correctness is maintained by controlling the variable update
in the following state. From the performance profiler perspective,
showing mutually exclusive branch Ln# in the same clock cycle is
misleading and better avoided. For instance, in the binary_search
code profile, Ln#16 is active at CC# 17 instead of Ln#15.

To address this, the algorithm (Ln# 18-30 in Algorithm 3) iden-
tifies the line numbers that belong to ‘if’/‘else if’/‘then’ condition
from the source code by means of a parser. The if-else interpreter
block creates a table, called source_if table after parsing the C source

code. An example of such a table for the binary_search code in Fig
10 is Table 6. The framework can support any number of ‘elseif’
clauses as well as nesting levels.

Table 6: Source_if Table: Captures SC branch Line #.

if_cond if_pred elsif_cond elsif_pred else
8,9 icmp_ln8 10,11 icmp_ln10 12,18
14,15 icmp_ln14 - - 16

4 EVALUATION
In this section, we present functional evaluation of HLS_profiler on
MachSuite Banchmarks [11] and industrial application of Session-
based Recommendation system [6]. The HLS compiler used for this
purpose is Vitis HLS 2020.2 and Vivado HLS 2019.2.

4.1 MachSuite Benchmarks
We further evaluate the correctness on MachSuite HLS benchmarks
[11]. The MachSuite benchmarks are a collection of 19 kernels de-
veloped in HLS and that exhibits frequently used tasks across many
domains. Generic matrix multiplication (GEMM), Breadth First
Search (BFS), sorting are few algorithms that are part of MachSuite.
We tabulate the specifications of MachSuite kernels in Table 7 and
observe them to be widely varied. The lines of code vary between 19
(Stencil_2D) to 660 (BFS_Queue). All the benchmarks contain loops
whereas many of them have sub-functions and branch statements
in them. The execution cycles ranges between 2k (encryption) to
674M in back propagation kernel. We found the performance re-
port from these benchmarks as correct barring the cases where
assumptions and limitations apply. The performance profile ver-
ification was done manually by understanding the source code
behavior and control flow (sequence of line numbers) dictated by
the dynamic conditional program branches were as expected for

Table 7: MachSuite Benchmarks [11] Specifications

Source Code containsDescription SC Lines Sub-Functions Loops Branches
AES Encryption 203 ✓ ✓ ✓
NN training 288 ✓ ✓ ✓
BFS (Bulk) 42 × ✓ ✓
BFS (Queue) 660 ✓ ✓ ✓
FFT (Strided) 31 × ✓ ✓
FFT (Transpose) 407 ✓ ✓ ×
GEMM (Blocked) 30 × ✓ ×
GEMM (Ncubed) 20 × ✓ ×
String matching 44 ✓ ✓ ✓
MD (KNN) 58 × ✓ ×
MD (Grid) 57 ✓ ✓ ✓
DNA alignment 91 ✓ ✓ ✓
SORT (Merge) 51 ✓ ✓ ✓
SORT (Radix) 105 ✓ ✓ ✓
SPMV (CRS) 22 × ✓ ×
SPMV (Ellpack) 21 × ✓ ×
STENCIL (2D) 19 × ✓ ×
STENCIL (3D) 52 × ✓ ×
HMM 64 × ✓ ✓
AES - Advanced Encryption Standard, NN - Neural Network, BFS - Breadth
First Search, FFT - Fast Fourier Transform, GEMM - Matrix Multiplication,
MD - Molecular Dynamics, SPMV - Sparse Matrix Multiplication, HMM - Hid-
den Markov Model
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Figure 11: Compute Operations in NISER: Lin_a Block

the given test input and program state. The dynamic values of local
and global variables were observed and ensured to be of the same
as expected for correct program execution. It is not practical to
manually verify a large number of clock cycles. However, the state
transitions helped in limiting the verification method to few clock
cycles and maintain confidence for the remaining cycles. We traced
all possible datapaths between first and last state for all benchmarks
and verified the HLS_profiler output for them. For instance, Fig.
10(c) shown two alternate paths for binary search state machine,
depending on whether state 4 or state 5 is traversed. In this case,
we check performance profile output on 1 → 2 → 3 → 4 → 6 and
1 → 2 → 3 → 5 → 6.

4.2 Case Study: Session Based
Recommendation System (NISER)

A session-based recommendation (SR) model utilizes the informa-
tion from past actions (e.g. item/product clicks) in a session to
recommend items that a user is likely to click next. NISER (Nor-
malized Item and Session Representations) [6] is Graph Neural
Network (GNN) based SR that uses normalized representation to
deal items without the popularity bias. The recommendation appli-
cations are required to make recommendations for tens of thousand
of customers simultaneously and thus require designs with fast turn-
around time. FPGAs are a good candidate for performance sensitive
applications owing to its datapath-based processing. Internally, the
NISER algorithm contains large multiple matrix multiplication op-
erations with bias addition. We chose HLS development flow for
NISER implementation on FPGA due to inherent complexity of
RTL-design development for large designs.

The NISER architecture contains three blocks: Lin_a, Lin_b and
GNN. Lin_a and Lin_b blocks captures graph-specific information
and GNN block uses this output to compute the final embedding.
The Lin_a and Lin_b block computes equation (1) and equation (2).
Here, hidden is n×m matrix, H1 (H2) is m×m matrix and b1 (b2) is
a column matrix with dimension m×1. n represents the # of item in
session history, and is set to 10 for NISER. From equation (1) and
equation (2) it is clear that operations in Lin_a and Lin_b blocks are
essentially the same and only difference is in the operands. Also, it
should be noted that there is no data dependence between these
two blocks.

𝐿𝑖𝑛_𝑎 = ℎ𝑖𝑑𝑑𝑒𝑛 · 𝐻1 + 𝑏1 (1)

𝐿𝑖𝑛_𝑏 = ℎ𝑖𝑑𝑑𝑒𝑛 · 𝐻2 + 𝑏2 (2)

Equation (1) term ℎ𝑖𝑑𝑑𝑒𝑛 · 𝐻1 is coded as three nested for loops:
outer, middle and inner in the HLS. Outer loops over all rows of

hidden, middle loops over all columns of H1 and inner loop con-
tains multiplication of row elements of hidden with corresponding
column elements of H1. For instance, first row of hidden (cyan fill
cells in Fig. 11) and first column of H1 (green fill cells in Fig. 11)
are used to compute first element (row=0, col=0) of lin_a matrix.
m product terms are generated by multiplying corresponding el-
ements of active row and column that are accumulated in adder
unit. The adder unit result is further added with bias term to gener-
ate (0,0) element of Lin_a matrix. In the code excerpt presented in
Fig. 12, Ln# 3-6 indicates inner loop multiplication operation. The
multiplier outputs accumulation is done in Ln# 7-11 and addition
with bias term is indicated as Ln# 12. This operates inside outer and
middle loops placed at Ln# 1 and 2, respectively.

We now discuss translation of code excerpt presented in Fig. 12
to RTL design. The arrays hidden,H1, local_row, b1 and Lin_a are im-
plemented as BRAM memory elements. The HLS compiler creates
a dual-port BRAM memory by default. This means that only two
BRAM elements can be accessed (written to/read from) simultane-
ously. Additionally, on a single port one type of access (write/read)
is supported at a time. The depth and width of the BRAM is deter-
mined by # of array elements and its datatype, respectively. The
multiplication, accumulation and addition are implemented as ded-
icated pipelined DSP units. The loop exit condition and increment
are implemented as comparison and addition operation, respec-
tively. In terms of resources, both operations are realised in LUTs
and registers.

To analyse the performance bottleneck in Lin_a block, we ex-
posed its HLS code to HLS_Profiler and estimated the SC_Ln-wise
latency. The multiplication at Ln# 7 is part of outer: for loop and is
implemented in hardware as completely pipe-lined DSP taking 2
CC. The accumulate at Ln# 10 can not be fully pipe-lined because of
data-dependency (result variable) and takes 3 CC. The addition at
Ln# 12 take 5 clock cycles and resides inmiddle: for loop. In this case,
eliminating the bottleneck from level-3 outer:for loop will bring
greater performance gain. We apply array_partition+loop_unroll
pragma directives on inner_mul loop. This reduces its latency from
300 CC to 2 CC. In effect, the array_partition pragma eliminates the
port limit on BRAMs and all elements in the array can be accessed
at once. Due to this optimization, the end-to-end latency for Lin_a
block is improved by 2.3×.

5 RELATEDWORK
The manual approach for performance tuning needs a balanced
use of pragma directives and deep understanding of the design
micro-architecture. The choice of pragmas highly depend on the
interactions of design sub-modules and its datapath. This makes the
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1 ou t e r : for ( in t i = 0 ; i < a_row ; i ++)
2 midd le : ( in t j = 0 ; j < b_ co l ; j ++)
3 inner_mul :
4 for ( in t k1 = 0 ; k1 < a_ c o l ; k1 ++) {
5 l o c a l _ r ow [ k1 ]= hidden [ i ] [ k1 ] ∗H1[ k1 ] [ j ] ;
6 }
7 inne r_add :
8 f l oa t r e s u l t = 0 ;
9 for ( in t k2 = 0 ; k2 < a_ c o l ; k2 ++) {
10 r e s u l t += l o c a l _ r ow [ k2 ] ;
11 }
12 l i n _ a [ i ] [ j ] = r e s u l t + b1 [ j ] ;
13 }
14 }

Loop-wise Latency (in CC)
Vanilla Optimized Speed-up

outer 708020 306020 2.3×
middle 70800 30600 2.3×
inner_mul 300 2 150×
inner_add 400 300 1.3×

SC Line-wise latency (in CC)
Ln# 5 Ln# 10 Ln# 12
2 3 5

Figure 12: Session-based Recommendation Application (a) source code, and (b) performance profile and gain

manual tuning task time-consuming and challenging since most
of the time the pragma positioning and choices are made based
on trial and run approach. On the other hand, the DSE techniques
search for pareto-optimal solutions while optimizing conflicting
design parameters such as area, performance, power etc.Many HLS
DSE tools have been proposed in literature [10, 12, 20, 21, 23] that
finds optimal designs by automatically making best use of pragmas.
These tools use resource and performance estimators to evaluate
micro-architectures and leverage similarity between source codes
to speed up the exploration process. At present, the performance
estimators used by DSE tools provide end-to-end, loop-level or
function-level latencies. This propels the DSE to apply similar op-
timization pragma to all loops/sub-functions which may not be
optimal. Additionally, it is difficult to get a reliable performance
estimate for loops with variable bounds.

Researchers have focused their attention to develop dedicated
HLS performance estimator tools [2–4, 9, 22] that can give insights
on performance bottlenecks, stall rate, stall cause etc. These estima-
tors often limit themselves to simple loop topologies and limited
pragma use which makes them unreliable for large designs with
complex datapaths. This motivates us to develop a cycle-accurate,
fine-grained performance profiling framework that is non-intrusive
and provides an end-to-end profile of the design. Such profiling tool
can help the designer/DSE tool to quickly identify the performance
bottlenecks and have a guided approach towards tuning it.

5.1 Comparison with State-of-the-Art
HLScope+ [3, 4] uses code instrumentation and analytical mod-
elling to improve the accuracy of the Vivado HLS simulator. It is
two orders of magnitude faster than the whole synthesis process
but requires HLS simulation for each design point. Aladdin [12]
and Lin-analyzer [22] can also be used to provide cycle estimate
for programs with dynamic behavior since they utilize the instruc-
tion trace generated in C simulation. Moreover, these works focus
on providing analysis for efficient exploration of possible design
points. [20, 21] rely on an estimation of performance and resource
requirement of a given optimization. While mandating very few
synthesis runs, such strategies struggle when coping with multi-
ple, interdependent optimizations. Hence, they are often limited to
capturing the effect of only a few directives. HLS_profiler aligns
toward evaluating an actual design that is synthesized by an HLS
tool and provides accurate performance profile.

6 ASSUMPTIONS AND LIMITATIONS
In this section we highlight assumptions and limitations in the
current state of the tool. The framework works on the assumption
that the source code is written following good coding practices and
contains single statement at every line. The limitations are listed
below.

• Performance profile verification on source codes with opti-
mization directives is not exhaustive and is limited to few
pragmas viz. array_partition and loop_unroll.

• Verification has been manually done. Control flow of source
code was hand simulated. It will be ideal to devise an auto-
mated method to verify the profiler results and the variable
values reported by the HLS_profiler. One possible method
will be to use gprof to trace for a CPU execution and using
that to verify the control flow.

• As the source code line execution may overlap many clock
cycles it is often observed that many source lines are active in
a given cycle. This could be a result of the FPGA scheduling
instructions in parallel. If we sum up the clock cycles spent in
each line of source code the total will exceed the overall pro-
gram execution time. This is because the HLS_profiler works
bottom up - it works its way from the RTL signal waveforms
to the source code. This is quite different from other profilers
which base its measurements on inserting timestamps like
it is done in software. This could be a challenge for some
developers, but it will be possible to create scripts which
can parse the profile to identify longest running operations
in case when many operations are scheduled concurrently.
This may not be easy because it is possible that all operations
did not get schedule for execution at the same time. Getting
a perfect profile wherein total latency of all the source lines
is equal to the program latency is being addressed but not
complete at the time of writing this paper.

• The HLS_profiler framework is tested on few recent versions
of HLS compiler including Vivado and Vitis. However, this
doesn’t guarantee it will work for future version of compilers,
since the profile generation depends on compiler outputs,
especially if compiler outputs change significantly. Never-
theless, the framework would provide sufficient information
to derive useful insights about performance profile.
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There are cases where some of the source code line numbers do
not show up in the profile even if they are effective at a given clock
cycle. They include

• Initialization statements - the registers which hold the vari-
ables are initialized upon reset (startup) even before any
function starts execution

• Line numbers for source code statements that use HLS library
functions such as sin or cos function are not captured by
the framework. This is because the HLS tool implements
sin or cos function of the variable by instantiating hardware
macros from the respective libraries.

• The profiler is not able to capture the correct line numbers
of expressions that are duplicates of some other expressions,
because those expressions get optimized by the compiler.1

• The profiler is unable to capture the value of some of the
source code variables, especially those of pointers.

The authors believe that using methodology of discovering rule
associations described earlier it would be possible to uncover rela-
tionships that will expose the executions of such source code lines
in the profile.

7 CONCLUSION AND FUTUREWORK
Performance profile is an important instrument to efficiently ex-
plore the design space and systematically improve its performance.
The challenges in relating the HLS code to the synthesized RTL acts
as a deterrent in analyzing the implementation performance, when
it comes to non-intrusive analysis. Moreover, control and branching
statements add to the difficulty in performance evaluation based
only on static information. We joined the static information with
hardware signal waveforms to come up with methods that could be
used to profile the application actual execution on the FPGA. We
formulated useful association rules that could help relate hardware
signals and waveforms to the source code variables and line num-
bers. These discoveries incorporated into the HLS_profiler were
enough to correctly profile all the diverse applications in the Mach-
suite Benchmarks. We were also able to demonstrate a practical
use case wherein we could profile an industrial application mak-
ing deep learning based recommendations. The profiling analysis
enabled us to make changes to arrive at a faster implementation.
We have also listed the limitations of the tool and its testing which
we intend to improve upon in future. In addition to profiling, we
would address area and energy consumption details in future work
that designer can use to make informed decisions for HLS designs.
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