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ABSTRACT
Deep learning-based recommendation systems are extensively de-
ployed in numerous internet services, including social media, en-
tertainment services, and search engines, to provide users with
the most relevant and personalized content. Production scale deep
learning models consist of large embedding tables with billions of
parameters. DRAM-based recommendation systems incur a high
infrastructure cost and limit the size of the deployed models. Recom-
mendation systems based on solid-state drives (SSDs) are a promis-
ing alternative for DRAM-based systems. Systems based on SSDs
can offer ample storage required for deep learning models with
large embedding tables. This paper proposes SmartRec, an infer-
ence engine for deep learning-based recommendation systems that
utilizes Samsung SmartSSD®, an SSD with an on-board FPGA that
can process data in-situ. We evaluate SmartRec with state-of-the-art
recommendation models from Facebook and compare its perfor-
mance and energy efficiency to a DRAM-based system on a CPU.
We show SmartRec improves the energy efficiency of the recom-
mendation inference task up to 10× in comparison to the baseline
CPU implementation. In addition, we propose a novel application-
specific caching system for SmartSSDs® that allows the kernel on
the FPGA to use its DRAM as a cache to minimize high latency
SSD accesses. Finally, we demonstrate the scalability of our design
by offloading the computation to multiple SmartSSDs® to further
improve performance.

CCS CONCEPTS
• Computer systems organization→ Architecture; Neural net-
works; Reconfigurable computing.
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1 INTRODUCTION
Personalized recommendation systems are widely deployed in a
variety of data center applications, including social media [6], en-
tertainment services [27], and search engines [22] to improve users’
experience. Deep learning-based solutions offer high accuracy and
scalable solutions for these recommendation systems. Unsurpris-
ingly, AI-driven recommendation models account for a significant
portion of the cycles in the data centers [6, 29].

Neural recommendation models capture both dense and categori-
cal features to achieve higher prediction accuracies. The categorical
features (sparse features) are the key components of a neural rec-
ommendations model that distinguishes them from other types of
neural models, such as convolution neural networks (CNNs). These
categorical features are represented as large embedding tables. The
size of the embedding tables can exceed hundreds of Gigabytes
of storage [6, 18]. In many cases, the size of the embedding tables
is limited to the available main memory on the servers [6]. One
alternative is to store these large embedding tables in solid-state
drives (SSDs). These SSDs offer higher storage capacities than main
memory (DRAM). However, they exhibit slower read and write
performance, which can be a major bottleneck for adopting an
SSD-based neural recommendation system in the cloud.

There are two main approaches to improve the latency of an
SSD-based neural recommendation system. The first approach is
to perform the computation near the storage to fully utilize the
internal SSD bandwidth and reduce round-trip data communica-
tion overheads [24]. The second approach is to cache frequently
accessed embedding vectors in main memory (DRAM) to minimize
the number of slow SSD read and write operations [3, 26].
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ASmartSSD® [25] is an SSDwith an on-board FPGA that can pro-
cess data in-situ. The FPGA on a SmartSSD® offers computational
capabilities to the storage device. FPGAs offer a high degree of par-
allelism within an affordable power budget. On a SmartSSD®, the
FPGA can be customized to perform certain operations in an energy
efficient manner when compared to a CPU. In addition, SmartSSD®
includes an external DRAM accessible by the FPGA and the CPU
that enhances programmability and allows direct communication
between the FPGA and the host CPU. In summary, a SmartSSD®
has three main features that can make it an attractive solution for
applications with high storage requirements. First, SmartSSD® can
use an FPGA to improve performance and energy efficiency with
custom hardware. Second, the computation scales with the storage.
Using multiple SmartSSD® provides more storage as well as more
computation capabilities. Third, offloading the computation to the
FPGA on a SmartSSD allows the CPU to perform other tasks.

In this paper, we propose SmartRec, a near-storage inference
engine for an SSD-based neural recommendation system using
SmartSSDs®. SmartRec offloads the entire embedding table opera-
tions, including gather and aggregation computations, to the FPGA
on a SmartSSD®. Besides the embedding table operations, other
computation layers such as fully connected layers can also be fully
or partially offloaded to the FPGA on the SmartSSD®.

SmartRec performs the computation near the storage utilizing
the higher bandwidth internal link between the SSD and the FPGA.
Further, SmartRec customizes the FPGA on the SmartSSD for the
recommendation inference task. It utilizes the FPGA’s DRAM as
a cache to minimize slow SSD accesses. Finally, SmartRec utilizes
multiple SmartSSDs® to improve performance by harnessing data
parallelism. Hence, SmartRec improves the performance and energy
efficiency of the recommendation inference task.

To evaluate SmartRec, we built a prototype of one of the state-of-
the-art recommendation models from Facebook called DLRM [17].
We studied three classes of the DLRM models that represent both
compute-intensive as well as memory-intensive models. Our results
show SmartSSDs® are up to 10× more energy-efficient than CPUs
for the recommendation inference task. SmartRec can achieve a
similar inference time as the CPU for smaller batch sizes, despite
having limited resources compared to a high-end CPU. We demon-
strate that our caching technique improves the inference time of
an SSD-based recommendation system. These results will motivate
future work on improving the locality of embedding table accesses.
Finally, we show that our design can scale to multiple SmartSSDs®
to take advantage of the available data parallelism.

2 BACKGROUND
We provide background on deep learning-based recommendation
models and the SmartSSD® architecture.

2.1 Recommendation Systems
Recommendation systems suggest the most relevant content or
items of value to users. The recommendation systems form the
basis of various online services such as shopping [23], entertain-
ment [27], and social media [17] that requires real-time responses.
Deep learning-based recommendation systems are the state-of-
the-art methods deployed on the cloud and can respond to a user’s

Figure 1: A high-level overview of deep learning-based recommen-
dation models. The model consists of fully connected (FC) layers in
the bottom and top layers and several embedding tables.

request in real-time. The inference task of these deep learning-based
recommendation systems account for a significant fraction of the
computation in modern data-centers [6, 8].

Algorithm 1: SparseLengthsSum (SLS) pseudo-code
1 Emb ← Embeddinд Table ∶ RXC
2 IDs ← V ector ∶M
3 Out ← V ector ∶ C
4 procedure SLS( Input Emb, IDs, Output Out)
5 for each ID ∈ IDs do
6 Emb_vector = Emb(︀ID⌋︀
7 for each c ∈ C do
8 Out(︀c⌋︀ + = Emb_vector (︀c⌋︀
9 end

10 end

Architecture of Recommendation Systems. Figure 1 shows the
overall architecture of a neural network-based recommendation
system. Themodel comprises twomain components: fully connected
(FC) layers (or dense layers) and embedding tables. There are two
sets of FC layers: the bottom and top layers. An interaction layer
combines the output features from the bottom layers and passes
them to the top FC layers. The FC layers are used to extract the
dense features similar to other classical neural networks like CNNs.
In contrast, the operation on the embedding table processes the
categorical or sparse features. FC layers and embedding tables
stress different parts of the system. FC layers require compute
capabilities. In contrast, the operation on the embedding tables
stresses the memory system as they perform multiple irregular
memory accesses. The recommendation models vary depending on
their FC layers, their embedding tables sizes, and the number of
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Figure 2: An FC layer and how the weights between the input and
output neurons can be transformed into amatrix before performing
a matrix-vector multiplication. The labels are shown only for some
of the weights.

lookups. The recommendation system can be compute-bound or
memory-bound depending on the parameters of the model.

Fully-connected Layers. Most recommendation systems take ad-
vantage of the fully connected layers to extract dense features from
the input vector. In a fully connected layer, all the inputs neurons
are connected to all the outputs neurons in the next layer (See
Figure 2(a)). Figure 2(b) shows how the weights between the input
and output neurons are transformed into a matrix. The number of
rows and columns in the matrix matches the number of input and
output neurons in a layer. For the example in Figure 2, there are 4
inputs and 3 outputs neurons. A single FC layer computation is a
matrix-vector multiplication. The weights are learned during the
training phase and do not change during the inference phase. It
is common to process multiple inputs together as one batch. All
input vectors in a batch are combined to build a matrix. Hence, the
computation with a batch is organized as a general matrix-matrix
multiplication (GEMM) operation.

Processing Categorical Inputs. The recommendation model pro-
cesses categorical input features (sparse features) using embedding
table operations. Each row of the embedding table is a unique em-
bedding vector typically comprising tens of features (i.e., number
of columns in the table). A set of embedding vectors (specified by a
list of IDs) is gathered and aggregated using a sparse length sum op-
eration for each inference task. Algorithm 1 shows the pseudo-code
for sparse length sum operation. Each model comprises multiple
embedding tables.

Processing categorical inputs requires a large amount of stor-
age, performs irregular memory accesses, and has low compute
intensity. Production-scale embedding tables can have billions of
rows. Aggregate storage need for these embedding tables in a neu-
ral recommendation model can be several terabytes [26]. Further,
categorical input features are sparse. A small fraction of the embed-
ding vectors are accessed in each inference task. Hence, embedding
table operations perform many random and irregular accesses to
such tables in memory. The computation intensity of the opera-
tion on embedding tables is orders of magnitude lower than the
computation for other neural networks such as CNN and RNNs.

Figure 3: The overall architecture of a SmartSSD® device.

2.2 SmartSSD® Architecture
We provide a background on some features of a SmartSSD® device.
Figure 3 shows the high-level internal architecture of a SmartSSD®.
It consists of a NAND array (storage component), an SSD controller,
a reasonably sized FPGA, and a DRAMmodule. Table 3 provides the
technical specifications of the FPGA in the SmartSSD®. The FPGA
can communicate directly with the storage component, known
as Peer-to-Peer (P2P) data transfer, that facilitates near-storage
computation. The P2P data transfer eliminates the unnecessary
round-trip traffic between the SSD to the CPU (host) and from the
CPU to an FPGA.

The DRAM on the SmartSSD® is accessible by the FPGA. There
is a specific region of memory called the common memory area
(CMA) in the DRAM that is accessible both by the FPGA and the
CPU (host). This CMA region is used for directly transferring the
data between the storage component and the FPGA. While the CPU
host is not involved in the data movement from the SSD to the
FPGA with the peer-to-peer transfer, it initiates the data transfer.
Besides, the host and the FPGA on a SmartSSD® can communicate
with the CPU by mapping the CMA region to the host’s address
space. The SmartSSD® supports the OpenCL programming model
and thus uses OpenCL APIs for kernel launch, memory allocation,
and data transfers.

Computation can be offloaded to the FPGA on a SmartSSD®
either completely or partially. Additionally, the result of the compu-
tation performed by the FPGA can be either directly written back
to the SSD or the main memory accessible by the CPU.

3 SMARTREC DESIGN
This paper presents SmartRec, an FPGA acceleration engine for neu-
ral recommendation inference using SmartSSDs®. We offload two
main computations of the neural recommendation models, namely
sparse length sum and general matrix-matrix multiplication, to the
FPGA on a SmartSSD®. We carefully design each hardware unit
based on the available resources on a SmartSSD®. The embedding
tables can be stored either in the DRAM or in the SSD. This feature
allows SmartRec to support models with huge embedding table
sizes. To accelerate large models where the embedding tables are
stored on the SSD, we propose a novel caching technique designed
for SmartSSDs® that allows the kernel on the FPGA to use its exter-
nal DRAM as a cache for the data on the SSD. Our caching technique
helps to minimize the high latency accesses to the SSD. The cache is
managed by the host on the CPU. The kernel on the FPGA uses the
information provided by the host to locate the data in its external
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Figure 4: A high-level overview of the SmartRec architecture.

DRAM. Finally, we demonstrate how our design scales to multiple
SmartSSDs® to perform the computation on different embedding
tables in parallel.

3.1 Overview of SmartRec Architecture
Figure 4 depicts the overall design of SmartRec. In our design, we
offload the sparse length sum and the matrix-matrix multiplica-
tion operations to the FPGA. Hence, the two main components
of the FPGA in SmartRec are (1) the sparse length sum unit that
features the embedding table lookups and (2) the matrix-matrix
multiplication unit. The sparse length sum unit handles categorical
inputs (i.e., sparse features), and the latter perform the FC layers
that extract the dense features. The FPGA reads the inputs from
the DRAM and writes the result of the computation back to the
DRAM. There are two options for storing embedding tables on a
SmartSSD®. For smaller models, the embedding tables can be stored
on the DRAM of the FPGA. Current SmartSSDs® support up to
4GB of DRAM memory. If the size of the embedding tables exceeds
the FPGA DRAM’s capacity, the embedding tables are stored on the
SSD, which provides up to terabytes of storage. SmartRec targets
the inference task where the values in the embedding tables and
the weights in the FC layers are fixed. Hence, the embedding table
and the weights of the FC layers can be placed either in the FPGA
DRAM or the SSD before the computation. The host CPU provides
the inputs to the kernel on the FPGA. The CPU generates two input
vectors for each inference request: one for the FC layer and the
other for the embedding table lookups (See Section 2). The FPGA
performs the computation and writes the result back to the mem-
ory accessible by the CPU. Next, we will show different options for
offloading the computation to the FPGA on a SmartSSD®.

3.2 Offloading Options
In SmartRec, the computation of a recommendation inference task
can be either completely or partially offloaded to the FPGA on a
SmartSSD®. We evaluated both these options to identify the trade-
offs in communication overheads and performance. In the first case,
we offload all the layers in a recommendation model to the FPGA

on the SmartSSD®. In this case, the CPU only initiates the data
transfers and starts the computation, and has minimal involvement
in the process. The second option offloads only the bottom layers,
including the bottom fully connected layers and the embedding
operations to the FPGA, and the CPU computes the top fully con-
nected layers. The computations on the FPGA and the CPU can then
be pipelined. Unlike the first option, the second solution involves
the CPU in the computation. In our experimental evaluation, we
will compare these two options in terms of performance. Next, we
will discuss the details of each unit and its architecture.

3.3 The Sparse Length Sum Unit
Sparse length sum operation involves many random lookups to the
embedding tables. The number of the embedding table lookups is a
design parameter and is different for various models (See Table 2).
On a SmartSSD®, the FPGA receives the list of IDs or row indices
to be accessed for the sparse length sum operation. Each embed-
ding table receives a different set of indices. The FPGA accesses the
DRAM to read the corresponding entries and then performs the
sum operation to calculate the final result. Algorithm 1 shows the
pseudo-code for the sparse length sum operation. There are two
ways to improve the performance of the lookups. One approach is
to parallelize the lookups using multiple memory channels. This is
possible if DRAM accessible by the FPGA supports multiple chan-
nels. The current SmartSSDs® are equipped with DDR4 memory
that only exposes one DRAM channel to the FPGA. The second
optimization is to use wider vectors to read the data on the DRAM.
Wider vectors are recommended for DRAM accesses to minimize
the DRAM controller overheads. Each embedding table has a cer-
tain number of features. The number of features represents the
number of columns for each row of the embedding table. The sum
operations are performed on each feature separately. One way to
minimize the number of accesses is to use a wide vector composed
of multiple columns. For example, with 32 features, where each
feature is 4 bytes, the whole row can read in one access with a 1024
bit (128 bytes) vector.

SSD-based Embedding Table Lookups. The aggregate storage re-
quirements for many production-level recommendation models
can exceed the FPGA DRAM capacity. This limits the capability
of FPGAs to support the model with large embedding tables. The
main advantage of SmartSSDs® is the presence of terabytes of SSD
storage suitable for large embedding tables. Further, the data on
the SSD is directly accessible by the FPGA via a P2P transfer in a
SmartSSD® (see Section 2). This direct communication between the
FPGA and the storage unit removes unnecessary traffic between
the SSD to the host and from the host to the FPGA. It also allows
the computation to occur near the storage. While using the SSD
increases the storage capabilities, the SSDs have higher latency and
lower bandwidth than the DRAM memory, degrading the inference
performance. Despite irregular memory accesses, the embedding
table operations can still benefit from caching techniques as a re-
sult of locality in their accesses [3, 24]. In this paper, we propose a
novel software-managed cache tailored for SmartSSDs®. We use
the FPGA’s DRAM to cache some of the frequently accessed data
on the SSD. This caching can minimize the total number of SSD
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Figure 5: A high-level overview of our proposed software-
managed cache designed for SmartSSDs®. (a) Different re-
gions in the FPGA DRAM and the connections between the
CPU and FPGA. (b) The metadata format is used to com-
municate the cache information between the CPU and the
FPGA.

accesses and reduce the end-to-end inference time for an SSD-based
recommendation system.

Figure 5 shows the overview of our cache design. We divide the
DRAM into four regions. One region belongs to the data newly
brought from the SSD to the DRAM via a P2P transfer (e.g., P2P
buffer). The second region used a cache to reserve some previously
fetched blocks in DRAM (e.g., cache buffer). In addition, we need
space in the DRAM to store the weights for other layers in the
model (e.g., FC layers) and the output of the FPGA. The sizes of
each region are design parameters and are chosen based on different
factors such as the number of lookups and the batch sizes. The P2P
region should be large enough to accommodate all the data required
for a batch size if none of the accesses hit in the cache.

The cache (i.e., DRAM) is managed by the host CPU and therefore
is a software-managed cache. The CPU issues a P2P read from
the SSD to the DRAM when the data is not present in the cache.
The host sends metadata to the FPGA for each embedding table
access to convey the information about the location of each access.
Figure 5(b) provides the details on the metadata provided to the
FPGA by the CPU. The metadata consists of three parts. We use
two bits to identify three different possible scenarios (explained
below). Besides, the FPGA uses cache address and buffer address to
locate the data depending on the mode bits as follows.
● Mode 0 The data block is not present in the cache. The
FPGA reads the block using the address specified by the
buffer address bit. Additionally, the FPGA reserve the block
at the address provided by the cache address bits.

Figure 6: Illustration of SmartRec’s GEMM unit. (a) Inputs
to the GEMM unit. (b) A systolic array for the GEMM unit.
(c) Illustration of GEMM computation at various steps. We
show the current inputs and the partial results computed
till a step for each PE.We demonstrate the output-stationary
attribute of our design.

● Mode 1 Similar to mode 0 with the difference that the FPGA
does not reserve the block in the cache.
● Mode 2 The data is present in the cache at the address spec-
ified by the cache address bits.

Using a software-managed cache allows the designer to choose
the right caching scheme based on the access pattern and profiling
information. Finally, the FPGA in our design is oblivious to the cache
policy used. Hence, the software-managed cache can be changed
while the FPGA side remains intact, avoiding hours of compilation.

3.4 The Matrix-Matrix Multiplication Unit
Weuse a systolic array-based architecture for the GEMMunit. Many
recent hardware-based GEMM accelerators use systolic arrays be-
cause there are more efficient than other methods [13, 20]. Figure 6
shows the details of the GEMM unit. We use an output-stationary
dataflow where the partial results remain in the processing ele-
ments (PEs). At the same time, the two input matrices are streamed
in the systolic array, one from left-to-right and the other from top-
to-bottom. An output-stationary dataflow ensures maximum reuse
of the output data. Figure 6(c) illustrates all the steps and partial
results computed in the GEMM unit for the two example inputs in
Figure 6(a). Each PE has a multiply-accumulate (MAC) unit. There
are three buffers inside each PE. One buffer for each of the two
inputs and one buffer is used as a work queue for the MAC unit.
The inputs elements arrive in each PE in the proper order. Thus,
there is no need to have additional logic to match the coordinates
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(a) Execution time for RMC1. (b) Execution time for RMC2. (c) Execution time for RMC3.

Figure 7: Comparing the inference time of the FPGA on SmartSSD® and the baseline CPU for three DLRMmodels: RMC1 (fig
a), RMC2 (fig b), and RMC3 (fig c).

(a) Energy efficiency for RMC1. (b) Energy efficiency for RMC2. (c) Energy efficiency for RMC3.

Figure 8: Energy efficiency of different number of SmartSSDs® over the baseline CPU for three DLRM models: RMC1 (fig a),
RMC2 (fig b), and RMC3 (fig c).

Table 1: The FPGA resource utilization and frequency for
three DLRMmodels.

Application Frequency LUT BRAM DSP REG
RMC1 219 Mhz 21.5% 41.5% 20.6% 17.2%
RMC2 221 Mhz 21.6% 42.9% 20.6% 17.6%
RMC3 216 Mhz 21.5% 41.5% 20.6% 17.2%

of the elements of the two input matrices. The size of the systolic
array depends on the available DSP resources on the FPGA. We
used 16 rows and 8 columns (i.e., a total of 128 PEs).

3.5 Scalability
Different recommendation models have a different number of em-
bedding tables (See Table 2). For each inference request, there are
multiple lookups for each embedding table. The operations on each
embedding table can be performed independently. The embedding
tables can be stored on different SmartSSDs®. Similarly, the em-
bedding table operations can be performed by the FPGAs inside
each SmartSSD® in parallel. The host can then collect the final
outputs of each FPGA. This demonstrates one of the main features
of SmartSSD®, where the computation scales with the storage.

4 EVALUATION
We evaluated the performance and energy efficiency of SmartRec for
an end-to-end recommendation inference. SmartRec outperforms
the CPU implementation in inference time for small batch sizes
while it improves the energy efficiency for almost all scenarios.

4.1 Experimental Setup
Model Specification. We used the state-of-the-art recommenda-

tion model from Facebook called DLRM [17] for our performance
evaluation. The DLRM model has three classes of recommendation

models, namely, RMC1, RMC2, and RMC3 [6]. The three models
highlight the diversity in the computation and memory accesses.
Each class has different embedding tables and FC layers sizes. Ta-
ble 2 summarizes the parameters of RMC1, RMC2, and RMC3 mod-
els. These parameters are based on prior works [17, 24] and open-
source implementation of the DLRM model, which might be differ-
ent from the parameters deployed on the cloud by Facebook.

Environment. We implemented the three classes of the DLRM
model using the Xilinx HLS tool that translates C++ programs to the
hardware description language (HDL). TheHDL code is then used to
generate the FPGA bitstream. We studied each model separately on
a SmartSSD®. Table 3 shows the SmartSSD® configuration. Table 1
presents the logic utilization and the frequency for all the three
models on the FPGA in a SmartSSD®.

Baseline System. We compared our prototype with a multi-thread
CPU implementation of DLRM in Pytorch Version 1.9. Table 3
presents the details of the CPU we used for our experiments. We
employed the open-source version of DLRM [17]. For all of our ex-
periments, we run each experiment 10 times and report the median
execution time.

Measuring Power Consumption. To measure FPGA power con-
sumption, we used the Xilinx Board Utility command line interface.
We measured the power consumption of the CPU using Processor
Counter Monitor (PCM) [1], which gives a set of application pro-
gramming interfaces (APIs) to monitor the performance and energy
metrics of Intel Processors.

4.2 Evaluation with A DRAM-based
Recommendation System

We first study the scenario where the embedding tables fit in the
FPGA’s DRAM. Figure 7(a-c) compares the end-to-end inference
time for three DLRM recommendation models for the baseline CPU
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Table 2: Different classes of models in DLRM and their parameters.

Model Description Fully Connected Embedding Tables
Bottom Top Number of Tables Elements Per Table Feature Size Lookups

Small FC Layer1: 128 X 64 Layer1: 288 X 256
RMC1 Few Emb. Tables Layer2: 64 X 32 Layer2: 256 X 64 8 1000000 32 80

Large Emb. Tables Layer3: 64 X 1
Small FC Layer1: 128 X 64 Layer1: 2112 X 128

RMC2 Many Emb. Tables Layer2: 64 X 64 Layer2: 128 X 64 32 50000 64 120
Small Emb. Tables Layer3: 64 X 1

Large FC Layer1: 2560 X 1024 Layer1: 352 X 512
RMC3 Few Emb. Tables Layer2: 1024 X 256 Layer2: 512 X 256 12 100000 32 24

Small Emb. Tables Layer3: 256 X 32 Layer3: 256 X 1

(a) Execution time for RMC1.

(b) Execution time for RMC2. (c) Execution time for RMC3.

Figure 9: The execution time of the SSD-based DLRMmodels for batch sizes 1 and 8 under different DRAM hit rates. The SLA
targets for each model are specified with a dark horizontal line.

Table 3: The details of the CPU and SmartSSD® configura-
tions.

Platform Configuration
Skylake machine, cores per socket=22, sockets=2, frequency=2.1 GHz

DRAM capacity=768 GB, DRAM type= DDR4,
CPU DRAM frequency= 2666 Mhz, DDR bandwidth per socket= 249 GB/s

L1 size= 32 KB, L2 size= 1024 KB, L3 size= 30976 KB

SmartSSD® storage= 4 TB, FPGA LUT=391 K, FPGA BRAM= 503, FPGA DSP unit= 960
DRAM= 4 GB, DRAM type= DDR4, FPGA DRAM bandwidth= 19 GB/s

and the different SmartSSD® configurations. The figure compares
the execution time for five different batch sizes (x-axis). In addition
to using different numbers of SmartSSDs®, two different offloading
options are presented. SM1, SM2, and SM3 show the execution time
when all the layers are offloaded to one, two, and four SmartSSD®,
respectively. SM1+CPU shows the case where the bottom layers
(i.e., bottom FC and sparse length sum) are offloaded to FPGA
on one SmartSSD® while the CPU performs the computation for
the top FC layers. The two computations are then pipelined (see
Section refsmartrec).

Performance. RMC1, RMC2, and RMC3 are diverse in terms of
the number of embedding lookups, their FC layers sizes, and the
embedding tables storage requirements. RMC2 incursmorememory
lookups than the other two models. In contrast, RMC3 has larger
FC layers sizes, making it more compute-intensive than RMC1 and
RMC2. To compare the execution time of SmartSSD® and the CPU,
we consider the systems’ maximum theoretical memory bandwidth

and floating-point operations per second (FLOPS). The CPUwe used
for our experiments has 13×, and 92× higher DRAM bandwidth and
theoretical FLOPS than the FPGA on the SmartSSD (see Table 3).

For RMC2, the embedding lookups dominate the execution time.
The FPGA is slightly slower than the CPU for smaller batch sizes.
For larger batch sizes, the difference in execution between the CPU
and the FPGA increases due to the FPGA’s lower DRAM bandwidth
than the CPU. For RMC3, the most compute-intensive model among
the three models, the CPU outperforms the FPGA across all the
batch sizes. Even for large batch sizes, the model parameters for FC
layers are within the CPU’s L1 and L2 cache sizes, unlike the FPGA,
which has limited on-chip storage and floating-point units than the
CPU. As a result, the FPGA experience higher latencies for larger
batch sizes. For RMC1, the FPGA outperforms the CPU for small
batch sizes. Nevertheless, as the batch size increases, the execution
time of the FPGA increases at a higher rate than the CPU due to
the reasons explained earlier.

Scalability. Using multiple SmartSSDs® is an effective way to
improve the overall performance for the scenarios where the embed-
ding table lookup dominates the inference time. In Figure 7(a-c), two
(SM2) and four SmartSSDs® (SM4) outperform the one SmartSSD®
(SM1) for RMC1 and RMC2, where the embedding lookups domi-
nate the bottom layer execution time. Using multiple SmartSSDs®
allows us to exploit the existing data parallelism by performing
the operations on different tables in parallel. For RMC3, having
multiple SmartSSDs® does not improve the overall inference time
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(a) Execution breakdown for RMC1. (b) Execution breakdown for RMC2. (c) Execution breakdown for RMC3.

Figure 10: The execution breakdown of CPU and FPGA for different DLRMmodels.

Figure 11: Comparing the performance of FPGA on SmartSSD®
with Alveo-U50 FPGA featuring a HBM exterenal memory.

as the FC layers are the bottleneck for the bottom layers’ execution
time.

CPU-FPGA Pipeline. The light blue bars (SM1+CPU) in Figure 7
highlights the case where the bottom and top layers are performed
by the FPGA and the CPU, respectively. The two computations are
pipelined. This helps to improve the inference time (e.g., decrease
the latency) compared to using one SmartSSD® (green bars) for all
the cases.

Energy Efficiency. Figure 8(a-c) presents the relative energy ef-
ficiency of the different number of SmartSSDs® in comparison
to the baseline CPU. Offloading the computation to a SmartSSD®
improved the energy efficiency compared to the CPU for various
settings across the three models and batch sizes. According to Fig-
ure 8(a-c), using one SmartSSD® achieves higher energy efficiency
than using multiple SmartSSDs®. Overall, SmartSSD® is up to 10×,
4×, and 1.75× more energy efficient than the baseline CPU for
RMC1, RMC2, and RMC3, respectively.

4.3 Evaluation with An SSD-Based
Recommendation System

We also evaluated the performance of SmartRec for the cases where
the embedding tables are stored on the SSD. This is necessary
for recommendation models where the storage requirement for
the embedding table exceeds the DRAM capacity. As we show in
Section 3, we propose a caching scheme to use the FPGA external
DRAM to cache some of the accessed blocks and take advantage
of the localities in the accesses. We study the inference time under
different cache hit rates. Figure 9 shows the execution time of
different models on SmartSSDs® for batch size 1 and batch size 8.
The X-axis shows the cache hit ratios. The 100% cache hit ratio is
equivalent to the case where the embedding table fits on the FPGA

DRAM. The zero percentage cache hit ratio highlights the scenario
where none of the lookups are available on the FPGA DRAM. For
each model, the service level agreement (SLA) requirements are
shown with a horizontal line. The recently published work reports
the SLA numbers from Facebook [5]. The SLA targets for RMC1,
RMC2, and RMC3 are 100 ms, 400 ms, and 100 ms, respectively. For
batch size 1, the execution time is within the required target for
all three models. However, the execution time does not meet the
target for larger batch sizes for a low cache hit rate. For example,
for RMC1, for less than 80% cache hit rates, the execution time for
one SmartSSD® (SM1) starts to exceed the SLA target. For the case
of 4 SmartSSDs®, the execution time meets the requirement for all
the cache hit rates. Another important observation from Figure 9(c)
is that for RMC3, for almost all cache hit ratios, the execution time
meets the target requirement since the majority of the execution
time is spent on the FC layer computation. Therefore the operation
on the embedding table has less impact on the overall inference
time.

4.4 Performance Characterization
Execution Breakdown. Figure 10 show the breakdown of the ex-

ecution time for the CPU and FPGA to understand better which
layers are the bottleneck for each model. For SmartSSD®, we com-
bine the execution of the FC bottom layers and sparse length sum
operation on the embedding vectors since both of the computations
run in parallel on the FPGA. To show which computation domi-
nates the other, we marked the bars with☆where the FC layers
dominate the embedding lookups in execution time. For RMC1
and RMC2, the majority of the time is spent on the operations on
the embedding table. In contrast, for RMC3, the execution time is
dominated by the bottom FC layers computation.

High Bandwidth Memory for FPGA.. To characterize the exter-
nal memory bandwidth’s impact on the system’s performance on
the FPGA, we compared the execution time for the FPGA on a
SmartSSD®with the FPGA that has access to high bandwidth mem-
ory (HBM). To do so, we compiled and ran the kernel on Xilinx
Alveo-U50 FPGAs that features HBM memory. We used the exact
kernel without changing the number of used DSP units or on-chop
memory resources for the kernel on U50. Figure 11 compares the
relative speedup for U50 devices over the SmartSSD® for the three
DLRM models. Using HBM improved the performance by almost
3× for RMC2, the most memory-intensive model out of the three
models. For RMC3, using HBM is less helpful since the FC layers
computation dominates the execution time.
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5 RELATEDWORK
Neural network-based recommendation systems has got a lot of
attention in recent years due to their role in numerous internet
services including e-commerce [7, 28], social media [6, 17]. While
several prior art studies designing efficient hardware and software
for various neural networks such as CNNs and RNNs, fewer studies
explored efficient hardware and software systems for the recom-
mendation system. In this section, we overview some of the more
closely related works.

Near-storage computation many commercial examples adopt
near-storage acceleration. Oracle Exdata [2] and IBM Netezza [4]
are the two examples where FPGA is deployed in the datapath
between hard disk drive (HDDs) and the CPU. Similarly, some
prior arts demonstrate the benefit of SmartSSD® in accelerating
the database query performance and energy efficiency [15, 19, 21].
Unlike database query processing, the operation on the embedding
tables exhibits random and irregular memory access to the memory.

CPUs and GPUs recommendation systems. [6] presents a
collection of production-scale deep learning-based personalized
recommendation system. In addition, they conduct in-depth system
analysis to characterize the recommendation system and optimiza-
tion suggestions for general-purpose architectures. [5] propose an
efficient scheduling algorithm by taking into account the character-
istics of query sizes and request arrival patterns for heterogeneous
systems comprising of CPUs and GPUs. Similarly, [16] accelerates
the recommendation system using a heterogeneous system com-
posed of a CPU and a GPU.

FPGAs for recommendation systems. [9–11] use FPGAs to
accelerate the inference of the deep learning recommendation in-
ference. [9] uses Intel HARPv2, a package-integrated CPU+FPGA
device for their inference engine, while [10] use FPGA with access
to a high bandwidth memory (HBM) technology. In addition, they
proposed a new data structure to reduce the number of DRAM ac-
cesses. Unlike their work, we study systems that can accommodate
large embedding tables that exceed the main memory capacity.

Near-storage processing for recommendation systems. [14]
address the memory bottleneck by exploiting DIMM-level paral-
lelism in DRAM and supporting tensor operations, e.g., gather
and reduction, within the DRAM. Similar to this work, they added
memory-side-caching for frequently accessed entries. Similar to
this work, Bandana [3] uses non-volatile memory for storing deep
learning models. They suggest multiple techniques to increase the
effective read bandwidth of NVM to address the limited read band-
width compared to a DRAM system. RecNMP [12] proposes that
provides a scalable solution for a wide range of sparse embedding
for production scale models. They studied several optimizations
such as memory-side caching, packet scheduling, and hot entry
profiling to improve the performance. RecSSD [24] is another near
data processing solution customized for neural recommendation
inference. By offloading computations for key embedding table op-
erations, RecSSD reduces round-trip time for data communication
and improves internal SSD bandwidth utilization. In contrast to our
work, they utilize the small embedding processor inside the SSD
controller to perform the computation near the storage.

6 CONCLUSION
This work explores using SmartSSDs®, an SSD equipped with
an FPGA, for a large-scale deep learning-based recommendation
system inference task. We investigate various options to offload
the neural recommendation model computation to the FPGA on a
SmartSSD®. In addition, we propose various optimizations, such
as a software-managed cache for a SmartSSD® that uses the FPGA
external DRAM as a cache to hide the high latency SSD accesses.
We demonstrate the scalability of our approach by offloading the
computation on embedding tables to multiple SmartSSDs®. Our
evaluation shows that SmartSSD® achieves high energy efficiency
while offering higher storage capacity than a DRAM-based CPU sys-
tem. Our results confirm that SmartSSDs® meet the target latency
when there are sufficient localities in embedding tables accesses.
This result motivates future work to explore techniques to improve
the locality of accesses to the embedding tables.
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