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ABSTRACT
A microservice architecture features hundreds or even thousands
of small loosely coupled services with multiple instances. Because
microservice performance depends on many factors including the
workload, inter-service traffic management is complex in such dy-
namic environments. Service meshes aim to handle this complexity
and to facilitate management, observability, and communication
between microservices. Service meshes provide various traffic man-
agement policies such as circuit breaking and retry mechanisms,
which are claimed to protect microservices against overload and
increase the robustness of communication between microservices.
However, there have been no systematic studies on the effects of
these mechanisms on microservice performance and robustness.
Furthermore, the exact impact of various tuning parameters for cir-
cuit breaking and retries are poorly understood. This work presents
a large set of experiments conducted to investigate these issues
using a representative microservice benchmark in a Kubernetes
testbed with the widely used Istio service mesh. Our experiments
reveal effective configurations of circuit breakers and retries. The
findings presented will be useful to engineers seeking to configure
service meshes more systematically and also open up new areas of
research for academics in the area of service meshes for (autonomic)
microservice resource management.
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Figure 1: Service mesh architecture

1 INTRODUCTION
Microservices have recently attracted considerable attention in both
academia and industry. A microservice architecture features hun-
dreds or even thousands of small services with multiple instances
that function as cohesive and independent processes interacting via
messages [9]. Because microservice performance depends on the
implemented functionality and the incoming workload, a continu-
ously increasing load or a load spikemay cause violation of a service
level objective (SLO) [16]. Therefore, the inter-service communi-
cation and traffic management mechanisms used in such dynamic
environments are complex. Service meshes were introduced to han-
dle this complexity and to facilitate management, observability, and
communication between microservices [25]. In essence, a service
mesh is an infrastructure layer built directly into the microservices
as a set of configurable proxies, shown in Fig. 1. For example, Envoy
is a popular user-space proxy that functions as the data plane of
the open source service mesh Istio [14]. This allows the network
to be completely abstracted, providing a single point of network
interaction for each service [24].

A service mesh provides a range of traffic management policies
such as circuit breaking and retry mechanisms, which are claimed
to make applications more robust and resilient towards failures
of dependent services or the network. Circuit breaking rejects in-
coming requests to protect latency at the expense of availability,
enabling faster reactions to overloads and load spikes than would
be achievable through capacity auto-scaling [25]. A retry setting
specifies the maximum number of times that a sidecar proxy will
attempt to connect to a service if the initial call fails. The interval
between retries prevents the called service (the server side proxy)
from being overwhelmed with requests. In a service mesh, both
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circuit breakers and retry mechanisms are configured on the called
services.

Despite the considerable interest in circuit breaking, retry mech-
anisms, and their potential benefits for microservice robustness
and performance, there is a lack of systematic studies on how im-
portant these policies and their control parameters actually are
for a resilient and robust service mesh. Some of them may have
little impact on performance and could be ignored in some sce-
narios. However, in other scenarios with complex microservice
topologies that may include multi-tier services with different fan-in
and fan-out characteristics, improper configuration of the circuit
breaker and retry mechanism in the backend services could cause a
retry storm, in which the system becomes overwhelmed by queued
retries and takes too long to recover [8]. To clarify the impact of
traffic management policies based on circuit breakers and retry
mechanisms as well as the effects of varying the parameter settings
of these tools, this work seeks to answer three research questions:
RQ1. How should circuit breakers be configured to improve

the resiliency ofmicroservice-based applicationswith
complex topologies?

RQ2. How should retry mechanisms be configured to im-
prove the resiliency ofmicroservice-based applications
with complex topologies,with andwithout circuit break-
ers?

RQ3. How do workload characteristics impact the answers
to RQ1 and RQ2?

To answer these questions, we present a set of experiments
performed using Online Boutique (Fig. 2) - a simple microservice
based application consisting of 11 microservices with 33 traffic
management parameters that can be tuned. In these experiments,
traffic management is performed using Istio and a range of different
traffic management policies and parameter settings are tested to
evaluate their impact on performance and illustrate the challenges
of configuring traffic management policies when using a service
mesh.

The results obtained provide new insights into the practical
use of traffic management policies in a service mesh and how such
policies interact to enhance application performance and resiliency.

2 BACKGROUND
In this section, we discuss previous studies relevant to the work pre-
sented herein.We divide these earlier studies into works concerning
service meshes, circuit breaker patterns, and retry mechanisms.

2.1 Service Meshes
Advances in microservice technology have significantly increased
the speed and agility of software service delivery but have also
increased the operational complexity of modern applications. The
purpose of a service mesh is to mitigate this complexity by adding
an infrastructure layer between microservices. Some recent publi-
cations have highlighted aspects of service mesh technologies in
need of further research [20]. For example, one paper presented
an in-depth analysis of different design decisions to help establish
architectural decision-making guidelines for service meshes [10].

Additionally, to secure service mesh solutions such as Istio, a pro-
tected coordination scheme was developed [17], and Chandramouli

et al. [5] offered deployment guidance for proxy-based service mesh
components that collectively form a robust security infrastructure
for supporting microservice-based applications.

Finally, the advantages of service meshes have been investi-
gated in several different use cases including in the context of
the 5G core [6] [1] and in efforts to improve scheduling algo-
rithms [30] [29].

2.2 Circuit breaker patterns
Resilience is a key issue for any software architecture, and microser-
vice architectures are no exception to this rule. Circuit breaker
patterns were therefore introduced to handle run-time failure in
microservice applications and improve the resilience of the soft-
ware stack. The circuit breaker pattern is implemented to reject
requests when a certain condition is satisfied - for example, return-
ing a HTTP 503 error if the number of queued requests exceeds
20.

Several publications have investigated the advantages of circuit
breaker patterns in various use cases including in the context of
IoT [2].

Montesi et al. [23] identified three distinct circuit breaker pat-
terns: (1) The client-side circuit breaker pattern, in which each client
includes a separate circuit breaker for intercepting calls to each
external service that the client may call, (2) The service-side circuit
breaker pattern, in which all client invocations received by a ser-
vice are first processed by an internal circuit breaker that decides
whether the invocation should be processed or not. (3) The proxy
circuit breaker pattern, in which circuit breakers are deployed in a
proxy service that sits between clients and services and handle all
incoming and outgoing messages. Service mesh-based technologies
fall into the latter category because they add a sidecar proxy.

A review of the literature on circuit breakers for microservices
has been published [27], and Saleh Sedghpour et al. [25] studied the
impact of adaptive circuit breaker configuration on microservice
performance.

2.3 Retry mechanisms
A retry mechanism generates a new request, either to the same
instance of a called service or a different instance of a called service,
when an initial request fails. This may happen several times; the
permitted number of attempts is specified using a retry attempt
parameter, and the interval between consecutive retries is set using
a retry timeout. Retry mechanisms are not a novel concept in dis-
tributed systems; their use has been described in older studies [28]
dealing with error recovery. Heorhiadi et al. [13] proposed Gremlin,
a framework for systematically testing the failure-handling capa-
bilities of microservices that allows the operator to easily design
tests that include resiliency patterns. Another group [22] performed
a continuous-time Markov chains analysis of circuit breaker be-
havior and retry mechanism patterns in a single-tier architecture,
while Dattatreya Nadig demonstrated the benefits of Envoy as a
sidecar proxy for increasing microservice resiliency using retry
mechanisms, circuit breaking patterns, and rate limiting [7]. Rate
limiting is conceptually similar to circuit breaking and may im-
prove resiliency when many services are forwarding requests to a
smaller number of services and the average request latency is low.
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Although Envoyproxy includes an exponential back-off algorithm
to prevent retry storms, it is not configurable for different scenarios
and is also not yet supported by Istio [11].

Despite the recent academic interest in microservices, few stud-
ies have investigated microservice resiliency patterns. This study
differs from previous works on microservice resiliency in that it is
based on a systematic analysis of circuit breaker patterns and retry
mechanisms as traffic management policies, using several different
circuit breaker and retry parameter settings in a 4-tier architecture
deployed in service mesh.

3 APPROACH
In this section we introduce the subject of our study and our ap-
proach to data collection and analysis. We then discuss factors that
could potentially reduce the validity of our experiments and the
measures taken to ensure validity.

3.1 Study Subjects
Because referral-chain (snowball) sampling has been widely used in
literature reviews focusing on software engineering problems [3],
we used this method to select study subjects. In referral-chain sam-
pling, items are selected based on their relationship to previously
selected items, which facilitates the identification of relevant items
outside the initial sampling frame.

We considered five different applications for use in our experi-
ments: (1) Bookinfo [15] (2) DeathStarBench [12] which includes 3
different applications (3) Online Boutique. We chose to use only ap-
plications satisfying the following three conditions: a) have at least
3 tiers in their software stack b) support concurrent calls between
microservices to enable overloading of the backend microservices
c) do not use any service networking platform in their software
stack so we can be certain that the traffic is passing through the
sidecar proxies.

The only one of the five applications satisfying all three condi-
tions is Online Boutique. This application consists of 11 microser-
vices and is a web-based e-commerce app that allows users to
browse items, add them to a cart, and purchase them [4]. Its ar-
chitecture is shown in Fig 2. We chose to focus on one of the ap-
plication’s eleven endpoints, /cart, which invokes a chain of three
microservices. Upon invoking this endpoint, a request is sent to
a frontend service, which in turn invokes the recommendation
service by sending one request, and four requests are sent to the
product catalog service. The recommendation service also sends a
request to the product catalog service. A total of 6 internal requests
are thus required to deliver a successful complete response to the
external client.

3.2 Data Collection
To collect data for our study, we developed a tool [26] that repeat-
edly configures selected traffic management policies in Istio. To do

Session 1: Service and Cloud Computing ICPE ’22, April 9–13, 2022, Bejing, China

19



this, we manually identified three key traffic management parame-
ters in Istio: a) HTTPMaxRequest, which is the maximum number of
queued requests in the circuit breaker’s configuration, b) attempts,
which specifies the maximum number of times the sidecar proxy
attempts to connect to a service if the initial call fails, c) perTryTime-
out, which specifies the interval between retries when attempting
to connect to a service. Then we ran the HTTPMon [18] traffic
generator, which selects a think-time and a number of users, and
maintains a number of client threads equal to the number of users.
We configured HTTPMon to generate an open-loop workload in
which the request rate is maintained independently of the response
time of the system under load. During the execution of HTTPMon,
the response times and responses of all services were monitored.

We deployed the tool and a service mesh cluster including Online
Boutique on 5 bare-metal machines with 16GB of RAM, two Intel
Xeon E5430 2.66 GHz CPUs with four cores and hyper-threading,
and a 256 GB NVMe drive running Ubuntu 20.04 LTS. The service
mesh cluster was set up with Kubernetes 1.19.14, Docker 19.03.15,
and Istio 1.11.2. Each service of Online Boutique was limited to 2
CPU cores via the standard Kubernetes mechanism. We repeated
each experiment 5 times and each experiment took 5 minutes, with
the first minute of each experiment being considered as warm-up
phase. In total, we collected data from more than one thousand
experiments, but we only report 320 of them both due to space
limitation and to focus on the important results. In the reported
experiments, we generated 110M requests which took more than
130 hours to complete in total.

Capacity. In all performed experiments, we define capacity as the
maximum achieved throughput, i.e., all successful requests for
which the response time is less than 100 ms.

3.3 Analysis
Our initial goal in the analysis was to determine how much the
parameter selection (see Fig. 3) impacted the performance of a black-
box service. To this end, we performed visual analysis of all three
possible response types (successful, failed, and circuit-broken) and
response times.

For each configuration of trafficmanagement in the service mesh,
we plot the frequency of each response type (successful, failed and
circuit-broken) over time and cumulative distribution functions
(CDFs) of the response times of all requests and carried throughput.
We then iteratively discuss and classify the resulting plots.

3.4 Threats to Validity
Despite careful research design, studies such as those presented
here inevitably have limitations and factors that may reduce their
validity. The most important of these limitations and factors for
this work are summarized below.

3.4.1 External Validity. This paper used only a specific version of
each tool. While we argue that the chosen tool versions are repre-
sentative of tools that would be used in real world cases, the findings
presented herein cannot be directly generalized to other versions,
particularly since performance may differ between versions even
if the same configuration policies are used. Additionally, we used
snowball sampling to identify relevant study subjects. While this

approach is common in empirical research, it inherently makes
it impossible draw conclusions about the population in general
and can lead to sampling a small subset of a larger population. To
summarize, while we have no direct evidence that our results are
applicable to the studied tools in all cases, we expect that similar
results would be obtained if different variants of the chosen tools
were used.

3.4.2 Internal Validity. Internal validity is inevitably affected by
the fact that some design decisions must be made when defining
the configuration values to test. Empirical data analysis has not
suggested that thewhole stack’s behavior would have been radically
different if values other than those chosen were used, but this is
clearly impossible to prove. Another internal validity threat is that
we performed all experiments on bare-metal platforms. Some of
the executions in our study could thus have been affected by our
choice of hardware for data collection. However, we consider it
unlikely that the general validity of our results would be threatened
by the specific hardware chosen for the study. On the other hand,
service meshes are often employed on virtualized platforms whose
performance characteristics may differ from those of bare-metal
platforms due to the presence of an additional scheduling layer and
sharing of hardware resources. It seems unlikely that the general
validity of our results would be impacted by the use of a bare-
metal platform. Another internal validity threat is that there are
infinite potential traffic scenarios, which could impact some of
our experiments. However, we tested a wide range of different
traffic scenarios to maximize the breadth of the conditions tested
in our experiments and improve the robustness and reliability of
our conclusions (we also ran experiments with other values, which
are not reported as the results were similar to reported ones.).

4 IMPACT OF DIFFERENT TRAFFIC
MANAGEMENT POLICIES ON
PERFORMANCE

4.1 Impact of circuit breakers
To study the impact of circuit breakers, we performed a series of
experiments in which we compared the response code frequen-
cies observed with different circuit breaker parameter settings and
for circuit breakers acting on different tiers of the studied applica-
tion under different traffic scenarios. We repeated each experiment
5 times but since there were no significant differences between
the results of replicate experiments we only discuss the results
of individual experiments. We performed t-tests to evaluate the
significance of differences between between related experiments,
applying a significance threshold of p < .01 (with all results in the
[0.42-0.63] range). The results of varying individual circuit breaker
parameters are discussed below.

4.1.1 Enforcement point. To study the impact of varying the circuit
breaker enforcement point, we conducted a set of experiments in
which the emulated workload was 120% of capacity and the circuit
breaker’s maximum queue length was set to 20 while varying the
application tier on which the circuit breaker acted. The impact of
varying the maximum queued requests parameter is discussed in
Section 4.1.3. The frequencies of the different status codes in these
experiments are presented in Fig. 4a. Based on the results, if the
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Figure 4: Impact of enforcement point for best circuit
breaker configuration (20) on different tiers with same over-
load scenario (120% of capacity).

circuit breaker acts on the first tier, it prevents downstream tiers
from consuming resources on overloading requests. Conversely, if
the circuit breaker acts on the second or third tier, some requests
are rejected (circuit broken) after traversing a few tiers. This means
that although the result is the same from the external client’s per-
spective – the request fails – more resources are consumed than
when the circuit breaker acts on the first tier. Additionally, when
the circuit breaker was applied on all tiers, the first tier dropped
all the overloading requests. As mentioned previously, the first tier
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Figure 5: Impact of incoming traffic with the circuit breaker
(20) acting on tier one under different overload scenarios.

calls both second and third tier services (1 time and 4 times, re-
spectively), while the second tier service calls the third tier service
1 time. Consequently, when varying the tier on which the circuit
breaker acts, the numbers of circuit broken and successful requests
on third tier also changes. In contrast, as shown in Fig. 4b, when
we enforce the circuit breaker on the first tier or on all tiers, the
response time from an outside client’s perspective is lower than
for enforcement on the second or third tier. This improves the user
experience because requests are failed fast rather than failed slow.
Additionally, when the circuit breaker acts on the second tier, the
achieved response times are higher than when it acts on the third
tier. The reason for this seems to be related to the implementation
of the second and third tiers.

4.1.2 Incoming traffic volume. To investigate the impact of varying
the incoming traffic volume, we performed a series of experiments
inwhich the emulatedworkloadwas varied between 80% of capacity
and 120% of capacity. In this case we limited the circuit breaker’s
maximum queue length to 20 on the first tier (this was the best
performing circuit breaker configuration, as shown in Section 4.1.3).
The status code frequencies under these conditions are shown in
Fig. 5a. It was clear that the volume of incoming traffic directly
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Figure 6: Impact of circuit breaker value on first tier with
same overload scenario (120% of capacity).

influenced the frequency of unsuccessful requests. Although the
rate of successful requests was higher when the incoming traffic
volume was 120% of capacity, higher incoming traffic volumes led
to higher frequencies of unsuccessful requests in the microservice-
based architecture. Additionally, we found that fast failure helped
the microservice architecture to maintain an acceptable response
time in the face of high incoming traffic volumes.

4.1.3 Circuit breaker queue length. To study the impact of circuit
breaker maximum queue length, we performed a series of experi-
ments in which the maximum queue length was varied between
1, 20 and 1024 for the first tier. In this case we limited the emu-
lated workload to 120% of capacity. Fig. 6a highlights the trade-off
between the maximum request rate and the response time when
choosing the circuit breaker’s maximum queue length. A high max-
imum queue length value allows more requests "to pass through"
and thus increases the request rate, but also increases response
times, which is undesirable. In contrast, a low maximum queue
length value reduces response times but also reduces the request
rate. The maximum queue length used in the previous experiments,
20, was found to provide a good balance between these two factors.

4.2 Impact of including a retry mechanism
To investigate the impact of including a retry mechanism, we per-
formed a series of experiments comparing the response codes and
response times observed when using a retry mechanism in conjunc-
tionwith a circuit breaker with enforcement on different application
tiers under different traffic scenarios. We repeated each experiment
5 times; since there were again no significant differences between
replicate experiments performed under the same conditions, we
only present results for individual experiments. We performed t-
tests to evaluate the significance of observed differences between
related experiments, applying a significance threshold of p < .01
(with all results in the [0.56-0.68] range). To thoroughly evaluate
the performance impact of including a retry mechanism, we divide
the problem space as described below.

4.2.1 Retry mechanism and circuit breaking. To analyze the inter-
action between retry mechanisms and circuit breaker patterns in
a service mesh, we present a subset of the experiments in which
the incoming traffic volume was fixed at 100% of capacity, the retry
mechanism was configured to permit only a single retry, and the
circuit breaker acted on the third tier with varying maximum queue
lengths. The results obtained under these conditions are shown
in Fig. 7. If circuit breaker’s maximum queue length is too short
or there are failures in the called service (with a retry mechanism
active), we can expect a series of retried requests from the caller
services (in this case, both first and second tier services call the
third tier service). As shown in 7b, if the circuit breaker’s maxi-
mum queue length is high, the response time increases, which is
consistent with the previously discussed experiments without the
retry mechanism. We also discussed similar results in our previous
work [25], there is a trade-off between response times and carried
throughput, to be handled per preference of the system administra-
tor. The main difference between the cases with and without the
retry mechanism is that including the retry mechanism increased
the response time further.

4.2.2 Impact of number of retry attempts. A key parameter control-
ling a retry mechanism in a service mesh is the number of permitted
retries. To study the impact of varying this parameter, we performed
a series of experiments in which the incoming traffic was fixed at
100% of capacity and the circuit breaker’s maximum queue length
was set to 1 (to maximize the impact of retry attempts) with differ-
ent numbers of retry attempts on the third tier. As shown in Fig. 8a,
increasing the number of permitted retries slightly increased the
numbers of successful and circuit broken requests while reducing
the number of failed requests. However, the relative magnitudes of
the changes in request type frequencies were substantially smaller
than the relative magnitude of the changes in the number of permit-
ted retries. Additionally, when the number of permitted retries was
set to zero under these conditions, there were fewer successful and
circuit broken requests and more failed requests than when a single
retry was allowed. As shown in Fig. 8b, the response time from
the outside client’s perspective increased slightly as the number of
retry attempts increased.

4.2.3 Impact of varying the retry interval. Another retry mecha-
nism parameter that can be varied is the interval between retries.
To investigate the impact of varying the retry interval, we present
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Figure 7: Impact of the retry mechanism when combined
with circuit breaker enforcement on the 3rd tier with dif-
ferent circuit breaker queue lengths. The retry mechanism
setting (1 attempt) and overload condition (100% of capacity)
were held constant.

a subset of experiments in which the retry interval was varied with
the incoming traffic volume fixed at 100% of capacity and the circuit
breaker queue length set to 20 with 10 retry attempts. In these ex-
periments, both the retry mechanism and the circuit breaker were
active on the third tier only. As shown in Fig. 9a, if the retry interval
was too short, the frequency of circuit broken requests increased
slightly but the relative magnitude of the change in the retry in-
terval was substantially greater than the relative magnitude of the
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Figure 8: Impact of varying the number of retry attempts
with the circuit breaker acting on the third tier and the cir-
cuit breaker’s maximum queue length set to 1 under fixed
overload conditions (100% of capacity).

change in the frequencies of each request type (successful, circuit
broken and failed). We thus conclude that the retry interval does
not greatly affect performance. Additionally, as shown in Fig. 9b,
varying the retry interval did not greatly affect the response time
for the outside client.

4.2.4 Impact of workload spikes and different retry intervals. The
results presented above show how retries interact with a circuit
breaker under conditions of sustained overload. However, retries
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Figure 9: Impact of varying the retry interval with a circuit
breaker queue length of 20, permitted retry attempts of 10,
fixed overload condition (100% of capacity), and both the cir-
cuit breaker and retry mechanism acting on the third tier
service.

are often used as a mechanism to overcome short-lived workload
spikes or transient failures. To study the impact of workload spikes
and different retry intervals, we performed a series of experiments
in which the incoming traffic was set at 100% of capacity most of
the time, spiking to 120% of capacity for 5 seconds at 60 seconds
intervals. In these experiments, the circuit breaker queue length was
set to 20 and the number of permitted retry attempts was set to 10
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Figure 10: Impact of workload spikes and different retry
intervals: Throughput achieved in terms of successful re-
sponse codes (green solid lines), circuit broken requests (or-
ange dashed lines), and failed requests (red dashed dotted
lines) for different retry intervals with a third-tier circuit
breaker queue length of 20 and permitted retry attempts of
10 in third tier with spikes (120% of capacity) in the incom-
ing workload (100% of capacity).

while varying the retry interval; both the retry mechanism and the
circuit breaker acted on the third tier. We also ran experiments with
different traffic scenarios such as 90%, 110% and 120% of capacity
and different spiking scenarios such as 110%, 130%, 140% of capacity.
We used different spike duration such as 10, 15, 30 seconds and
different intervals such as 30, 90 and 120 second. The result of
these scenarios are not shown as they are similar to the reported
experiments. As shown in Fig. 10, if the retry interval is too short,
the frequency of circuit broken requests after spikes is slightly
increased. The pattern of failed requests in first tier follows the
pattern of circuit broken requests in third tier. The external response
times for the workloadwith spikes are similar to those seen in Fig.9b
(data not shown).

4.2.5 Impact of different workload spikes. We next compared the
impact of varying the magnitude of the spikes in the incoming
workload, as shown in Fig. 11. In these experiments, the incoming
traffic volume was mostly set to 100% of the system’s capacity while
the spike volume was varied. The circuit breaker queue length was
set to 20 and 10 retries were permitted while varying the retry
interval on the third tier. The results obtained were similar to those
observed when simply varying the retry interval (see section 4.2.4).
As shown in Fig. 11, varying the spike volume caused the frequency
of failed requests to increase at the same rate as the first tier spike
volume. As mentioned previously, the pattern of failed requests
in the first tier mirrored the pattern of circuit broken requests in
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Figure 11: Impact of different workload spikes: Through-
put achieved in terms of successful response codes (green
solid lines), circuit broken requests (orange dashed lines),
and failed requests (red dashed dotted lines) for different
retry intervals and spikes in the incoming workload (100%
of capacity) with a maximum circuit breaker queue length
of 20 and permitted retry attempts of 10 on the third tier.

the third tier. Varying the magnitude of the workload spikes also
had little effect on response times (data not shown); the pattern
observed was similar to that seen in Fig.9b.

4.2.6 Impact of varying the enforcement points of the retry mecha-
nism and circuit breaker configuration. Finally, to study the impact
of varying the enforcement point of the retrymechanism and circuit
breaker, we conducted experiments with a circuit breaker maximum
queue length of 20, 2 permitted retry attempts, and a 5 second retry
interval while varying the tier on which the circuit breaker and
retry mechanism acted. A workload equivalent to 100% of system
capacity was imposed in all cases. The results are shown in Fig. 12a.
Because our workload generator did not support the use of the
retry mechanism when the circuit breaker was set to act on the
first tier, the results obtained in this case were identical for all retry
mechanism configurations. Conversely, if the circuit breaker was
set to act on the second tier, the use of the retry mechanism caused
some increase in failed requests when it was set to act on all possi-
ble tiers (specially when it was acting on all tiers). As mentioned
before, the pattern of failed requests in the first tier mirrors the
pattern of circuit broken requests in tiers 2 and 3. When the circuit
breaker was set to act on tier 3, the frequency of failed requests was
highest when the retry mechanism was configured to act on tier
1 or on all tiers. Finally, when the circuit breaker was configured
to act on all three tiers, varying the enforcement point of the retry
mechanism had little effect on the frequencies of successful, failed,
and circuit broken responses. The response times experienced by

an outside client in these experiments are shown in Fig. 12b. It can
be seen that configuring the circuit breaker to act on the first tier or
on all tiers (including first tier) means that varying the enforcement
point of the retry mechanism has no impact on response times,
and response times in these cases are higher than when the circuit
breaker is configured to act on tier 2 or tier 3. Conversely, if we
configure the circuit breaker to act on tier 2, the response times are
slightly higher when the retry mechanism is enforced on all tiers.
Moreover, if we configure the circuit breaker to act on tier 3, the
response times are slightly higher when the retry mechanism is
configured to act on tier 1 or on all tiers.

4.3 Discussion
RQ1 asks "How should circuit breakers be configured to improve the
resiliency of microservice-based applications with complex topolo-
gies?"

The key factors that determine the impact of a circuit breaker
are presented in section 4.1, which begins with an analysis of the
effect of varying the circuit breaker enforcement point. We also
investigated the impact of the volume of incoming traffic on system
performance when the circuit breaker is configured to act on the
first application tier. Finally, we investigated how the circuit breaker
queue length parameter affects system performance.

Our experiments show that a well-configured circuit breaker can
maintain a favorable response time while maximizing application
throughput. Circuit breakers enable fast failures and prevent clients
from repeatedly trying to connect to an overloaded or failing service.
Circuit breakers can also enhance the user experience and reduce
recovery times after an outage. For instance, when Meta (Facebook)
recently began a recovery process after a major outage, users started
generating more requests than they would normally [21], which
could cause infrastructure overload and increase recovery times.
To summarize, we found that configuring circuit breakers to act on
lower application layers improved the user experience, that setting
the circuit breaker queue length to an excessively low value may
increase the number of dropped requests, and that setting the circuit
breaker queue length too high makes it impossible to guarantee an
acceptable response time or user experience, which we expected
based on the common sense rules for setting circuit breaker values.
We also learned that identifying an optimal circuit breaker value
is tricky and depends on many factors, which confirms results in
our previous work [25]. Finally we conclude that circuit breakers
are useful in the case of a transient failure or overload. Moreover,
we found that the incoming traffic volume does not affect service
resiliency if the circuit breaker is well tuned.

RQ2 asks "How should retry mechanisms be configured to im-
prove the resiliency of microservice-based applications with complex
topologies, with and without circuit breakers?"

Using the previous answer, we answered this question in section
4.2. This section starts by investigating the impact of enabling a
retry mechanism while varying the circuit breaker queue length.
We also studied the impact of varying the number of retry attempts
and how they can affect system performance in term of response
codes and response times. Then we investigated how varying the
retry interval can improve resiliency. Finally, we studied the impact
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(a) Throughput achieved in terms of successful response codes (green solid lines) and circuit broken requests (orange dashed
lines), and failed requests (red dashed dotted lines).
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Figure 12: Impact of varying the enforcement points of the retry mechanism and circuit breaker while keeping the circuit
breaker’s maximum queue length (20), retry mechanism settings (2 attempts with 5 seconds interval), and overload condition
(100% of capacity) constant.
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of varying the retry mechanism’s enforcement point and the circuit
breaker pattern simultaneously.

Based on our experiments, if a sensitive circuit breaker (i.e.,
one with a short queue length) is used, the simultaneous use of a
retry mechanism may lead to a retry storm, which is expected. If
the circuit breaker is not properly configured, a retry mechanism
may, surprisingly, increase throughput during load spikes. We also
learned that a high number of retry attempts is unhelpful and may
diminish the user experience by increasing the response time. The
same is true for a high retry interval, while an overly short retry
interval may worsen overloads or failures. We conclude that retry
mechanisms are useful only for managing transient failures or
overload situations.

RQ3 asks "How do workload characteristics impact the answers to
RQ1 and RQ2?"

We answer this question in sections 4.1 and 4.2. We first studied
the impact of the incoming traffic volume on resiliency with a
circuit breaker active but no retry mechanism. Thenwe investigated
how workload spikes affect resiliency when a retry mechanism is
enforced with different retry intervals. Furthermore we studied the
impact of different workload spikes.

Based on the results of our experiments, overload is inevitable if
the incoming traffic volume exceeds the capacity of the resources.
During a transient overload, a circuit breaker can enable fast-failure,
which improves the user experience. We also conclude that load
spikes can be controlled by using proper circuit breaker config-
uration in conjunction with a small number of permitted retry
attempts with a retry interval that is neither too low nor too high.
We believe that if the overload situation is not transient, then the
circuit breaker pattern and retry mechanism are not good choices
for maintaining an acceptable user experience.

5 OUTLOOK
This paper studies service mesh traffic management policies for mi-
croservices to provide guidance on the practical use of these policies
and to show how they can increase application performance and
resiliency. The service mesh landscape is rapidly evolving and some
features available in proxy sidecars cannot be controlled through
the service mesh control plane; examples include the time out bud-
get for individual requests, the back-off method for retries, and
caching at the sidecar proxies [19] [20]. Because microservice per-
formance depends onmany factors, configuring trafficmanagement
policies well can be challenging [25]. The use of a service mesh
enables outstanding observability without imposing any particular
implementation costs during the development process, which sug-
gests that it may be beneficial to develop methods for autonomous
control of the service mesh. We therefore propose to build on the re-
sults presented herein by developing a controller to manage service
mesh traffic management policies.
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