
The Cost of Reinforcement Learning for Game Engines:
The AZ-Hive Case-study

Danilo de Goede
d.degoede@uva.nl

University of Amsterdam
The Netherlands

Duncan Kampert
fjf@hotmail.nl

SURF
The Netherlands

Ana Lucia Varbanescu
a.l.varbanescu@uva.nl

University of Amsterdam
The Netherlands

Abstract
Although utilising computers to play board games has been a

topic of research for many decades, the recent rapid developments
in the field of reinforcement learning - like AlphaZero (and variants)
- brought unprecedented progress in games such as chess and Go.
However, the efficiency of this process remains unknown.

In this work, we analyse the cost and efficiency of the AlphaZero
approach when building a new game engine. Thus, we present our
experience building AZ-Hive, an AlphaZero-based playing engine
for the game of Hive. Using only the rules of the game and a quality
of play assessment, AZ-Hive learns to play the game from scratch.

Getting AZ-Hive up and running requires encoding the game
in AlphaZero, i.e., capturing the board, the game state, the rules
and the assessment of play-quality. And different encodings lead
to significantly different AZ-Hive engines, with very different per-
formance results. Thus, we propose a design space for configuring
AZ-Hive, and demonstrate the costs and benefits of different con-
figurations in this space. We find that different configurations lead
to a less or more competitive playing-engine, but the training and
evaluation for different such engines is prohibitively expensive.
Moreover, no systematic, efficient exploration or pruning of the
space is possible. In turn, an exhaustive exploration can easily take
tens of training-years.

CCS Concepts
•Computer systems organization→Multicore architectures;
• Software and its engineering→ Software performance; • Com-
puting methodologies→ Parallel programming languages; Mas-
sively parallel algorithms; Artificial intelligence.

Keywords
energy efficiency; reinforcement learning; AlphaZero: Hive; game-
playing engines; computational cost; design space exploration.

ACM Reference Format:
Danilo de Goede, Duncan Kampert, and Ana Lucia Varbanescu. 2022. The
Cost of Reinforcement Learning for Game Engines: The AZ-Hive Case-
study. In Proceedings of the 2022 ACM/SPEC International Conference on

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICPE ’22, April 9–13, 2022, Bejing, China
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9143-6/22/04. . . $15.00
https://doi.org/10.1145/3489525.3511685

Performance Engineering (ICPE ’22), April 9–13, 2022, Bejing, China. ACM,
New York, NY, USA, 8 pages. https://doi.org/10.1145/3489525.3511685

1 Introduction
Utilising computers to play board games has been a topic of

research for many decades. Although chess is the most famous
example of such a game [15], other games like Go, Atari, or Shogi
have also seen increasingly stronger play over the years.

Traditional play engines rely on a combination of game-specific
heuristics and alpha-beta pruning [11]. For instance, Deep Blue,
programmed with this approach, managed to defeat the world
chess champion Garry Kasparov in 1997 [12]. These approaches
aim to replicate the decisions of human expert-players, and require
expert datasets, which are often unreliable, expensive, or simply
unavailable [19]. Moreover, some games are of such high complexity
that the creation of heuristics good enough to beat top players is
very difficult [2].

To overcome these challenges, machine learning became an in-
teresting alternative [17], and the rise of reinforcement learning
has changed the way we design playing engines for turn-based
strategy games [4]. AlphaZero, Leela Chess Zero and MuZero have
shown that it is possible to achieve superhuman performance in
the games of Atari, chess, and Go, by tabula rasa reinforcement
learning from games of self-play [13, 18].

Fundamentally, the advantage of the self-taught playing engines
over traditional, heuristic-based approaches, amounts to learning
heuristics by practising; consequently, it seems a playing engine
for any game can be built that way. Unfortunately, the efficiency of
this approach remains largely unknown, as the procedure comes at
a significant price in terms of compute resources.

In this work, we investigate the benefits and challenges of the
AlphaZero approach through a case-study. Specifically, we analyse
the construction of AZ-Hive, a self-taught playing engine for Hive,
a two-player tile-based strategy game that is unsolved: all existing
engines are far from the level of expert human players [9].

Our exploration is based on a generalized AlphaZero frame-
work [19]. To enable AZ-Hive to learn to play using this approach,
we need to provide it with (1) the rules of the game, for it to ex-
plore different correct game actions, and (2) a testing procedure,
for it to self-assess whether the actions being explored are ben-
eficial. However, for a game as complex as Hive, how we encode
these two components in the AlphaZero framework has profound
consequences on the design, implementation, and performance of
both the training phase and the resulting engine. To systematically
analyse different encoding options, we define a multi-dimensional
design space, where each design represents a possible encoding.
We further explore this space to determine the best design for

Session 4: Machine Learning and Performance ICPE ’22, April 9–13, 2022, Bejing, China

145

https://doi.org/10.1145/3489525.3511685
https://doi.org/10.1145/3489525.3511685

AlphaZero-Hive, i.e., the design that creates the best possible Hive
playing engine. Finally, we estimate the cost of this exploration in
terms of computational resources and energy.

Our results, based on the exploration of 10 different designs, in-
dicate that AZ-Hive does indeed learn to play the game of Hive, but
the computational cost for this process is significant. Moreover, we
have not yet trained a super-human AZ-Hive engine, and, without
rules to better explore the design space, the search for the best
AZ-Hive can take 20+ compute-years.

In summary, this work makes the following contributions:

• We define a design space to capture the different aspects Hive
encoding in AlphaZero; each design represents a different con-
figuration, and is equivalent to a different AZ-Hive version.

• We demonstrate design space exploration to select the best con-
figuration.

• We analyse the performance of different AZ-Hive versions in
terms of playing capability, thus assessing the success of our
design-space exploration.

• We quantify the energy cost of the full space exploration.

2 Background
2.1 Traditional game engines

Traditionally, game engines are built upon minimax [15], which
performs a search through the game-tree until depth 𝑁 . Many
improvements exist for this algorithm, which either reduce the
search-space (e.g., 𝛼 − 𝛽 pruning), or provide better guidance for
the search (e.g., killer heuristic). The downside of using minimax
is that, ultimately, the strength of the algorithm is bound by the
accuracy of the board evaluation: the better the board evaluation,
the quicker the convergence towards better board-states. This board
evaluation is typically based on extensive expert player knowledge,
and it requires both computer science skills and game expertise to
be built into the game engine.

To work around the expertise required to build an exceptionally-
strong board evaluation, Monte-Carlo Tree Search (MCTS) proposes
a promising alternative: instead of a-priori assessing a game state
using a well-crafted heuristic-based evaluation function, MCTS
performs playouts, effectively playing out the game (randomly) until
a terminal state (win/loss/draw) occurs. It will, for every possible
move, keep track of the playout outcomes, and use them to provide
an approximation of the strength of each move. In theory, when
giving MCTS infinite amount of time, it will converge towards the
optimal moves. The downside of MCTS is that for complex games,
with high branching factor (i.e., many possible moves from a given
state), it will take a lot of playouts (and, therefore, compute time)
for this strength approximation to become meaningful.

2.2 The AlphaZero approach
Although traditional game engines have been successful in a

wide variety of games, they heavily rely on the creation of heuris-
tics. Despite decades of work to create such heuristics, there remain
games for which the best traditional engines are only able to play
at the level of human amateurs [16]. AlphaZero provides an al-
ternative approach: the engine only knows the rules of the game,
uses neither heuristics, nor game-specific knowledge, and learns
how to play the game by playing against itself, and keeping track

of the (in)successful moves and their outcome. In the following
paragraphs we introduce the two main components of the algo-
rithm, and further show how they are combined into a self-play
reinforcement learning algorithm.
Neural network The first component of a playing engine is a
deep neural network 𝑓𝜃 with parameters 𝜃 . The neural network
takes a board state 𝑠 as an input and produces a policy vector ®𝑝 and
a value 𝑣 ∈ [−1, 1]. The policy vector ®𝑝 contains probabilities over
the possible moves such that the 𝑎-th component of ®𝑝 corresponds
to the probability of selecting move 𝑎; 𝑣 describes the probability of
the current player winning the game from board state 𝑠 . Intuitively,
®𝑝 describes which moves are considered to be good, and 𝑣 describes
who is winning from the current board state. The parameters 𝜃
of the neural network are initialised randomly and then updated
using the self-play reinforcement learning algorithm that will be
discussed in Section 2.2.2. The architecture of the neural network
will be described in Section 4.3.5.
2.2.1 MCTS for policy improvementMCTS works on a search tree
whose nodes correspond to game states and whose edges corre-
spond to actions. An edge in the search tree corresponds to an
action 𝑎, taken from board state 𝑠 , and maintains (1) the prior prob-
ability 𝑃 (𝑠, 𝑎) of choosing action 𝑎 from board state 𝑠 according to
the policy vector ®𝑝 output by the neural network 𝑓𝜃 , (2) the visit
count 𝑁 (𝑠, 𝑎), i.e., the number of times we took action 𝑎 from board
state 𝑠 , and (3) the action value 𝑄 (𝑠, 𝑎) that stores the reward for
taking action 𝑎 in state 𝑠 .

MCTS iteratively expands the game tree by selecting a move
𝑎 that maximizes the upper confidence bound 𝑈 (𝑠, 𝑎) [19]. Next,
the value 𝑣 produced by the neural network 𝑓𝜃 is propagated back,
updating 𝑁 (𝑠, 𝑎) and 𝑄 (𝑠, 𝑎) accordingly. If the newly added node
corresponds to a terminal state of the game, we propagate the actual
rewards along the path (e.g., 1 for a win, 0 for a draw, and −1 for a
loss). After several simulations, MCTS outputs a vector ®𝜋 of search
probabilities, such that the 𝑎-th component of ®𝜋 is proportional to
the visit count of the edge (𝑠, 𝑎) [19]. The vector ®𝜋 generally selects
stronger moves than the policy vector ®𝑝 produced by the neural
network; intuitively, this allows the network to improve.
2.2.2 Self-play reinforcement learning The main idea of the self-
play reinforcement learning algorithm is to use the neural network
𝑓𝜃 in combination with MCTS to create an iterative policy improve-
ment procedure. Each iteration has three stages: (1)generate training
data by letting the current iteration of the engine play many games
against itself, with every move played according to ®𝜋 , (2)train the
network by adjusting the parameters 𝜃 of the neural network 𝑓𝜃
to maximise the similarity between ®𝑝 and ®𝜋 , and to minimise the
error between the predicted and the actual winner [19], and (3)test
the new network1 by letting it play a number of games against its
previous version to determine (and keep) the better version.

Using this iterative algorithm for many iterations, the neural
network incrementally learns which game states are advantageous
for a given player, and which actions lead to such states. The com-
putational cost of this iterative algorithm is the accumulated cost
of the games played against itself, the network training cost for a

1Technically, a generic AlphaZero framework might skip this step; however, in our
design, we chose to use it.

Session 4: Machine Learning and Performance ICPE ’22, April 9–13, 2022, Bejing, China

146

large number of epochs, and, possibly, the cost of the playoff games
for validation, all repeated for many iterations.

3 Related Work
AlphaZero for games Google’s DeepMind first major contribution to
solving games through reinforcement learning is AlphaGo. It is the
first computer program to defeat a human professional player in the
game of Go [16], a long-standing milestone for artificial intelligence.
After the success of AlphaGo, DeepMind introduced AlphaGo Zero,
which is based solely on reinforcement learning [19]. AlphaGo
Zero is not provided with any data, guidance or domain knowledge
besides the rules of the game. In the same year, DeepMind showed
that AlphaGo Zero’s approach can be generalized to other games
such as chess and Shogi [17]. This algorithm was able to achieve
superhuman performance in all of these games within a day of
training on a single machine with 4 TPUs. Since AlphaGo Zero’s
publication, learning through self-play has become an influential
and competitive method to build game engines, especially due to its
perceived accessibility. In this work we demonstrate that, although
getting started with AlphaZero is straightforward, being successful
in designing a competitive game-engine comes at a significant cost.
The computational and energy cost of AI Our work aligns well with
the message of [14], in that we argue for quantification (and raising
awareness) of the cost of AI workloads. To this end, our paper
provides a much more concrete and detailed example of one AI
domain - designing game engines based on AlphaZero - whose costs
can easily go out of hand when no game knowledge is included.
While many efforts exist to quantify the performance of AI (see
a collection here, for example, MLPerf2), a lot less research has
been invested in assessing the cost and energy efficiency of existing
workloads for ML in general, and DNN or reinforcement learning
in particular. For example, work by Sze et al. in [20, 21] look into
the methodology for assessing and quantifying energy efficiency,
while providing examples of realistic cases and guidelines. Our
work, instead, focuses on the quantification of the (energy) cost
a specific workload, from design to result, while contrasting it
against its perceived ease-of-use. There exists also quite some work
on quantifying the energy efficiency of specific accelerators [24], or
designing and implementing energy efficient processors for DNN
workloads [10, 23]. Suchwork is complementary to ours: indeed, our
cost analysis does depend on the hardware in use, and improving its
efficiency would diminish the cost. However, we also argue that the
principle of reinforcement learning in the context of AZ-Hive can
be improved to further contribute to improved energy efficiency.

4 Designing AZ-Hive
In this sectionwe introduce the game of Hive, its implementation,

and introduce the different dimensions of encoding the game into
the AlphaZero approach.

4.1 The game of Hive
Rules Hive is a two-player tabletop abstract strategy game designed
by John Yianni and published in 2001 by Gen42 games [25]. The
goal of the game is to surround the opponent’s Queen Bee with
other pieces; the first player to do so wins.

2Available here: https://mlcommons.org/en/

(a) Queen Bee (b) Beetle (c) Grasshopper

(d) Spider (e) Soldier Ant

Figure 1: The rules for moving different tiles in Hive [1].

Both players start with 11 hexagonal tiles of different types: queen
bee×1, beetle×2, grasshopper×3, spider×2, and soldier ant×3. Play-
ers take turns to place or move tiles. The tiles in play form a playing
surface, called the Hive, and the rules prohibit any actions or moves
that disconnect the Hive. The type of tile determines how it can
move through the Hive (see Figure 1).

If a player has no possible moves, the turn passes to the other
player. The game ends when one queen is completely surrounded by
tiles of any colour. If both queens get surrounded in the same move,
the game ends in a draw. Both players may also agree on a draw
when they are both forced to make the same moves repeatedly.
Game complexity There are two metrics commonly used for game
complexity: the size of the state space and the branching factor.
Finding the theoretical state space size for Hive is challenging
due to the dynamic nature of the states; however, to attempt an
illustrative estimation, there are 22!

(2!·2!·3!·3!)2 ≈ 5.4 · 1016 possible
ways to arrange the 22 tiles of Hive in a straight line. And this is only
a fraction of the huge space of possibilities. The Hive branching
factor increases as the game progresses. After less than 20 moves,
the average branching factor is already above 50 (when random
moves are played) [9]. For comparison, the average branching factor
of chess is 35 [3].

4.2 AZ-Hive implementation
Our implementation of a playing engine for the game of Hive,

AZ-Hive, is based on the AlphaZero approach. To enable AZ-Hive
to learn to play, we need to provide it with the rules of the game, for
it to explore different correct game actions. To this end, we choose
for an existing high-performance, C-based Hive implementation,
called BeeKeeper (BK) [9]. In this work, we preserve the back-end
of Beekeeper (i.e., its implementation of the mechanics of the game,
like making moves, testing for correctness, testing for a win, etc.),
but adapt its front-end to enable different encodings of the board
state, the moves, and some of the rules, which eventually define
different AZ-Hive versions.

To implement our AlphaZero-based game engine for Hive, we
use the AlphaZero General framework3, an implementation of the
work by Silver et al. [19]. This framework provides the required soft-
ware training infrastructure for the full self-play learning procedure,
effectively providing a Python-based skeleton for the algorithm
presented in 2.2.
3Available at: https://github.com/suragnair/alpha-zero-general

Session 4: Machine Learning and Performance ICPE ’22, April 9–13, 2022, Bejing, China

147

Because the training infrastructure and the neural network are
both written in Python, our game implementation has to communi-
cate between C and Python to integrate the BeeKeeper’s logic of the
game into the training infrastructure. Consequently, we compile
BeeKeeper as a shared library file and let our game implementation
interact with it using ctypes 4, which allows us to call functions
from dynamic link libraries (DLLs).

4.3 The design space
For a game as complex as Hive, how we encode the game-specific

components in the AlphaZero framework has profound conse-
quences on the design, implementation, and performance of both
the training phase and the resulting engine.

In general, the neural networks’ input data is an array of numeri-
cal data of some finite dimension (encoding the training data), while
its output is another numerical (encoding some form of probability
that helps decisions). In the case of AlphaZero, the input data effec-
tively consists of the board state, while the output data ultimately
represents a score for the moves/actions to be taken. Encoding the
game thus means finding a representation of the board state and
moves that fits this numerical model well. The size and data types
of these arrays further play a role in the architecture of the network.
Finally, all these decisions influence the training effectiveness (i.e.,
how good of an engine we can train) and efficiency (i.e., how fast
the training completes).

To systematically analyse different encoding options, we define
a multi-dimensional design space, whose dimensions correspond
to different design choices. Every combination of design choices
corresponds to a single configuration, i.e., a single point within the
design space. In turn, each of these configurations that is ultimately
implemented and trained into a fully-fledged playing engine be-
comes an AZ-Hive version. This section introduces the dimensions
of the design space and motivates a number of promising design
choices for each dimension.
4.3.1 Game state representation In contrast to games that are played
on a board with a fixed grid structure, coming up with a Hive board
representation that fits the "array-of-numbers" model, and thus
can be fed into the neural network, is not trivial because (a) the
tiles are hexagonal, and (b) it is not played on a physical board. We
address problems by skewing the axes of a 2-dimensional array of
size 26 × 26 5, such that the six neighbours of a hexagonal tile with
coordinates (𝑥,𝑦) have coordinates (𝑥 − 1, 𝑦), (𝑥 + 1, 𝑦), (𝑥,𝑦 − 1),
(𝑥,𝑦 + 1), (𝑥 − 1, 𝑦 − 1), and (𝑥 + 1, 𝑦 + 1). Such an array is large
enough to capture any possible state of the game of Hive, whose
"widest" hive spans 22 tiles placed in a straight line.

With this representation, we can encode the individual tiles as a
number between 0 (emtpy) and 10. This representation can be fed
into the neural network directly, but it does not deal with a beetle’s
capability to be placed on top of other tiles. To further address this
problem, we concatenate the individual digits of the tile encoding.
To illustrate this, Figure 2b shows the board representation of the
Hive structure shown in Figure 2a.

4https://docs.python.org/3/library/ctypes.html
5We added 2 layers of padding on each side of the board for computational efficiency.

(a) A Hive game state.

0 9 0 0 0 0

0 0 10 0 0 0

2 2 0 8 0 0

0 5 2 10 9 0

0 34 0 0 7 0

0 0 0 0 0 6

..

..

..

..

..

..

..

..

..

..

..

..

..

..............

................

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

(b) Encoding of state

Figure 2: A game state with stacked tiles and the corresponding
board representation.

4.3.2 Action encoding Recall from Section 2.2 that both the neural
network and MCTS output their own policy vectors, encoding a
probability distribution of possible moves. Therefore, an action
has to be encoded as a non-negative integer, such that the 𝑛-th
component of the policy vector corresponds to action 𝑛.

We propose three encodings:
(1) Action-list encoding: One naive approach is to build a list of

possible actions, and encode each action according to its index
within this list. One problemwith this approach, however, is that
the interpretation of the action encoding depends on the state
of the board. That is, a given action encoding may correspond
to two completely different moves for different board states.

(2) Absolute coordinate encoding: To eliminate the dependency be-
tween the board state and the action encoding, we propose
absolute coordinate encoding, which defines an action as a set of
11 planes of size 26× 26. Each plane corresponds to one tile that
can be moved, and the location within that plane corresponds
to the destination of the move. Although this encoding provides
an action with a consistent definition and a geometric interpre-
tation, it increases the size of the action space significantly. In
particular, the size of the action space is 262 · 11 = 7436, because
there are 262 possible destinations and each player owns 11
tiles. This large action space increases the complexity of the
neural network, as it has to optimize a policy vector ®𝑝 of 7436
components.

(3) Tile-relative encoding: To address the size problem of absolute
encoding, we define an action based on the tile being moved
and the location (i.e., the neighbour and its "side") it is placed
in. Thus, an action is a set of 22 planes of size 11 × 7. Each
plane corresponds to a tile the moved tile may be moved next
to. The row within each plane then describes the tile that is
being moved, and the column describes on which of the possible
sides the neighbour the tile is moved. 6 Hence, the tile-relative
encoding has an action space of size 22 · 11 · 7 = 1694 - still huge,
but significantly smaller than the space of absolute coordinate
encoding.

4.3.3 Board representation Representing the board such that we
enable the neural network to recognize and learn patterns that
generalize is crucial for the strength of AZ-Hive. We proposed in
total five board representations.
Intial The naive representation (Section 4.3.1) stores the board as
a 26 × 26 array of tiles, where each stack of tiles is encoded as
6Note that we require 7 columns due to the beetle’s capability to move on top of a tile.

Session 4: Machine Learning and Performance ICPE ’22, April 9–13, 2022, Bejing, China

148

https://docs.python.org/3/library/ctypes.html

a concatenation of positive integers between 0 and 10. Although
this board representation uniquely identifies a board state and is
therefore suitable for the logic of the game, it may be sub-optimal
for the neural network to understand the meaning behind the con-
catenation of tile numbers.
Symmetric : The symmetric board representation only encodes tiles
that are visible from the top view of the board, thus disregarding
tiles that are underneath a Beetle, which are not able to move. This
representation is symmetric in the sense that it encodes a tile such
that the board representation corresponding to the inverted tile can
be obtained by negating the original tile encoding. Because there are
5 types of tiles, the domain of the symmetric board representation
is [−5, 5], where the integer 0 is assigned to the empty tile, positive
integers are assigned to tiles of the player who is to move, and the
remaining integers are assigned to tiles of the opponent.
Simple : Similar to the symmetric board representation, the simple
board representation does not encode the information of tiles hid-
den below a Beetle. We further reduce complexity by abstracting
tile type: we treat the Beetle, Grasshopper, Spider, and Soldier Ant
the same. Intuitively, this board representation should make the
win condition easy to identify for the neural network, as the types
of the tiles surrounding the Queen Bee do not influence whether a
player wins the game.
Binary planes : It is also possible that the neural network can more
easily recognise patterns when the tile types are integrated into
the board representation in a discretised manner. Instead of rep-
resenting a tile type as a certain integer, we can encode them by
allocating binary planes for each tile type. We end up with a board
representation with 3 dimensions: the first two specify the locations
of the tiles within the board, and the last describes the tile type.
The binary planes board representation uses ten planes, one per
player per tile type. A single binary plane is filled with zeros and
contains a one at coordinates at which a tile of the type for which
the plane is allocated is present.
Hybrid : The hybrid board representation is a mixture between the
binary planes board representation and the other representations: it
contains two binary planes that are used to encode the positions of
both Queen Bees, and two additional planes describe the positions
of the remaining tiles for each player using an integer encoding
between 1 and 4. Similar to the simple board representation, the
purpose of this board representation is to make the win condition
easy to identify for the neural network by allocating a separate
plane for the Queen Bees.
4.3.4 Optimizing the training procedure

Invariance under rotation and reflection The rules of the game of
Hive are invariant under reflection and rotation by 60 degrees. We
can exploit this property to increase the amount of training data by
a factor of twelve because we can rotate the board 6 times and for
each rotated version of the board we can reflect the board. Being
able to exploit these invariances allows us to significantly speed up
the training procedure.
Game rule modifications As Hive is a game of high complexity, we
also attempted to adapt the game rules to reduce this complexity. For
example, we modified the rules of the game such that a player wins
when 4 tiles surround the Queen Bee of the enemy, thus decreasing

the average turn at which the game ends, and speeding up the
training procedure. This modification also mitigates the problem
of a high branching factor by reducing the number of long games.
In addition, we introduced a turn limit of 30 moves after which the
player with the least tiles surrounding its own Queen Bee wins the
game. If both players have the same number of tiles surrounding
their Queen Bee, black wins the game. Finally, a draw is no longer
forced when the same board state is reached three times. With
these game rule modifications, draws are no longer possible, which
increases the efficiency of the training data generation.
4.3.5 Neural network architecture The Hive playing engine uses
a convolutional neural network (CNN) that was implemented in
PyTorch. 7 The CNN takes one of the board representations intro-
duced in Section 4.3.3 as an input. The board representation is first
fed through either 4, 6 or 8 convolutional blocks depending on the
architecture that is desired. Each convolutional block applies the
following operations:

(1) A convolution using 256 filters of size 3 × 3 with stride 1;
(2) Batch normalization, which allows us to use higher learning

rates and be less careful about parameter initialization [8];
(3) A rectifier nonlinearity (ReLU) activation function.

The output of the convolutional blocks is then passed into two
separate heads, one head outputs the policy ®𝑝 and the other head
outputs the value 𝑣 . The policy head consists of two fully con-
nected layers and then performs a softmax function. The output
of the policy head is a vector with a size that corresponds to the
action encoding that was used. The value head also consists of two
fully connected layers, which are followed by a Hyperbolic tangent
activation function that outputs a scalar in the range [-1, 1].
4.3.6 Hyperparameters There are many hyperparameters that in-
fluence the learning process of the Hive playing engine, such as the
number of self-play games in each training iteration (numEpisodes)
or the number of moves to be simulated to expand the search tree
of MCTS (numMCTSSims) - see [6] for a full list. To reduce the
dimension of the design space we search in, we do not base the
hyperparameters on extensive empirical analysis. Instead, we used
the hyperparameters suggested by Wang et al. as a starting point
and balanced them to ensure that a single iteration of training takes
no more than 20 minutes [22].

5 Empirical evaluation
To determine the best design for AZ-Hive, this section looks into

different configurations in the design space and empirically evalu-
ates its performance. We run all our experiments on a cluster node
featuring an Intel Xeon Bronze 3104 CPU and an NVIDIA GeForce
GTX 1080 Ti. This empirical evaluation includes the correctness of
the training infrastructure, the playing strength, and the playing
speed of the engine.

Three aspects make up a successful implementation, namely
(a) whether the training infrastructure is working correctly, (b) how
strong the Hive playing engine is, and (c) howmuch time the engine
spends on deciding upon a move. We briefly discuss them in the
following paragraphs.

7https://pytorch.org/

Session 4: Machine Learning and Performance ICPE ’22, April 9–13, 2022, Bejing, China

149

https://pytorch.org/

5.1 Correctness of training infrastructure
To test whether the network actually learns, we investigate the

progression of the policy loss and value loss of the neural network.
To do so, we train five neural networks based on the tile-relative
encoding and hybrid board representation for ten iterations, and
measure the losses after every epoch of training. The results, pre-
sented in Figure 3, indicate that both losses decrease quickly and
then converge to some value over time, indicating progress. We
also observe that the loss spikes at the first epoch of every iteration
due to the newly-added, generated training data.

0 20 40 60 80 100
0

2

4

6

Epoch

Lo
ss

Policy loss
Value loss

Figure 3: Policy and value loss over 10 training iterations.

5.2 Playing strength
To evaluate playing strength, we use the win rate against the

random agent and, when the performance analysis involves more
than two engines simultaneously, we generalise this metric by
introducing Elo ratings.
Win-rate of different models: To test whether the win rate im-
proves (consistently) during training, we train several AZ-Hive
configurations that use a 4-layer CNN with the same set of hyper-
parameters, capping the training time to 4h per configuration.

During the training procedure, we track how many models are
produced, and how many of those models are accepted. The itera-
tion of a model increases when this model is accepted. For every
accepted model, we play 50 games against the random agent and
measure win rate. We repeat the same experiment 5 times per con-
figuration, report the average. When a subset of the 5 experiment
instances of a single configuration reaches a certain model itera-
tion, we average the measurements of this subset to benchmark
that model iteration.

The first set of experiments uses the absolute coordinate encoding.
Figure 4 shows the win-rate evolution per configuration during the
training procedure when pitting against a random agent. Over time,
the win rate of each configuration improves, but the fluctuations in
win rate indicate that this improvement is not consistent. This in-
consistency can be explained by the fact that (a) the win rate is taken
from only 50 games, and (b) it is not guaranteed that the neural
network gets better during a single iteration. We also observe that,
for this specific action encoding, the original board representation
achieves the highest win rate after 4 hours of training.

Next, we repeat these experiments with the tile-relative encoding.
Figure 5 shows that tile-relative encoding provides similar perfor-
mance for the symmetric and binary planes board representations.
However, the hybrid board representation performs better, while
the original and simple board representation perform significantly

0 2 4 6 8 10 12
0.4

0.5

0.6

0.7

Iteration of model

W
in

ra
te

Original
Symmetric
Simple

Binary planes
Hybrid

Figure 4: Win rates of different configurations based on the abso-
lute coordinate encoding when playing against a random agent.

worse. In fact, no notable win rate improvement is observable for
the original and simple board representations.

0 5 10 15

0.4

0.5

0.6

0.7

Iteration of model

W
in

ra
te

Original
Symmetric
Simple

Binary planes
Hybrid

Figure 5: Win rates for different configurations based on the tile-
relative encoding when playing against a random agent.

Furthermore, we investigated the performance of a number of
neural network architectures. Although we expect that increasing
the number of layers provides the neural network with more ver-
satility to tune its weights per layer, it could increase the cost of
the optimization procedure. Additionally, we evaluate the perfor-
mance of each neural network architecture both with and without
exploitation of invariance, as we expect including it increases the
performance of the engine (as the procedure provides more train-
ing data to the neural network). Our results (omitted due to space
limitations) show that increasing the number of layers of the neural
network does not necessarily increase the performance of our en-
gine. However, the quality of a single iteration is much higher when
invariance is exploited. Optimizing the hyperparameters such that
they are more suitable to handle more training data could allow the
invariance exploitation to become more practical.
Elo rating To get a clearer understanding of how the self-play
based engine performs against engines that employ traditional
approaches, we set up a tournament involving six engines. First,
we use Self-play RL AZ-Hive engine, which combines tile-relative
action encoding with hybrid board representation, and exploits
invariance to generate training data; we "enter" two instances in the
tournament, trained over 4h and 24h, respectively. Additionally, we
use an Untrained self-play RL AZ-Hive engine, which corresponds

Session 4: Machine Learning and Performance ICPE ’22, April 9–13, 2022, Bejing, China

150

to the self-play based engine before it is trained. To represent non
AlphaZero approaches, we use a Random engine that corresponds
to the random agent that served as a baseline implementation in
our previous empirical analyses, and add two engines from BK [9]:
Minimax and Classic MCTS.

The engines are pitted against each other in a round-robin fash-
ion. Each engine plays a total of 400 matches (100 matches per
opponent). We maintain an Elo rating for each engine through-
out the tournament. If engine A has a rating 𝑅(𝐴) and engine B
has a rating 𝑅(𝐵), we can estimate the probability that engine A
beats engine B using the logistic function [7, 19]: 𝑃 (A defeats B) =

1
1+exp(celo · (𝑅 (𝐵)−𝑅 (𝐴))) , where celo = 1

400 is the standard constant.
We estimate the ratings 𝑅(·) of each engine using Bayesian logistic
regression using the BayesElo program [5]. We initialised the Elo
rating of each engine to 1000 and set the first mover’s advantage to
0 to negate its impact on the Elo gain throughout the tournament.

Untrained Random Self-Play
(4h)

Self-Play
(24h)

MCTS Minimax
0

500

1,000

1,500

704 778
919

1,063
1,181

1,355

El
o
ra
tin

g

Figure 6: The Elo ratings of different Hive engines.

The final Elo ratings of the engines after the round-robin tourna-
ment are summarised in Figure 6. We observe that both traditional
approaches outperform our self-play based engine. Nonetheless,
in terms of performance, the self-play based engine comes much
closer to the traditional approaches than the untrained and random
engine. In fact, the self-play based engine gained 359 Elo rating in
24 hours of training.

5.3 Playing speed
We estimate an engine’s playing speed in terms of the average

Thinking Time per Move (TTM). Because TTM mostly depends on
the number of MCTS simulations per move, we measure TTM for
a number of MCTS simulations 𝑀 ∈ {100𝑡 | 𝑡 ∈ Z+, 𝑡 ≤ 25}. Our
results indicate that TTM grows linearly with the number of MCTS
simulations - as expected, given that the cost of every simulation is
independent of the size of the search tree.

We estimate human move speeds from basic tournament rules
and game archives: 10 minutes [25] thinking time per player, with
an average game taking 20 moves per player, indicate a desirable
TTM of 15 seconds. TTM for AZ-Hive exceeds 15 only for more than
1800 MCTS simulations, an unnecessarily large number; thus, all
our AZ-Hive versions are sufficiently fast to play against a human.

6 Cost analysis
As illustrated by the results in Section 5, finding the strongest

AZ-Hive engine requires a systematic design-space exploration. In

this section, we evaluate the cost of this exploration in terms of
computational resources and energy.

6.1 Exploration cost
In Section 4.3, we described several choices that can be made

within the design space. An exploration of the design space is neces-
sary to determine the best performing configurations for the game8.
However, because there are no rules in AlphaZero’s methodology
to discern between good and bad designs for a game like Hive, ex-
ploring the design space requires trying all possible configurations,
which, in turn, is extremely compute-intensive. We estimate the
cost of this exploration by assessing the size of the design space
and the cost to assess every instance (Section 6.2).

Our current design space has 4 dimensions, with different options
each: action encoding (4), state representation (5), NN architecture
(3), and game rules (2). Thus, our current design space features
120 configurations. For each configuration, we used a fixed set of
hyperparameters (Section 4.3.6). In addition, we based our findings
on 5 training episodes per configuration. In an ideal scenario, we
would base our findings on significantly more training episodes,
and analyse 3 different values for the hyperparameters numEpisodes
(50, 100, 200), numMCTSims (25, 50, 100), and cpuct (0.5, 0.8, 1).

Let us denote numEpisodes with 𝐸, and numMCTSSims with𝑀 .
Based on the training episodes we performed, a typical iteration
takes approximately 5 · 𝐸

100 ·
𝑀
25 + 10+ 3 ·

𝑀
25 minutes (using the same

Intel Xeon Bronze CPU and a 1080Ti GPU node from Section 5)
with invariance exploitation and the modified rules. Using training
episodes of 20 iterations leads to a training time, for a single neural
network design for the original game, of 20 · (5 · 𝐸

100 · 𝑀25 + 10 + 3 ·
𝑀
25) minutes. Based on these estimates, the total computation time
needed to explore our 120 designs with 27 different hyperparameter
combinations based on 100 training runs is approximately:

100·120·
∑

𝐸∈{50,100,200}

∑
𝑀 ∈{25,50,100}

3·20·(5· 𝐸

100
·𝑀
25

+10+3·𝑀
25

) (1)

Filling in the different values for 𝐸 and 𝑀 in Equation (1), we
estimate the computational cost of exploring our design space to be
≈ 2.0 · 108 minutes, which is about 381 node-years. In energy, this
is equivalent to 602.78MWh (see Section 6.2 for our calculations),
which is enough energy for roughly 90 European citizens for an
entire year 9. This approximation illustrates the cost (and difficulty)
of applying AlphaZero to a complex game such as Hive.

6.2 Energy cost per instance
This section presents a detailed analysis of the cost of exploring

the AZ-Hive design space.
To estimate the overall energy cost of exploring the AZ-Hive

design space, we first estimate the energy consumption of training
a single instance. To do so, we measure the CPU and GPU energy
consumption for a typical AZ-Hive configuration (i.e., hybrid board
representation and tile-relative action encoding) during its first
10 iterations. We use Likwid Powermeter 10 and NVIDIA System

8In this context, best performing refers to playing strength. However, the exploration
principle is metric-agnostic.
9https://data.worldbank.org/indicator/EG.USE.ELEC.KH.PC?locations=EU
10https://github.com/RRZE-HPC/likwid/wiki/Likwid-Powermeter

Session 4: Machine Learning and Performance ICPE ’22, April 9–13, 2022, Bejing, China

151

https://github.com/RRZE-HPC/likwid/wiki/Likwid-Powermeter

Management Interface (NVIDIA SMI) 11 to measure the energy
consumption for the CPU and GPU, respectively.

2 4 6 8 10
0

1

2

3

·105

Iteration

En
er
gy

co
ns
um

pt
io
n
[J
]

Figure 7: GPU energy consumption [J] during the first 10 episodes
when training a typical self-play based configuration.

Figure 7 presents the GPU energy measurement results. We
observe that the energy consumption linearly increases in the initial
5 iterations - this is due to the linear increase in the number of
training examples used during the neural network training phase
(Section 2.2.2), and then stabilises at roughly 3 · 105 Joule.

Using this figure, we can approximate the energy consumption
of the GPU 𝐸GPU𝑡 (in Joules) during iteration 𝑡 as:

𝐸GPU𝑡 =

{
(0.55𝑡 + 0.2) · 105 if 𝑡 < 5
3.0 · 105 if 𝑡 ≥ 5

(2)

The total energy consumption (in Joules) of the GPU when train-
ing a typical configuration for 20 iterations is then:∫ 20

1
𝐸GPU𝑡 𝑑𝑡 = 105 ·

(∫ 5

1
0.55𝑡 + 0.2𝑑𝑡 +

∫ 20

5
3.0𝑑𝑡

)
≈ 5.2 · 106

Similarly, we found an analytical approximation for the energy
consumption of the CPU 𝐸CPU𝑡 (in Joules) during iteration 𝑡 to be:

𝐸CPU𝑡 =

{
(0.9𝑡 + 3.3) · 104 if 𝑡 < 5
7.8 · 104 if 𝑡 ≥ 5

(3)

The total energy consumption (in Joules) of the CPU when train-
ing a typical configuration for 20 iterations is then:∫ 20

1
𝐸CPU𝑡 𝑑𝑡 = 104 ·

(∫ 5

1
0.9𝑡 + 3.3𝑑𝑡 +

∫ 20

5
7.8𝑑𝑡

)
≈ 1.4 · 106

Consequently, the total energy consumption of training a typical
configuration for 20 iterations (CPU + GPU) is 6.6 · 106 Joules.

7 Conclusion
In this work, we assess the energy cost required for using Al-

phaZero, a reinforcement learning approach, to build a playing
engine for the game of Hive. We illustrate the challenges of en-
coding a new game in the AlphaZero framework, and how it leads
to many different engine implementations, with various playing
strengths. To systematically explore all these options, we propose
11https://developer.nvidia.com/nvidia-system-management-interface

a design space, with multiple dimensions. We further explore this
space and show different configurations and their performance.

Finally, we assess the cost of training all these different versions
of the game. Given that none of them has reached super-human
playing strength, we calculate a comprehensive search for the best
possible AZ-Hive will take tens of node-years to train.

References
[1] [n. d.]. Hive: The Game. Gen42. https://www.gen42.com/games/hive Accessed:

2020-04-15.
[2] Bruno Bouzy and Tristan Cazenave. 2001. Computer Go: An AI oriented survey.

Artificial Intelligence 132, 1 (oct 2001), 39–103. https://doi.org/10.1016/s0004-
3702(01)00127-8

[3] J. Burmeister and J. Wiles. 1995. The challenge of Go as a domain for AI research:
a comparison between Go and chess. In Proceedings of Third Australian and
New Zealand Conference on Intelligent Information Systems. ANZIIS-95. IEEE.
https://doi.org/10.1109/anziis.1995.705737

[4] Tristan Cazenave, Yen-Chi Chen, Guan-Wei Chen, et al. 2021. Polygames: Im-
proved zero learning. ICGA Journal 42, 4 (jan 2021). https://doi.org/10.3233/icg-
200157

[5] R. Coulom. 2010. BayesElo. https://www.remi-coulom.fr/Bayesian-Elo/ Ac-
cessed: 2020-06-13.

[6] Danilo de Goede. 2021. Enhancing a Hive Playing Engine with Reinforcement
Learning. B.S. thesis.

[7] Arpad E Elo. 1978. The rating of chessplayers, past and present. Arco Pub.
[8] Sergey Ioffe and Christian Szegedy. 2015. Batch normalization: Accelerating deep

network training by reducing internal covariate shift. In International conference
on machine learning. PMLR, 448–456.

[9] Duncan Kampert. 2021. Creating and optimizing a game-playing program for
Hive. (July 2021).

[10] Sangyeob Kim, Juhyoung Lee, Sanghoon Kang, et al. 2021. PNPU: An Energy-
Efficient Deep-Neural-Network Learning Processor With Stochastic Coarse–Fine
Level Weight Pruning and Adaptive Input/Output/Weight Zero Skipping. IEEE
Solid-State Circuits Letters 4 (2021), 22–25.

[11] C. Piech. 2013. Deep Blue. Stanford University. https://stanford.edu/~cpiech/
cs221/apps/deepBlue.html Accessed: 2020-04-01.

[12] Aske Plaat. 2020. Self-Play. In Learning to Play. Springer International Publishing,
195–232. https://doi.org/10.1007/978-3-030-59238-7_7

[13] Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, et al. 2020. Mastering
Atari, Go, chess and shogi by planning with a learned model. Nature 588, 7839
(dec 2020), 604–609. https://doi.org/10.1038/s41586-020-03051-4

[14] Roy Schwartz, Jesse Dodge, Noah A. Smith, and Oren Etzioni. 2019. Green AI.
CoRR abs/1907.10597 (2019). arXiv:1907.10597 http://arxiv.org/abs/1907.10597

[15] Claude E. Shannon. 1950. XXII. Programming a computer for playing chess. The
London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 41,
314 (1950), 256–275. https://doi.org/10.1080/14786445008521796

[16] David Silver, Aja Huang, Chris J. Maddison, et al. 2016. Mastering the game of Go
with deep neural networks and tree search. Nature 529, 7587 (jan 2016), 484–489.
https://doi.org/10.1038/nature16961

[17] David Silver, Thomas Hubert, Julian Schrittwieser, et al. 2017. Mastering Chess
and Shogi by Self-Play with a General Reinforcement Learning Algorithm.
arXiv:1712.01815 [cs.AI]

[18] David Silver, Thomas Hubert, Julian Schrittwieser, et al. 2018. A general rein-
forcement learning algorithm that masters chess, shogi, and Go through self-play.
Science 362, 6419 (dec 2018), 1140–1144. https://doi.org/10.1126/science.aar6404

[19] David Silver, Julian Schrittwieser, Karen Simonyan, et al. 2017. Nature 550, 7676
(oct 2017), 354–359. https://doi.org/10.1038/nature24270

[20] Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, and Joel Emer. 2017. Efficient pro-
cessing of deep neural networks: A tutorial and survey. Proc. IEEE (2017).

[21] Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, and Joel Emer. 2020. Efficient Process-
ing of Deep Neural Networks. Morgan and Claypool Publishers.

[22] Hui Wang, Michael Emmerich, Mike Preuss, and Aske Plaat. 2019. Hyper-
parameter sweep on alphazero general. arXiv preprint arXiv:1903.08129 (2019).

[23] Yang Wang, Yubin Qin, Leibo Liu, Shaojun Wei, and Shouyi Yin. 2021. HPPU: An
Energy-Efficient Sparse DNN Training Processor with Hybrid Weight Pruning.
In 2021 IEEE AICAS. 1–4. https://doi.org/10.1109/AICAS51828.2021.9458410

[24] Yuxin Wang, Qiang Wang, Shaohuai Shi, et al. 2020. Benchmarking the Per-
formance and Energy Efficiency of AI Accelerators for AI Training. In 2020
IEEE/ACM CCGRID. 744–751. https://doi.org/10.1109/CCGrid49817.2020.00-15

[25] Wikipedia contributors. 2021. Hive (game) — Wikipedia, The Free Encyclopedia.
https://en.wikipedia.org/w/index.php?title=Hive_(game)&oldid=1007191566

Session 4: Machine Learning and Performance ICPE ’22, April 9–13, 2022, Bejing, China

152

https://developer.nvidia.com/nvidia-system-management-interface
https://www.gen42.com/games/hive
https://doi.org/10.1016/s0004-3702(01)00127-8
https://doi.org/10.1016/s0004-3702(01)00127-8
https://doi.org/10.1109/anziis.1995.705737
https://doi.org/10.3233/icg-200157
https://doi.org/10.3233/icg-200157
https://www.remi-coulom.fr/Bayesian-Elo/
https://stanford.edu/~cpiech/cs221/apps/deepBlue.html
https://stanford.edu/~cpiech/cs221/apps/deepBlue.html
https://doi.org/10.1007/978-3-030-59238-7_7
https://doi.org/10.1038/s41586-020-03051-4
https://arxiv.org/abs/1907.10597
http://arxiv.org/abs/1907.10597
https://doi.org/10.1080/14786445008521796
https://doi.org/10.1038/nature16961
https://arxiv.org/abs/1712.01815
https://doi.org/10.1126/science.aar6404
https://doi.org/10.1038/nature24270
https://doi.org/10.1109/AICAS51828.2021.9458410
https://doi.org/10.1109/CCGrid49817.2020.00-15
https://en.wikipedia.org/w/index.php?title=Hive_(game)&oldid=1007191566

	Abstract
	1 Introduction
	2 Background
	2.1 Traditional game engines
	2.2 The AlphaZero approach

	3 Related Work
	4 Designing AZ-Hive
	4.1 The game of Hive
	4.2 AZ-Hive implementation
	4.3 The design space

	5 Empirical evaluation
	5.1 Correctness of training infrastructure
	5.2 Playing strength
	5.3 Playing speed

	6 Cost analysis
	6.1 Exploration cost
	6.2 Energy cost per instance

	7 Conclusion
	References

