
Performance Model and Profile Guided Design of a
High-Performance Session-Based Recommendation Engine

Ashwin Krishnan, Manoj Nambiar, Nupur Sumeet, Sana Iqbal
TCS Research, Mumbai, India

ashwin.krishnan1@tcs.com,m.nambiar@tcs.com,nupur.sumeet@tcs.com,sana.iqbal2@tcs.com

Abstract
Session-based recommendation (SBR) systems are widely used

in transactional systems to make personalized recommendations
to the end-user. In online retail systems, recommendations-based
decisions need to be made at a very high rate especially during
peak hours. The required computational workload is very high espe-
cially when there is a larger number of products involved. Session
Based Recommendation (SBR) models incorporate the learning-
based product buying pattern from various user interaction ses-
sions and try to recommend the top-K products, the user is likely
to purchase. These models comprise several functional layers that
widely vary in their compute and data access patterns. To support
high recommendation rates, all these layers need a performance
optimal implementation, which can be a challenge given the diverse
nature of the computations involved. For this reason, one compute
platform - whether it is CPU, GPU, or a Field Programmable Gate
Array (FPGA) may not be able to provide an optimal implemen-
tation for all the layers. In this paper, we describe performance
modeling and profile-based design approach to arrive at an optimal
implementation, comprising of the hybrid CPU, GPU, and FPGA
platforms for NISER - a session-based recommendation model that
avoids popularity bias in recommendations. In addition, the design
for the CPU-FPGA hybrid platform is implemented for NISER and
we observed that experimental results closely follow the results pre-
dicted by the performance model for the implemented deployment
option.

CCS Concepts
•Hardware→ Testing with distributed and parallel systems;
• General and reference → Performance.

Keywords
PerformanceModelling, HeterogeneousArchitecture, Session-Based
Recommendation Systems

ACM Reference Format:
Ashwin Krishnan, Manoj Nambiar, Nupur Sumeet, Sana Iqbal. 2022. Perfor-
mance Model and Profile Guided Design of a High-Performance Session-
Based Recommendation Engine. In Proceedings of the 2022 ACM/SPEC Inter-
national Conference on Performance Engineering (ICPE ’22), April 9–13, 2022,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICPE ’22, April 9–13, 2022, Bejing, China
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9143-6/22/04. . . $15.00
https://doi.org/10.1145/3489525.3511692

Bejing, China. ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/
3489525.3511692

1 Introduction
Recommendation systems have become an important aspect on

various online platforms like E-commerce and video serving enter-
prises to target the right products or videos to the right audience. It
helps customers to have a better personalized experience in shop-
ping or to suggest videos of interest. The enterprise in turn benefits
by attracting more potential customers. Most of the traditional rec-
ommendations like collaborative filtering [7, 12, 13], Factorizing
Personalized Markov Chains (FPMC) [24], and more recent Deep
Recommendation-Based models [21, 36, 37] for Click-Through Rate
(CTR) prediction use long-term users’ interaction with the web
and has user profiles. Here for a given user, thousands of potential
items are passed through the recommender system to evaluate their
probability of being clicked [10].

In many scenarios, user identities are anonymous and the length
of the session is often short causing the conventional Recommen-
dation Models (RMs) to under-perform [29, 35]. A Session-Based
Recommendation (SBR) extracts users’ preference that are hidden
within individual sessions [29, 35]. Thus, SBR has attracted a lot of
research for short-term recommendations. In E-commerce, the role
of SBR is to recommend the top-K items (products) based on the se-
quence of items (products) clicked so far in the session [9]. Although,
many models have been proposed earlier, the state-of-the-art SBR
models [9, 22, 23, 29, 30, 32, 35] are Graph Neural Network (GNN
[25]) based. This is because of GNN’s ability to capture complex
item transitions using graph-structured data that is fundamental
for Recommender Systems [31]. Also, going forth, we are taking
the example of E-commerce as the use case example for the SBR.

1.1 Challenges in Session-Based
Recommendation System

A lot of study and work has been done for the inference acceleration
for conventional Deep Recommendation-Based models [10, 11, 14,
15, 17, 19]. It has been found that random memory access while
accessing the embeddings is the bottleneck in such models [17, 19].
Unlike conventional recommendation models, SBR models have
a complex architecture with GNNs, attention layer, embedding
layer, and final scoring layer as shown in Figure 1, each of which
has unique compute and memory access behavior. As discussed
in detail in section 4, we found that the GPU suffers from huge
latency in performing array concatenation operation, transpose
operation, and randommemory access, whereas performs very well
in dense computation. Also, GPU works better for larger batches
of data than the real-time inference with batch size=1 [10]. The
Field Programmable Gate Array (FPGA) with its heavy pipelining

Session 4: Machine Learning and Performance ICPE ’22, April 9–13, 2022, Bejing, China

133

https://doi.org/10.1145/3489525.3511692
https://doi.org/10.1145/3489525.3511692
https://doi.org/10.1145/3489525.3511692

Figure 1: A Session-based Recommendation Model

ability has a great potential to accelerate the matrix-manipulation
operations using its reconfigurable LUTs and accelerate random
memory access using the on-chip Block RAMs (BRAMs) and High
Bandwidth Memory (HBM).

The Conventional models for CTR prediction must meet the
SLA or latency requirement which is in the order of tens of mil-
liseconds [10]. So, the quality of recommendation depends on the
total number of items explored within that set SLA that defines
the batch size [14]. This is slightly different from the SBR models,
where we obtain a session embedding [32] and compare it with
all the items in the system to obtain top-K closest items. Here, in
the SBR system, since the user arrival time would vary, batching is
not very practical as we would need to wait for N users. Rather, a
high-speed real-time inference architecture is more beneficial so
that the current inference executes before the next use’s arrival or
minimizes the waiting period for the next inference.

In this paper, we have analyzed the real-time inference latency
and bottleneck block for CPU, GPU, and FPGA. Our findings in-
dicate that heterogeneous architecture can deliver the highest
throughput for real-time recommendations. Our contributions in
this paper include:

• To the best of our knowledge, this is the first paper that
performs a detailed modelling and inference latency analysis
for session based-recommendation model on CPU, GPU, and
FPGA to obtain a pipelined heterogeneous architecture.

• We implemented CPU-FPGA hybrid architecture with a la-
tency speed up of 6.1x compared to a baseline CPU for a real-
time inference (batch size=1) and a performance (throughput)
speed up of 5x for batched inference.

• The use of HBM to access item-embeddings in parallel by
replicating it across multiple banks. Comparison with DDR
memory implementation is also performed to show the ad-
vantage of usingHBMoverDDR for storing the item-embeddings
of thousands of unique items.

2 RELATEDWORK
Recently, a lot of importance has been given to hardware-based

architecture to accelerate conventional RMs for CTR prediction
especially to speed up the memory bottleneck. [8, 14, 15] are FPGA
based architecture. Centaur [14] implements Intel’s HARPv2 chiplet-
based CPU-FPGA to accelerate Facebook’s Deep Learning Recom-
mendation Model (DLRM) [21] whereas NEUCHIPS [8] have used
Intel Stratix FPGA to accelerate the DLRM. Microrec [15] has used

the HBMs inside the FPGA to efficiently store many embedding
tables. Their work accelerates Alibaba’s RMs that have a higher
number of embedding tables compared to DLRM. These works can-
not be extended to SBR models as they do not incorporate complex
operations like graph creation, GNN, attention, and scoring. [17–
19] re-designs the Dynamic Random Access Memory (DRAM) at
the micro-architecture level to accelerate the embedding gather and
reduction operation within the DRAM. Tensordimm [19] introduces
DIMM-level parallelism in DRAM in a disintegrated GPU. RecNMP
[17] introduces a memory-side-caching on DRAM to exploit em-
bedding entries with high locality efficiently. TRiM [18] further
extends the previous concepts by introducing a fine-grained NDP
architecture to increase the data transfer throughput in DRAM data
paths. Again, these works cannot be extended to compute bound
operations in SBR models since they are focused on speeding up the
memory-bound embedding lookup and pooling operations alone.

A couple of works has presented inference schedulers for con-
ventional RMs for CTR predictions. Deeprecsys [10] presents an
inference scheduler for CPUs and GPUs to meet the SLA by analyz-
ing the input query and arrival patterns. RecPipe [11] implements
an inference scheduler that maps different stages of recommenda-
tions on the heterogeneous platform by analyzing the input query
sizes. Also, they have designed a custom accelerator RPAccel for
accelerating RMs for CTR predictions. They are not meant for SBR
because they don’t incorporate complex layers like GNNs, graph
creation, and the scoring layer.

There is much literature available on boosting performance in
terms of accuracy for SBR models but hardly any analysis was done
to accelerate them. Almost all the recent SBR models [9, 22, 23, 29,
30, 32, 35] are built on top of SR-GNN [32] to achieve higher pre-
diction accuracy. NISER [9] has incorporated position embedding
after the GNN layer in [32] and L2 normalization of embeddings
to overcome the popularity bias. SGNN-HN [22], FGNN [23] and
DAGNN [35] alter the graph creation process. SGNN-HN uses Star
Graph Neural Network to capture information between items that
do not have a direct connection in the session whereas FGNN uses
weighted-directed graphs to learn each item representation by ag-
gregating its neighbors’ embeddings with multi-head attention.
DAGNN proposes demand-aware graph neural network to extract
a session demand graph that learns the demand aware item embed-
dings. SRGI [30] includes global graph along with session graph
to capture information from across the sessions. Also, here the
position embedding is replaced with reversed position embedding.

Session 4: Machine Learning and Performance ICPE ’22, April 9–13, 2022, Bejing, China

134

3 BACKGROUND
A Session-Based Recommendation (SBR) model tries to predict

the next item (or top K items) the user is most likely to click from
an anonymous session with n items by modelling the complex tran-
sitions of items in the session. A Session-based Recommendation
could be broadly divided into 6 different components (Figure 1).
For details on the SBR model, the reader is encouraged to refer
[9, 22, 23, 29, 30, 32, 35].

Item Embeddings [9, 22, 23, 29, 30, 32, 35]: The Recommen-
dation Model (RM) consists of an item embedding table represented
as a matrix M = [𝑖1, 𝑖2, . . . , 𝑖𝑚]𝑇 ∈ R𝑚𝑥𝑑 where an item embedding
is a d-dimension vector for every unique item or product in the
system. For a given set of n items (or products) in a session, corre-
sponding item embeddings are fetched (it_emb ∈ R𝑛𝑥𝑑) from the
lookup table and fed as an input to the GNN layer.

Graph Creation [9, 22, 23, 29, 30, 32, 35]: This is the very
first block in an SBR model where each session is converted into
a graphical representation. For modelling purposes, we analyze
the graph creation method proposed in [9, 32] where a graph is
obtained by modelling sequential patterns over pair-wise adjacent
items and then fed to the GNN block. The method is summarized
in Algorithm 1.

Algorithm 1 Graph creation process

Inputs: {𝑖1, 𝑖2, . . . , 𝑖𝑛 }: set of items in a session
Outputs: Normalized In-Out Adjacency matrices A1 and A2,
respectively
1: All the sessions are set to length 10 (k = 10) by padding zeros

to the shorter sessions or by taking the last 10 items for the
longer sessions.

2: n =session_length (excluding the padded 0s)
3: Obtain a list of unique items (unique_input) in the session.
4: Create the array alias_input[n]. //Explained below
5: Create the matrices UA_in [nxn] and UA_out [nxn] and initial-

ize all elements to 0.
6: for j in range (n) do
7: u = alias_input[j] for j ≠ session_length-1
8: v = alias_input [j+1] for j≠ 0
9: UA_in (u, v) = 1
10: end for
11: UA_out = UA_in𝑇
12: A1 = norm (UA_in) and A2 = norm (UA_out)

Here, in the Algorithm 1, the array alias_input is used to store
the information about the original position of items which is lost
after performing unique operation. For e.g., Consider a session with
sequence of items (or products) with ids {10,4,6,10,1}. On applying
the get unique operation, we get a vector unique_input {1,4,6,10}
which is a vector of unique items accessed in the session. Thus,
alias_input stores the information {3,1,2,3,0} which means the 0𝑡ℎ

position in the original input session is present at the 3𝑟𝑑 place
in the unique_input vector. The alias_input array is used in re-
ordering the output of GNN layer to get back the original sequence
of items in the session.

The normalization (norm) operation on UA_in and UA_out is
performed by summing the elements of an individual column and

dividing the sum (if non-zero) by all the elements of that column.
The normalized in-out adjacency matrices (A1, A2 ∈ R𝑛𝑥𝑛) are
generated to incorporate the graph structure [9, 31] and contains
the information about incoming and outgoing edges for every node.

GNN [9, 22, 23, 29, 30, 32, 35]: This is one of the main compo-
nents for an SBR, where we obtain a new representation for every
item in the session referred as the new_item_embeddings (nie). It
uses the session graph to capture complex item transitions. Gated
graph neural network (GGNN), GAT and GCN are commonly used
forms of GNNs [22]. GGNN [9, 22, 29, 30, 32] is the most used form
of GNN which is governed by the following equations:

𝑎1 = 𝐴1 ∗ (𝑖𝑡_𝑒𝑚𝑏 ∗ 𝐻1 + 𝑏1) + 𝑏3 (1)

𝑎2 = 𝐴2 ∗ (𝑖𝑡_𝑒𝑚𝑏 ∗ 𝐻2 + 𝑏2) + 𝑏4 (2)

𝑎 = 𝑐𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒 (𝑎1, 𝑎2) (3)

𝑟𝑒𝑠𝑒𝑡_𝑔𝑎𝑡𝑒 = 𝜎 ((𝑎 ∗𝑊 1 + 𝑏5) + 𝑖𝑡_𝑒𝑚𝑏 ∗𝑊 2 + 𝑏6) (4)

𝑖𝑛𝑝𝑢𝑡_𝑔𝑎𝑡𝑒 = 𝜎 ((𝑎 ∗𝑊 3 + 𝑏7) + 𝑖𝑡_𝑒𝑚𝑏 ∗𝑊 4 + 𝑏8) (5)

𝑛𝑒𝑤_𝑔𝑎𝑡𝑒 = 𝑡𝑎𝑛ℎ((𝑎∗𝑊 5+𝑏9)+((𝑖𝑡_𝑒𝑚𝑏∗𝑊 6+𝑏10)∗𝑟𝑒𝑠𝑒𝑡_𝑔𝑎𝑡𝑒))
(6)

𝑛𝑖𝑒 = (𝑛𝑒𝑤_𝑔𝑎𝑡𝑒 + 𝑖𝑛𝑝𝑢𝑡_𝑔𝑎𝑡𝑒)
⊙

(𝑖𝑡_𝑒𝑚𝑏 − 𝑛𝑒𝑤_𝑔𝑎𝑡𝑒) (7)

Here W𝑎 = [𝑊 1,𝑊 3,𝑊 5]𝑇 ∈ R2𝑑𝑥3𝑑 ; W𝑖 = [𝑊 2,𝑊 4,𝑊 6]𝑇
∈ R𝑑𝑥3𝑑 ; b1-b10 ∈ R𝑛𝑥𝑑 where the vector (1xd) is replicated n
times to match dimensions for matrix addition; H1, H2 ∈ R𝑑𝑥𝑑 are
model parameters initialized upon training.

⊙
denotes element-

wise multiplication operator. Also, a ∈ R𝑛𝑥2𝑑
Position Embedding Block [9, 29, 30]: The position embed-

ding is a d-dimension vector representation for every existing posi-
tion of the item in the session. This vector gets added to the output
of GNN to incorporate the sequential information of item trans-
actions in the session [9]. Algorithm 2 summarizes the position
embedding block. In Algorithm 2, pos_emb ∈ R𝑛𝑥𝑑 . P[i][:] and
pos_emb[i][:] denotes-accessing all the elements of the row ‘i’.

Before adding the position embeddings (pos_emb) to the new_item-
_embeddings (nie), the re-ordering of the new_item_embeddings is
performed to get the original sequence of inputs in the session.

The work presented in [29] and [30] has incorporated position
vectors in reversed order (reversed position embedding) to achieve
better accuracy.

Algorithm 2 Position Embedding Block
Inputs: nie and alias_input
Output: P: new item embeddings with incorporated sequential
information of item transactions in the session
1: for i in range (n) do //n = session_length
2: P[i] [:] = nie[alias_input[i]] [:] + pos_emb[i] [:]
3: end for

Attention Mechanism: This step provides us with a session
embedding by considering both the global preference and the user’s
recent interest (latest item in the session). It is a d-dimension vector
(sess_emb ∈ R1𝑥𝑑) representation of the item that the user is most

Session 4: Machine Learning and Performance ICPE ’22, April 9–13, 2022, Bejing, China

135

likely to click next. The attention mechanism is governed by the
following equations:

𝑄 = 𝜎 (𝑃𝑛 ∗𝑊 1 + 𝑃 ∗𝑊 2) (8)
𝛼 = Σ((𝑄 ∗𝑊𝑄)

⊙
𝑃) (9)

𝑠𝑒𝑠𝑠_𝑒𝑚𝑏 = 𝐿2_𝑛𝑜𝑟𝑚(𝑐𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒 (𝛼, 𝑃𝑛) ∗𝑊 + 𝑏𝑖𝑎𝑠) (10)
Here W1 and W2 ∈ R𝑑𝑥𝑑 , W𝑄 ∈ R𝑑𝑥1, W ∈ R2𝑑𝑥𝑑 , and bias

∈ R1𝑥𝑑 are model parameters. P𝑛 ∈ R1𝑥𝑑 is the embedding of the
last item in the session, and P ∈ R𝑛𝑥𝑑 is the output of the position
embedding block and Σ is the summation of rows of the matrix.
𝛼 ∈ R1𝑥𝑑 and Q ∈ R𝑛𝑥𝑑 . L2_norm is computed by summing the
squares of individual elements of the vector and then dividing it
with each element.

Scoring with top K recommendations: This is the final step
where a score (cosine similarity) is calculated in the form of a dot
product between all the item embeddings in the system with the
newly obtained session embedding (Equation 10). At this point,
every item has a score and the items with top K scores are recom-
mended to the end-user.

3.1 NISER
NISER [9] is an SBR model that incorporates position embedding
to effectively obtain position-aware item representations and L2
normalization of embeddings to overcome the popularity bias. The
GNN layer is comprised of Gated Graph Neural Network (GGNN).
The model achieves 53.39 Recall@20 and 18.72 Mean Reciprocal
Rank (MRR@20) on Diginetica Dataset [1]. The value of d and k
(in Algorithm 1) is set to 100 and 10, respectively.

4 MODEL EXECUTION ON CPU AND GPU
In this paper, we are considering NISER [9] as the baseline model

and Diginetica [1] is taken as the baseline dataset for evaluating
the model. The dataset has an average session length of 5.12 items
and a total of m=43097 unique items . The value of the d is set to
100 which is consistent with other works [9, 23, 29, 30, 32, 35] and
hence item_embeddings ∈ R100 and position_embedding ∈ R100.

Table 1: Performance analysis on various architecture for a
real time inference

Metric CPU GPU C-G
Graph Creation(ms) 0.454 3.582 0.454

GNN Computation(ms) 0.816 0.769 0.769
Position Embedding (ms) 0.190 0.247 0.247
Attention Layer(ms) 0.623 0.679 0.679
Scoring Block(ms) 0.277 0.195 0.195
Total Latency(ms) 2.36 5.47 2.34

Throughput(inferences/s) 423.73 182.7 431

We first performed the model analysis on a 56-core CPU with
Hyper-Threading (HT). Themodel excluding the graph creationwas
implemented using the PyTorch [2] library. Python lists and NumPy
were used to perform the graph creation operation. We found that
for a real-time inference (Batch size=1), the overall latency is 2.36ms.
From the first column in Table 1, we could observe that maximum
time is consumed in GNN and the attention layer.

GPUs are well-known hardware accelerators. Model implemen-
tation on GPU is very simple owing to various GPU supported

libraries like PyTorch. Just by introducing a few lines of code, one
could map the model onto the GPU:

device = torch.device("cuda")
model.to(device)
We implemented the entire model on a V100 GPU using the

PyTorch library that uses CUDA/cuDNN 10.1. To implement graph
creation on GPU, all the NumPy arrays/matrices and Python lists
were treated as PyTorch Tensors[2] and mapped onto the device
‘Cuda’.

Figure 2: Profiling results on GPU for a batch size of 1 and
batch size of 2048

From columns 1 and 2 of Table 1, we can observe that for a real-
time inference with Batch size=1, the latency to implement GNN
and scoring block on GPU is slightly lesser than that of CPU. For at-
tention layer and position embedding layer, it is slightly higher than
the CPU. The latency difference between CPU and GPU is not very
significant for these layers for real-time inference. Whereas from
Table 1 and Algorithm 1, we can observe that implementing graph
creation process that consists of array and matrix operations like
array creation, concatenation, matrix transpose, reshape, element-
wise comparison, and a lot of non-streamlined memory access is
faster on CPU (7.9x) than on GPU. This observation motivated us
to implement the graph creation step on the CPU and the rest of
the model on GPU to get the CPU-GPU (C-G) implementation to
achieve better performance. Here, once the CPU implements the
graph creation step, the CUDAmemcpy HtoD is performed to trans-
fer the data to the GPU. We could observe from Table 1 that for a
real-time inference (Batch size=1), the latency of CPU- GPU (C-G)
implementation is almost the same as that of CPU implementation.

Upon profiling with nvprof tool [6], we found that even for a
pure GPU implementation, the actual time spent in GPU activities
(GPU kernels) hardly exceeded 15% (Figure 2) of the total execution
time for an individual block of operations. The rest of the time is
consumed in other CPU activities within the PyTorch including
CUDA API calls. Approximately, 87% time is consumed in CPU ac-
tivities when the graph creation step is implemented using PyTorch
Tensors that invoke a large number of CUDA API calls. Also, almost
23% of the total time is consumed in cudaMemcpy operations. Since
PyTorch implementation of graph creation is not optimal, custom
fine-tuning on GPU needs to be explored further. All the reported
latency numbers are obtained by averaging over multiple runs and
by ignoring the first few values to omit the startup latency.

Session 4: Machine Learning and Performance ICPE ’22, April 9–13, 2022, Bejing, China

136

Figure 3: Memory interface for item-embeddings

5 DESIGN AND PERFORMANCE MODELLING
ON FPGA

Acceleration of conventional recommendation models for CTR
prediction using FPGAs [14, 15] show that there is a huge potential
to accelerate SBR models using FPGAs. Xilinx Alveo U280 FPGA
card [3] has large number of resources: approx. 1.3 million look-
up Tables (LUTs) and 9000 DSPs capable of pipelined operations
(Figure 4). The card also features an 8GB High Bandwidth Memory
(HBM) system that can provide a bandwidth of up to 425 GB/s
[28, 33]. Along with HBM, it has 16GB of DDR DRAM, and 8MB of
on-chip BRAMs and 2607K registers that can be used to effectively
store the item embeddings, position embeddings and model pa-
rameters. The on-chip memories could further be partitioned into
smaller memory blocks that enable us to distribute the parameters
across multiple partitions to access them in parallel. A careful prior
analysis must be done to keep the trade-offs between resource uti-
lization and maximum operational frequency that would impact the
overall latency and throughput of the design. Before designing the
architecture for individual blocks of SBR, we estimated the resource
utilization and clock cycles required to perform a single floating
point (FP32) operation at a particular frequency.

We performed modelling by taking 200MHz as the operating
frequency and found that the FP32 multiplication and FP32 ad-
dition/subtraction consume two DSPs each. Also, each operation
takes around 4 clock cycles and is pipelined with an initiation in-
terval (II) of one clock cycle. The initiation interval of one (II=1)
indicates that the input could be fed every clock cycle. The compar-
ison operation takes 1 clock cycle with a resource utilization of 28
LUTs. These numbers may vary slightly for larger variations in fre-
quencies. Thus, given a total of around 9000 DSPs available on the
FPGA, at most 4500 FP32 multiplications and addition/subtraction
operations (900 GFLOPS) could be performed concurrently. We
also found that with an increase in the number of resources, maxi-
mum achievable frequency of operation reduces significantly due
to routing constraints. For instance, at 90% of resource utilization,
we could synthesize the system at only 80MHz. So, as a thumb
rule, it is suggested not to go beyond 65-70% of overall resource
utilization. Taking all these points into consideration we proceeded
with modelling the layers of NISER on Alveo U280 [3].

5.1 Memory allocation for Item Embeddings

In a SBR system, n-item embeddings with each embedding ∈ R𝑑
need to be fetched for a sessionwith n items. So, we analyze whether
parallelization can be leveraged for faster embedding access. The
availability of 32 parallel HBM banks and 2 DDR DRAM banks on

the Alveo U280 card allows us to replicate the embedding tables
across 32+2=34 different banks and fetch them in parallel as shown
in Figure 3a and 3b. [28] discusses that the setup read latency of
DDR4 (worst-case latency of 32 clock cycles) is lower than that of
HBM (worst-case latency of 62 clock cycles. Also, DDR4 memory

Figure 4: Internal Architecture of FPGA

controller could fetch 64 Bytes of data per bank in one clock cycle
whereas one HBM bank could fetch only 32 Bytes per bank. Thus,
for d = 100 (400 Bytes), a burst length of 7 and 13 would be required
on DDR and HBM, respectively and the worst-case latency (page
miss) to fetch an item embedding (400 Bytes) on DDR would be
around 38 clock cycles whereas it would be around 74 clock cycles
on HBM. Now, from Algorithm 1, we could observe that k (maxi-
mum possible session length) is set to ten. In other words, at most
ten items embeddings need to be fetched for a single inference.

If we are to implement ten embedding fetch operations using
the two DDR banks, it would require five roundtrips from each
bank with a total worst-case latency of 190 clock cycles. Whereas it
would take just one roundtrip to fetch ten item embeddings from ten
different HBM banks, with an overall worst-case latency of 74 clock
cycles. The HBM interface always fetches data in the multiple of
256 bits (32 Bytes) [33] but the size of an individual item embedding
is 400 Bytes which is not a multiple of 32. So, we append zeros
at the end to make it 416 Bytes. When reading the embeddings
for inference, the last 16 Bytes are ignored. The embeddings are
arranged in the exact order of items indices. In other words, for the
1st item, the corresponding embeddings occupy 1st 416 Bytes of
space. Then for the 2nd item, its corresponding embeddings occupy
next 416 Bytes of space, and so on. To fetch the embedding for the
item with index ‘i’, we provide the address BA+(416*i) where BA is
the base address of the HBM bank that is known in prior.

Session 4: Machine Learning and Performance ICPE ’22, April 9–13, 2022, Bejing, China

137

Figure 5: FPGA Architecture for Graph Creation

5.2 Graph Creation

Obtaining the unique items from the session as stated in Algorithm
1 is implemented by removing the repeated items in the linear time
sorting network [27] and then storing the result in the registers.
Calculating the session_length (n) is performed in parallel to the
sorting operation. On FPGA, we cannot reshape the memory dy-
namically and since n (session length) in Algorithm 1 is a variable
that would vary from session to session, therefore, the variable
dimensionality n is replaced with the fixed dimensionality k from
the Algorithm 1. This is being done for every vector and matrix in
the system. Thus, the dimension of alias_input array is fixed to k
and is created in k clock cycles. The ‘for loop’ in the Algorithm 1
is pipelined with II=1 and an iteration latency of three (one clock
cycle for each line in the ‘for loop’) is achieved. Here, the loop is
iterated k times instead of n and the registers for UA_in and UA_out
are fixed to dimension (k x k) for the reason stated earlier. To avoid
any extra information being captured in the graph from padded 0s
for shorter sessions, we use a simple ‘if’ condition in the ‘for loop’
to specify that the UA_in and UA_out will be set only for iterations
less than n and ignored for other iterations. This way the loop
iterates till ‘k’, but information is captured in the graph for only
n iterations. Also, both UA_in and UA_out are created in parallel
as shown in Figure 5. For k=10, the total latency=10(alias_input
creation) + 3(iteration latency) =13 clock cycles. Now, any pipelined
path with ’inps’ inputs, II=t1, and an iteration latency of t2, will
have an overall latency described by equation 11.

𝐿𝑎𝑡𝑒𝑛𝑐𝑦 = 𝑡2 + 𝑡1 ∗ (𝑖𝑛𝑝𝑠 − 1) 𝑐𝑙𝑜𝑐𝑘 𝑐𝑦𝑐𝑙𝑒𝑠 (11)
The floating point (FP32) addition and division takes 4 and 5 clock
cycles, respectively. So, to add ten numbers while performing nor-
malization operation on UA_in and UA_out take 4*𝑙𝑜𝑔210 = 4*4
clock cycles. Thus, normalization operation on an individual col-
umn pipelined with II=1 (t1=1) has an iteration latency (t2) of 4*4 +
5 = 21 clock cycles. Hence, to perform this operation on ten different
columns (inps=10), the latency is 21 + (10-1) =30. Again, both the
normalization operation is implemented in parallel.

Unlike CPU/GPU implementation where item-embedding look-
up operation is a part of GNN, here, the array ‘unique_input’ is sent
to the HBM controller to fetch the item embeddings immediately
after its creation. Here, the embedding look-up executes immedi-
ately after data pre-processing block (get_unique operation and
alias_input creation) as shown in Figure 5. This happens in parallel
to the ‘for loop’ and normalization operations. We add another 50
clock cycles while modelling as a safe margin to implement vari-
ous control logic and load and store operations. Hence, the total
estimated latency for the entire block in the Figure 5 to process
is equal to pre-processing block latency + max(embedding lookup

latency, (13+30)) + 50 = 20 + max(74, 43) + 50 = 144 clock cycles
with a throughput of 1.4𝑥106 operations/s at 200 MHz.

5.3 GNN
All the model parameters are stored in the BRAMs to have low
access latency. Any matrix multiplication (𝐴𝑅1𝑥𝐶1 ∗ 𝐵𝐶1𝑥𝐶2) can
be implemented using three loops. The outermost loop iterates R1
times, the middle loop C2 times and the innermost loop iterates C1
times. Throughout the system, for every matrix multiplication, the
innermost loop is completely unrolled leaving only two loops (outer
and center loops). At the hardware level, it can be visualized as C1-
parallel multipliers followed by an adder tree unit. Thus, the total
number of inputs (inps) is equal to the R1*C2 (For simplicity, inps-1
is be approximated with ‘inps’ in Equation 11). The iteration latency
of adder tree unit is 𝑙𝑜𝑔2R1 with II=1. The adder tree performs a
summation of the elements of the vector. Figure 6a implements
equations (1-3) with it_emb ∈ R𝑘𝑥𝑑 , H1/H2 ∈ R𝑑𝑥𝑑 and A1/ A2 ∈
R𝑘𝑥𝑘 . Here dimensionality k is used instead of n for similar reason
stated previously in graph creation sub-section. Thus, total number
of inputs (inps) to the block is equal to d*k. In Figure 6a, the datapath
for a1 and a2 is implemented in parallel. Now, the entire row of the
it_em matrix gets multiplied with the corresponding elements in
the column of the H1/H2 and sum of products (SOP) is achieved
with an adder tree unit. To access all the elements of a column of
H1/H2 in parallel, ’d’ partitions of BRAMs are created and each row
resides in an individual partition. A similar concept is applied to
the rest of the blocks to access parameters in parallel. The output is
then added with a bias (𝑏1, 𝑏2). This takes around 𝑙𝑜𝑔2d+2 (one for
multiplication and one for bias-addition) clock cycles. Then a set
of k-parallel multipliers and a vector addition unit incorporating
2 more clock cycles are used where an entire column of A1/A2 is
multiplied with the same output, coming from the adder. For the
very 1𝑠𝑡 iteration of the outer loop, the inputs to the vector addition
unit is b3/b4. For the later iterations of the outer loop, 𝑖𝑡ℎ column ∈
R𝑑 of ‘a1’ and ‘a2’ is fed back to the vector addition unit to achieve
the SOP. Here, i is the 𝑖𝑡ℎ iteration of the center loop (keeping
the convention of original matrix multiplication). Here, we could
observe that with just two loops, we have implemented equations
1-3. The datapath is pipelined with an II=1 (t1=1). If we include the
latency of 4 clock cycles for FP32 addition/multiplication at 200MHz,
the overall iteration latency (t2) would be equal to 4*(𝑙𝑜𝑔2d+4) clock
cycles. Thus, total latency of the block with d*k inputs is (d*k) +
4*(𝑙𝑜𝑔2d+4) clock cycles. After adding 50 clock cycles as a safe
margin, for d=100 and k=10 (as mentioned in Algorithm 1) the
overall estimated latency of the block in Figure 6a is 1094 clock
cycles. We have ignored the term ’minus 1’ in Equation 11 for
simplicity.

Session 4: Machine Learning and Performance ICPE ’22, April 9–13, 2022, Bejing, China

138

(a) FPGA Architecture for GNN (Equations 1-3)

(b) FPGA Architecture for GNN (Equations 4-7)

Figure 6

In the Figure 6b, a ∈ R𝑘𝑥2𝑑 ,𝑊𝑎 ∈ R2𝑑𝑥3𝑑 , it_emb ∈ R𝑘𝑥𝑑 and
𝑊𝑖 ∈ R𝑑𝑥3𝑑 . There are three paths (marked as path #1, path #2, and
path #3 in Figure 6b) to implement equations 4-7 and all of them
have been pipelined with II=1 (t1=1). Inputs to all these paths ar-
rive from the shared 2d-parallel multipliers with an adder tree unit
followed by an adder giving an overall latency of 4*(𝑙𝑜𝑔22d+1+1)
clock cycles. Each of the k outer loop iterations will have a total of
3*d (for𝑊𝑖) center loop iterations with d iteration for an individual
path. The paths 1,2, and 3 are executed sequentially. Thus, total
inputs(inps) to the block is 3*k*d. Now, the latency of sigmoid (𝜎)
and tanh blocks are 12 clock cycles each (latency of FP32 exponen-
tial and division are 3 and 5 clock cycles, respectively at 200MHz).
The iteration latency for path #1 and path #2 is 12+(4*1) = 16 clock
cycles each. For path #3, the latency is 4*4 + 12 = 28 clock cycles. 4*4
is used for four adders/multipliers in sequence and 12 for the tanh
block. Therefore, t2= (4*(𝑙𝑜𝑔22d+2) + 16 + 16 + 28) and the overall
latency of the block is (3*d*k + 4𝑙𝑜𝑔22d + 68) + 50 clock cycles. For
d=100, the estimated latency is 3150 clock cycles. For the entire
GNN operation, i.e., Figure 6a and 6b together, the overall latency
is (1094+3150) clock cycles, but in the pipelined implementation,
the overall throughput is limited by the block with highest latency.
Here, it is 3150 clock cycles (Figure 6a) and therefore the throughput
at 200MHz is 63492 operations/s.

5.4 Position Embedding
The architecture for position embedding block is shown in Figure 7
where the pos_emb ∈ R𝑘𝑥𝑑 is stored in the BRAMwith d partitions
and the ‘for loop’ in Algorithm 2 is pipelined with II=1. For every
iteration in the loop, embedding vector ∈ R𝑑 is fetched from the

pos_emb. The lookup is performed by passing the position index to
the pos_emb table similar to passing the item index to fetch item
embeddings. Here, the ‘i’ in Algorithm 2 is treated as the position
index. Since, alias_input ∈ R𝑘 , number of inputs to this block is
k. Total iteration latency is equal to the latency of FP32 addition
operation of 4 clock cycles. Thus, total estimated latency is (k+4)

Figure 7: FPGA Architecture for Position embedding block

+10 which is equal to 24 clock cycles for k = 10. We added just
10 clock cycles as safe margin due to lower number of operations
involved within the position embedding block.

5.5 Attention Layer
Figures 8a and 8b implements the equations 8-10. All the individual
paths marked with dashed lines are pipelined with II=1. In Figure
8a,𝑊𝑃 = [W1,W2]𝑇 ∈ R𝑑𝑥2𝑑 . With similar concept applied in GNN
sub-section, we can observe that the latency of path #1 with d inputs
and path #2 with k*d inputs in Figure 8a are d+4 and k*d+16 clock
cycles, respectively. Hence, the overall estimated latency for Figure
8a is (k*d + d)+4*(𝑙𝑜𝑔2d +1) + (16+4) + 50 = 1202 clock cycles.

Session 4: Machine Learning and Performance ICPE ’22, April 9–13, 2022, Bejing, China

139

(a) FPGA Architecture for Attention layer (Equation 8)

(b) FPGA Architecture for Attention layer (Equations 9-10)

Figure 8

In Figure 8b, 𝛼_temp ∈ R𝑘𝑥𝑑 and the division in norm takes
5 clock cycles. The overall estimated latency = latency of path #1
(inps=k) + latency of path #2 (inps=d) + latency of path #3 (inps=d)
+ latency of path #4 (inps=d) + safe margin latency=(k+4+4𝑙𝑜𝑔2d+4)
+ (d+4𝑙𝑜𝑔2k) + (d+4+ 4𝑙𝑜𝑔22d+4) +(d+4+4𝑙𝑜𝑔2d+5)+50= 489 clock
cycles. The Overall latency of attention layer is 1202+489 = 1691
clock cycles and throughput is 166.4𝑥103 operations/s at 200MHz.

5.6 Scoring Block
To implement scoring block for the Diginetica [1] dataset with 43097
unique items involves the matrix multiplication of the sess_emb
∈ R1𝑥𝑑 with the entire set of item embeddings ∈ R𝑑𝑥43097. Here,
total number of inputs is 43097. The iteration latency for d-parallel
adders with adder tree is 4*(𝑙𝑜𝑔2d+1). Thus, the total estimated
latency with d=100 is 43,129 clock cycles with a throughput of 4637
operations/s. This gives us 43097 distinct scores, out of which top-K
scores need to be picked using a sorting or a top-K network. Taking
reference from [20], we can observe that it consumes around 28
clock cycles to sort 128 elements using the sorting network. For
K=20 [9, 22, 23, 29, 30, 32, 35], we need to feedback the top 20 scores
from each of the 128 sorted scores.

Hence, effectively 108 scores could be passed through the sorting
network giving a total of 43097/108=400 such iterations. For, the
first iteration, dummy zeros could be treated as the feedback. Hence,
to sort 43097 scores, it would take around 400*28 = 11200 clock
cycles.

Hence, the overall all latency to implement this entire scoring
block is 43,129+11200+50 (safe margin) = 54379 clock cycles. As
stated earlier, the throughput of the entire scoring block is limited
by the sub-block with maximum latency. Here, in this case, it is
4637 operations/s. Table 2 summarizes the modelling to estimate
latency and throughput.

6 EVALUATION OF DEPLOYMENT OPTIONS
All the performance numbers in the CPU and GPU presented

so far are for a single real-time inference i.e., a batch size of one.
We observed the CPU and GPU performance by varying the batch
size, the results of which are displayed in Table 3a and 3b. The
values in the table represent the throughput for each operation
(batch_size/latency). The overall throughput with a layer-wise

Table 2: Estimated performance for individual layers

Estimated Latency Estimated ThroughputLayer (clock cycles) (@200MHz)
Graph Creation 144 1.4𝑥106
GNN Fig 5a 1094
GNN Fig 5b 3150 63492

Position Embedding 24 8.3𝑥106
Attention Fig 7a 1202
Attention Fig 7b 489 166.4𝑥103

Scoring 54379 4637

pipeline will be equal to that of the layer with minimum throughput.
Some observations from the Table 3a and 3b are:

• There is an increase in overall throughput with an increase
in batch size in both CPU and GPU implementations

• We can observe that the throughput of a single inference
(batch size=1) impacts the GPU performance more, as com-
pared to CPU

• Apart from graph creation, all the layers show very high
speed-up compared to the CPU when the batch size is in-
creased from 1 to 512

• Graph creation and position embedding layers run faster on
CPU compared to the GPU. Rest of the layers run faster on
the GPU.

• The graph creation is the slowest running layer for both
CPU and GPU platforms

It follows that, on a server with GPU, it will be better to deploy
the Graph creation layer on the CPU while the remaining layers are
best deployed on the GPU. It may be desirable, to also deploy the
position embedding layer on the CPU, given the higher through-
put. However, the graph creation deployed in the CPU is still the
bottleneck layer that would limit the overall throughput. Hence,
it does not make much sense to take the development effort in
deploying position embedding back on the CPU instead of the GPU.
This configuration (C-G) i.e., graph creation on the CPU and other
layers on the GPU was experimentally evaluated and it yielded an
overall throughput of 6795 inferences per second for a batch size of
2048 (Table 1-column 3 presents experimental evaluation for B=1).
This implementation is not layer-wise pipelined and as a result, the
overall throughput is less than 7635 (pipelined throughput in Table

Session 4: Machine Learning and Performance ICPE ’22, April 9–13, 2022, Bejing, China

140

3a) inferences per second. This is quite close to what we can predict
using Equation 12 on the data available in Table 3 and Table 4. For a
given batch size (B) and throughput (𝑥𝑖) for layer i, we can compute
the non-pipelined throughput 𝑋𝑛𝑝 with total number layers 𝑛𝑙 as:

𝑋𝑛𝑝 = [
𝑛𝑙∑
𝑖=1

[𝑥𝑖]−1]−1 (12)

With the implementation of a 2-stage pipeline, with one process
implementing the graph creation layer on CPU and another process
running the GPU implementation of the remaining layers, it should
be possible to see a throughput that is equal to the throughput of the
graph creation layer i.e., 7635 inferences per second, assuming there
is no PCIe communication bottleneck betweenGPU and CPU.When
we compare the execution profiles in Figure 2 (batch size=2048), we
can see that the GPU contribution to computational latency in the
attention layer rises to 40% with the larger batch size. In the scoring
layer, it stays close to 100%. Moreover, the GPU implementation of
the scoring layer seems to deliver the highest throughput compared
to what was measured on CPU and estimated with the modelling
on FPGA. This makes the GPU be the preferred platform to run the
scoring layer.

One interesting observation from the GPU profile is that the
GPU contribution to the computational latency of the GNN layer is
lesser for larger batches. This in turn means that CPU component
of the computation is growing in the PyTorch implementation of
GNN with an increase in batch size. Also, we can observe that there
is an increase in the overall throughput of the GNN layer with
batch size. This can be attributed to the increase in computational
efficiency of the CPU component in the GNN, which is also gaining
performance from the larger batch size.

Based on profiling and modelling, we can predict the best way
to deploy various layers of NISER on different hardware blocks
for maximum throughput as shown in Table 4. The table presents
the deployment options in columns ranked in descending order of
achievable throughput. For FPGAs, we do not assume any increase
in throughput with a larger batch size.

Assuming that there is only one instance of each layer and all
the layers are connected in a pipeline, the maximum achievable
throughput (Max Thr) is reported to be that of the slowest. The
lower bound on latency (LLB) is calculated as the sum of the inverse
of the measured (CPU, GPU from Table 3a and 3b) and modeled
(FPGA from Table 1) throughputs for the batch size of 2048. The
last row of the table is the maximum interconnection network
bandwidth required (NBR) to support the expected throughput.
This is calculated by analyzing the size of the required data to
be passed across the successive layers not deployed on the same
hardware and the end-to-end pipelined throughput to be supported.

In the best ranked option, we could have each of the layers de-
ployed to the hardware platform in which it is expected to perform
the best as seen from the profiling and modeling results. However,
in this configuration, we see many hops in the pipeline between
the FPGA and the GPU. This could be a potential problem with the
network interconnecting the FPGA and the GPU. There are two
scenarios here:

(1) FPGA and GPU present in the same server connected over
PCIe v3 network (15 GB/s bandwidth in one direction)

(2) FPGA and GPU installed in different host servers connect
over 10 Gbps Ethernet network.

Table 3: CPU andGPU performance in terms of operations/s
on various batch sizes (B)

(a)CPU
Layer B=1 B=512 B=1024 B=2048

Graph Creation 2202 7448 7137 7635
GNN 1225 22790 45580 64194

Position Embedding 5263 23813 47627 57496
Attention Layer 1605 62271 124500 294500
Scoring Block 4405 16623 33247 33240

Pipelined throughput 1225 7448 7134 7635

(b)GPU
Layer B=1 B=512 B=1024 B=2048

Graph Creation 279 402 401 404
GNN 1300.3 533.8𝑥103 1.1𝑥106 2.1𝑥106

Position Embedding 4048.5 38380.8 41373.7 41558
Attention Layer 1472.8 682.6𝑥103 1.4𝑥106 2.7𝑥106
Scoring Block 5434.8 2.5𝑥106 5.6𝑥106 10.7𝑥106

Pipelined throughput 279 402 401 404

Table 4: Deployment considerations (B=2048)

Layer Option 1 (Best) Option 2 Option 3 Option 4
Graph Creation FPGA FPGA FPGA CPU

GNN GPU FPGA FPGA GPU
Position Embedding FPGA FPGA FPGA GPU
Attention Layer GPU GPU FPGA GPU

Scoring and Sorting GPU GPU CPU GPU
Max Thr (ops/s) 1.4𝑥106 63492 33240 7635

LLB (ms) 3.6 34.9 107.9 319.4
NBR (MB/s) 8.19 8.19 0.819 1.64

Max Thr - Maximum Achievable Throughput, LLB - Lower Bound on latency,
NBR - Network Bandwidth Requirement

In both the above cases, we have analyzed the data transfer re-
quirements and it has been determined that the maximum network
bandwidth requirement is much less than 10 Gbps. As a result, in
both cases (PCIe or Ethernet), the network bandwidth will not limit
the overall predicted inferencing rate. However, in deployment op-
tion 2, latency can be of concern and need to be evaluated against
permissible latency per inference limits (SLA[10]). Other issues
with the best modelled option are:

(1) The actual transfer speed achievable will be a function of the
batch size for the incoming inference workload. One cannot
assume that the entire PCIe or Ethernet bandwidth will be
available for small batches.

(2) The GPU cannot concurrently process more than one layer
at a time. So, multiple GPUs will be required to achieve the
overall best-case throughput, assuming full pipelining.

(3) FPGA, like the GPU, has only 1 PCIe interface. Hence, some
form of multiplexing will be required to serve Graph creation
and position embedding workloads on the same FPGA. The
FPGA cards may havemore than one Ethernet link that could
be used but do not make the design any simpler. Although
using the High-Level Synthesis (HLS[34]), the designing
becomes much simpler, but, we observed that sometimes, it
is not as optimal as the custom RTL code.

Session 4: Machine Learning and Performance ICPE ’22, April 9–13, 2022, Bejing, China

141

(4) Profiling of GPUs (Figure 2) showed that for smaller batch
sizes maximum time is spent in API and other CPU activities.
The actual GPU utilization is very low. Hence, for smaller
workloads, GPUs are not very efficient.

Often, especially with deep learning models, there is a tradeoff
between latency and throughput [10]. From Table 3a and 3b, we
observed that with a batch size of 1, we get the best latency but
poor throughput and vice versa. One way to arrive at an optimal
tradeoff will be to clamp down the maximum latency (SLA[10]) to
a fixed amount of time, say 100ms (would depend on the system).
For an end-user, the response time of say 2 seconds, 100ms could
be a good upper limit for computing inferences and keep a good
buffer for queuing delays and other overheads in the system. If
we assume the FPGAs and GPUs are located in the same server,
the first and second options hold very well as the PCIe transfer
latencies would be comparatively negligible. Even the third option
comes quite close to this limit. Other points to note regarding the
deployment options are as follows:

• Even if the GPU cannot concurrently (without virtualization)
compute more than one layer, not more than one GPU needs
to be deployed in any of the deployment options listed in
Table 4. This is because the service demand (across all batch
sizes) for the GPU in those options does not exceed that of
other resources (FPGAs and CPUs). Nevertheless, there may
be other implementation overheads that could make this
point invalid.

• The actual transfer speed achievable will be a function of the
batch size for the incoming inference workload. One cannot
assume that the entire PCIe or Ethernet bandwidth will be
available for smaller batches.

The authors did not have exclusive access to a server with both
FPGA and GPU for conducting further experiments at the time of
this writing. For this reason, we select the third best option and
present the performance evaluation in the next section.

7 EXPERIMENTAL EVALUATION ON FPGA
Alveo U280 card mounted on a 56 core CPU with HT and 256

GB memory is used to perform the experiments. We followed the
Vitis accelerated flow [16] that provides all the necessary drivers
(Xilinx XRT) to establish communication with the FPGA card. The
host side code is written in C++ with the support of OpenCL [26]
libraries to communicate with the hardware kernels present on an
FPGA device. The data pre-processing block shown in Figure 5 is
implemented using Verilog HDL in Xilinx Vivado and the rest of the
pre-scoring blocks are implemented using Xilinx Vitis High-Level
Synthesis [34] version 2019.2. The HLS code is converted into an IP
and invoked in the Vivado to create the hardware kernel [34]. The
maximum achievable operating frequency observed was 173.5MHz
instead of 200MHz. This happens due to routing constraints. Table
5 summarizes the synthesis report from the HLS compiler. We could
observe that the latency in terms of clock cycles matches closely
with our modelling. Slight variation in the number of clock cycles
in Table 2 and 5 is because of the change in actual frequency of
operation and a slight mismatch with the assumed safe margin.
Extra clock cycles in the attention layer (Figure 8b) is because the
HLS compiler could implement the normalization block with an

initiation interval of four instead of one. This adds around 400 (d*4)
clock cycles 1 for d=100. The pre-scoring block consumes an overall
of 42% LUTs, 41% DSPs, 24% registers, and 37% of total BRAMs
available on Alveo U280.

Table 5: Achieved performance for layers on FPGA

Latency Latency AchievedLayer (clock cycles) (in 𝜇s) Throughput
Graph Creation 176 1.01 990𝑥103
GNN Fig 5a 1109 6.39
GNN Fig 5b 3133 18.05 55401

Position Embedding 15 0.086 11.6𝑥106
Attention Layer Fig 7a 1185 6.83
Attention Layer Fig 7b 887 5.11 146413

Overall 6505 37.5 26666

7.1 Profiling embedding lookup performance
on HBM

As stated in the modelling section (section 5.1), entire set of item-
embeddings for the Diginetica dataset (17.9MB after padding zeros)
is replicated across 10 HBM banks as shown in Figure 3a. Each HBM
bank is connected to a Memory-Mapped AXI interface. The item
embeddings are transferred to the HBM memory directly by calling
the OpenCL function clEnqueueMigrateMemObjects [26] for each
of the ten memory banks without running the kernel. The total
number of clock cycles spent to perform the embedding lookup
operation is calculated by reading the value of the counter placed
in the FPGA kernel. The counter is enabled once the read embed-
ding signal is triggered and stopped after receiving the last byte.
We found that on average it takes 69 clock cycles to perform ten
embedding fetch operations in parallel close to what we predicted
from modelling.

7.2 An end-to-end inference on FPGA-CPU
(F-C) hybrid

As shown in Figure 9, the item indices are the inputs that are
transferred from CPU to FPGA via PCIe to give back the session
embedding that is the output of the pre-scoring block. As discussed
in section 6 (option 3) in Table 4, the scoring block is implemented
on the CPU. We have used Intel MKL [5] library to implement the
matrix multiplication and GNU’s GSL [4] library to perform the top-
K operation on the CPU. The Vitis hardware development platform
does not yet support direct streaming from the host server to the
Xilinx U280 FPGA due to which the kernel needs to be launched (in-
stead of simply transferring the inputs to an always running kernel)
for every session arrival adding a penalty of almost 120µs. Here, for
every real-time inference, the kernel is launched using the OpenCL
function clEnqueueTask. The items indices for a session are sent as
unidirectional scalar inputs [16] to the device. Also, to retrieve the
session embedding back from the device, the embeddings are first
stored in the global memory (HBM) and then transferred to the
host using clEnqueueMigrateMemObjects [26] function. Both these
OpenCL functions together have an average overhead latency of
1The clock cycles overhead introduced due to initiation interval of 4 could be removed
by enabling the unsafe math optimization option in the HLS compiler. However, the
authors have not used this option at the time of this writing.

Session 4: Machine Learning and Performance ICPE ’22, April 9–13, 2022, Bejing, China

142

Figure 9: System Architecture

120µs limiting the throughput of FPGA to 8333 operations/s. The
overall F-C implementation for a real-time inference of batch size=1
has a latency of 385𝜇s (throughput=2597inferences/s) with a speed
up (latency) of 6.1x compared to baseline CPU, 14.2x compared to
baseline GPU and 6.1x compared to C-G implementation (Table 1)
without any loss in accuracy. This is summarized in Figure 10.

To implement the batch inference, we transfer an entire batch
(B) of sessions at one go to the HBM bank using clEnqueueMigrate-
MemObjects command. At the FPGA end, one session would be
retrieved, processed and then the next session would be retrieved.
The outputs of all these sessions are stored in an HBM bank. Then
at one go, all the session embeddings are transferred back to the
CPU. The overall throughput observed to compute the session em-
beddings of a batch of 2048 sessions on FPGA is 26666 inferences/s
(Table 5) which is equal to the throughput of the entire system. By
batching the inputs, we are able to hide the overhead latency of
120𝜇s in calling the OpenCL functions and improve the throughput
from 8333 to 26666 operations/s.

Figure 10: Latency comparison for a single inference on var-
ious architecture

8 DISCUSSIONS
From our experiments and modelling, we found that for a real-

time inference in the SBR model, a heterogeneous architecture is
the most efficient. The F-C architecture gave a speedup of 6.1x,
14.2x, and 6.1x compared to CPU, GPU, and C-G implementations,
respectively for single inference with batch size=1. As stated in
the previous section, the pre-processing block is implemented in
Xilinx Vivado and rest pre-scoring blocks using Xilinx High-Level
Synthesis (HLS) instead of creating the entire pre-scoring block on
HLS. This was done because the HLS compiler 2019.2 was not able
to realize any adder tree when we tried to create the kernel directly
from the HLS instead of Vivado (the same code when treated as an
IP was able to realize the adder tree). Because of this, wewere able to
send the next session input only after the complete processing of the

previous session and we observed the FPGA throughput of 26666
operations/s instead of pipelined throughput of 55401 operations/s
(Table 5) for pre-scoring blocks. Hence, for a batched (B=2048) F-C
(option 3 in Table 4) implementation, the achieved throughput is
26666 inferences/s instead of estimated 33240 inferences/s. This
implementation has a speed up (throughput) of 3.9x compared to
C-G (6795 inferences/s) and 5x compared to baseline CPU (5055
inferences/s) implementation.

Although F-C implementation offers an inference speedup over
baseline CPU and C-G, the throughput can be further improved by
using the techniques mentioned below:

(1) By splitting the HLS IP into multiple smaller IPs.
(2) Using more than a single set of parallel multipliers with an

adder tree for individual matrix multiplication. This would
depend on the dimensionality of the d and the maximum
session length (k) set for the system.

The aforementioned techniques would help in closing the gap be-
tween the achieved and estimated throughput. The authors intend
to explore these options in the future. Our modelling approach
could be extended to other SBR models by modelling other graph
creation techniques used in [22, 23, 35] and any additional layer
like GAT in [23].

9 CONCLUSION
In this paper, we have demonstrated that a mix of profiling and

modelingmethods can contribute towards building high-performance
systems. Profiling is easy to perform on software-based platforms
like CPU and GPU which have matured development frameworks
and toolsets. On systems like FPGA, implementation risks are higher
and hence, it is important to model the performance prior to im-
plementation. Data from profiling and performance modeling were
combined to analyze and make implementation decisions. In an
industrial setup, development costs must also be thrown into the
mix towards meeting high-performance objectives.

It is important to note that-what was modelled and later imple-
mented on the FPGA was a custom solution for the given model
being implemented. Whereas on the CPU and GPU, we used a ma-
tured framework, (PyTorch in this instance), which made it easy
to implement the model. However, the PyTorch implementation
was far from a custom implementation. Given the high percentage
of time spent in the CPU in the PyTorch GPU implementation, we
get the feeling that a custom implementation would have helped in
the GPU base deployment as well. Nevertheless, in this case, the
development would not be as straightforward as it has been on Py-
Torch. In the FPGA, we had the benefit of using the HLS framework

Session 4: Machine Learning and Performance ICPE ’22, April 9–13, 2022, Bejing, China

143

which enabled implementing the entire model in C, which allowed
a faster development and implementation. However, with HLS, we
suspected that we may not get the desired performance as an HDL
implementation would, and for the initial HLS implementation this
was indeed the case. Thanks to the performance model that was
developed earlier this could be verified and we were able to find a
simple workaround that enabled us to achieve the desired predicted
performance. The learning here was that synthesizing smaller func-
tions independently and then integrating them together was an
easier method to get the predicted performance as opposed to a
single compilation of a larger code at once.

For the recommendation model being implemented for a real
time inference with batch size=1, we observed that deploying the
layers on CPU and FPGA, helps realize a 6.1x reduction in the
latency as compared to the CPU-GPU deployment combination
which was initially evaluated. With batching, the current F-C im-
plementation has almost 4x speed up (throughput) compared to the
CPU-GPU implementation (graph creation on CPU, rest on GPU)
for even the larger batches of 2048. We notice that FPGAs with
HBM memories are very helpful in achieving low latencies and
high throughput thanks to several parallel ports and data replica-
tion. This does not necessarily mean that GPUs would not be able to
achieve the same performance. As GPUs have similar HBM technol-
ogy and with many streaming processors, it should be possible to
achieve comparable performance on the GPU as well for retrieving
embeddings. This will be addressed in future work along with other
modelled deployment options that will include the evaluation of
the present-day state-of-the-art approaches for the same.

References
[1] 2016. CIKM Cup 2016 Track 2: Personalized E-Commerce Search Challenge. https:

//competitions.codalab.org/competitions/11161
[2] 2019. PYTORCH DOCUMENTATION. https://pytorch.org/docs/stable/index.html
[3] 2021. Alveo u280 data center accelerator card. https://www.xilinx.com/content/

dam/xilinx/support/documentation/data_sheets/ds963-u280.pdf
[4] 2021. GSL - GNU Scientific Library. https://www.gnu.org/software/gsl/
[5] 2021. Intel-Optimized Math Library for Numerical Computing. https:

//www.intel.com/content/www/us/en/develop/documentation/get-started-
with-mkl-for-dpcpp/top.html

[6] 2022. CUDA Toolkit Documentation v11.4.0. https://docs.nvidia.com/cuda/pdf/
CUDA_Profiler_Users_Guide.pdf

[7] Wanyu Chen, Fei Cai, Honghui Chen, and Maarten De Rijke. 2019. Joint neural
collaborative filtering for recommender systems. ACM Transactions on Informa-
tion Systems (TOIS) 37, 4 (2019), 1–30.

[8] N. Corp. 2020. Neuchips recommendation accelerator recaccel.
https://2ca8d951-4386-4e41-9cab-50c86da5f5a8.filesusr.com/ugd/d79931_
9382d53600f54d21a6eabe46d1f0ffa2.pdf

[9] Priyanka Gupta, Diksha Garg, Pankaj Malhotra, Lovekesh Vig, and Gautam Shroff.
2019. NISER: Normalized item and session representations to handle popularity
bias. arXiv preprint arXiv:1909.04276 (2019).

[10] Udit Gupta, Samuel Hsia, Vikram Saraph, Xiaodong Wang, Brandon Reagen, Gu-
YeonWei, Hsien-Hsin S Lee, David Brooks, and Carole-JeanWu. 2020. Deeprecsys:
A system for optimizing end-to-end at-scale neural recommendation inference.
In 2020 ACM/IEEE 47th Annual International Symposium on Computer Architecture
(ISCA). IEEE, 982–995.

[11] Udit Gupta, Samuel Hsia, Mark Wilkening, Javin Pombra, Hsien-Hsin S Lee,
Gu-Yeon Wei, Carole-Jean Wu, David Brooks, et al. 2021. RecPipe: Co-designing
Models and Hardware to Jointly Optimize Recommendation Quality and Perfor-
mance. arXiv preprint arXiv:2105.08820 (2021).

[12] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng
Chua. 2017. Neural collaborative filtering. In Proceedings of the 26th international
conference on world wide web. 173–182.

[13] Jonathan L Herlocker, Joseph A Konstan, Loren G Terveen, and John T Riedl.
2004. Evaluating collaborative filtering recommender systems. ACM Transactions
on Information Systems (TOIS) 22, 1 (2004), 5–53.

[14] Ranggi Hwang, Taehun Kim, Youngeun Kwon, and Minsoo Rhu. 2020. Centaur: A
chiplet-based, hybrid sparse-dense accelerator for personalized recommendations.

In 2020 ACM/IEEE 47th Annual International Symposium on Computer Architecture
(ISCA). IEEE, 968–981.

[15] Wenqi Jiang, Zhenhao He, Shuai Zhang, Thomas B Preußer, Kai Zeng, Liang Feng,
Jiansong Zhang, Tongxuan Liu, Yong Li, Jingren Zhou, et al. 2021. MicroRec:
efficient recommendation inference by hardware and data structure solutions.
Proceedings of Machine Learning and Systems 3 (2021).

[16] Vinod Kathail. 2020. Xilinx Vitis Unified Software Platform. In Proceedings
of the 2020 ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays. Association for Computing Machinery, New York, NY, USA, 173–174.
https://doi.org/10.1145/3373087.3375887

[17] Liu Ke, Udit Gupta, Benjamin Youngjae Cho, David Brooks, Vikas Chandra, Utku
Diril, Amin Firoozshahian, Kim Hazelwood, Bill Jia, Hsien-Hsin S Lee, et al.
2020. Recnmp: Accelerating personalized recommendation with near-memory
processing. In 2020 ACM/IEEE 47th Annual International Symposium on Computer
Architecture (ISCA). IEEE, 790–803.

[18] Byeongho Kim, Jaehyun Park, Eojin Lee, Minsoo Rhu, and Jung Ho Ahn. 2020.
TRiM: Tensor Reduction in Memory. IEEE Computer Architecture Letters PP (12
2020), 1–1. https://doi.org/10.1109/LCA.2020.3042805

[19] Youngeun Kwon, Yunjae Lee, and Minsoo Rhu. 2019. Tensordimm: A practical
near-memory processing architecture for embeddings and tensor operations
in deep learning. In Proceedings of the 52nd Annual IEEE/ACM International
Symposium on Microarchitecture. 740–753.

[20] Rene Mueller, Jens Teubner, and Gustavo Alonso. 2012. Sorting networks on
FPGAs. VLDB J. 21 (02 2012), 1–23. https://doi.org/10.1007/s00778-011-0232-z

[21] Maxim Naumov, Dheevatsa Mudigere, Hao-Jun Michael Shi, Jianyu Huang,
Narayanan Sundaraman, Jongsoo Park, Xiaodong Wang, Udit Gupta, Carole-
Jean Wu, Alisson G Azzolini, et al. 2019. Deep learning recommendation model
for personalization and recommendation systems. arXiv preprint arXiv:1906.00091
(2019).

[22] Zhiqiang Pan, Fei Cai, Wanyu Chen, Honghui Chen, and Maarten de Rijke.
2020. Star graph neural networks for session-based recommendation. , 1195–
1204 pages.

[23] Ruihong Qiu, Jingjing Li, Zi Huang, and Hongzhi Yin. 2019. Rethinking the item
order in session-based recommendation with graph neural networks. In Pro-
ceedings of the 28th ACM International Conference on Information and Knowledge
Management. 579–588.

[24] Steffen Rendle, Christoph Freudenthaler, and Lars Schmidt-Thieme. 2010. Factor-
izing personalizedmarkov chains for next-basket recommendation. In Proceedings
of the 19th international conference on World wide web. 811–820.

[25] Franco Scarselli, MarcoGori, AhChung Tsoi, MarkusHagenbuchner, andGabriele
Monfardini. 2008. The graph neural network model. IEEE transactions on neural
networks 20, 1 (2008), 61–80.

[26] John E. Stone, David Gohara, and Guochun Shi. 2010. OpenCL: A Parallel Pro-
gramming Standard for Heterogeneous Computing Systems. Computing in Science
Engineering 12, 3 (2010), 66–73. https://doi.org/10.1109/MCSE.2010.69

[27] Joshua Vasquez. 2016. SORT FASTER WITH FPGAS. https://hackaday.com/2016/
01/20/a-linear-time-sorting-algorithm-for-fpgas/

[28] Zeke Wang, Hongjing Huang, Jie Zhang, and Gustavo Alonso. 2020. Bench-
marking High Bandwidth Memory on FPGAs. arXiv preprint arXiv:2005.04324
(2020).

[29] Ziyang Wang, Wei Wei, Gao Cong, Xiao-Li Li, Xian-Ling Mao, and Minghui
Qiu. 2020. Global context enhanced graph neural networks for session-based
recommendation. In Proceedings of the 43rd International ACM SIGIR Conference
on Research and Development in Information Retrieval. 169–178.

[30] Ziyang Wang, Wei Wei, Gao Cong, Xiao-Li Li, Xian-Ling Mao, Minghui Qiu, and
Shanshan Feng. 2020. Exploring Global Information for Session-based Recom-
mendation. arXiv preprint arXiv:2011.10173 (2020).

[31] Shiwen Wu, Fei Sun, Wentao Zhang, and Bin Cui. 2020. Graph neural networks
in recommender systems: a survey. arXiv preprint arXiv:2011.02260 (2020).

[32] ShuWu, Yuyuan Tang, Yanqiao Zhu, Liang Wang, Xing Xie, and Tieniu Tan. 2019.
Session-based recommendation with graph neural networks. In Proceedings of
the AAAI Conference on Artificial Intelligence, Vol. 33. 346–353.

[33] Inc. Xilinx. 2021. AXI High BandwidthMemory Controller v1.0 LogiCORE IP Product
Guide. https://www.xilinx.com/support/documentation/ip_documentation/hbm/
v1_0/pg276-axi-hbm.pdf

[34] Inc. Xilinx. 2021. Vitis High-Level Synthesis User Guide UG1399 (v2020.2).
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2020_2/
ug1399-vitis-hls.pdf

[35] Liqi Yang, Linhan Luo, Lifeng Xin, Xiaofeng Zhang, and Xinni Zhang. 2021.
DAGNN: Demand-aware Graph Neural Networks for Session-based Recommen-
dation. arXiv preprint arXiv:2105.14428 (2021).

[36] Guorui Zhou, Kun Gai, Xiaoqiang Zhu, Chenru Song, Ying Fan, Han Zhu, Xiao
Ma, Yanghui Yan, Junqi Jin, and Han Li. 2018. Deep Interest Network for Click-
Through Rate Prediction. 1059–1068. https://doi.org/10.1145/3219819.3219823

[37] Guorui Zhou, Na Mou, Ying Fan, Qi Pi, Weijie Bian, Chang Zhou, Xiaoqiang
Zhu, and Kun Gai. 2019. Deep interest evolution network for click-through rate
prediction. In Proceedings of the AAAI conference on artificial intelligence, Vol. 33.
5941–5948.

Session 4: Machine Learning and Performance ICPE ’22, April 9–13, 2022, Bejing, China

144

https://competitions.codalab.org/competitions/11161
https://competitions.codalab.org/competitions/11161
https://pytorch.org/docs/stable/index.html
https://www.xilinx.com/content/dam/xilinx/support/documentation/data_sheets/ds963-u280.pdf
https://www.xilinx.com/content/dam/xilinx/support/documentation/data_sheets/ds963-u280.pdf
https://www.gnu.org/software/gsl/
https://www.intel.com/content/www/us/en/develop/documentation/get-started-with-mkl-for-dpcpp/top.html
https://www.intel.com/content/www/us/en/develop/documentation/get-started-with-mkl-for-dpcpp/top.html
https://www.intel.com/content/www/us/en/develop/documentation/get-started-with-mkl-for-dpcpp/top.html
https://docs.nvidia.com/cuda/pdf/CUDA_Profiler_Users_Guide.pdf
https://docs.nvidia.com/cuda/pdf/CUDA_Profiler_Users_Guide.pdf
https://2ca8d951-4386-4e41-9cab-50c86da5f5a8.filesusr.com/ugd/d79931_9382d53600f54d21a6eabe46d1f0ffa2.pdf
https://2ca8d951-4386-4e41-9cab-50c86da5f5a8.filesusr.com/ugd/d79931_9382d53600f54d21a6eabe46d1f0ffa2.pdf
https://doi.org/10.1145/3373087.3375887
https://doi.org/10.1109/LCA.2020.3042805
https://doi.org/10.1007/s00778-011-0232-z
https://doi.org/10.1109/MCSE.2010.69
https://hackaday.com/2016/01/20/a-linear-time-sorting-algorithm-for-fpgas/
https://hackaday.com/2016/01/20/a-linear-time-sorting-algorithm-for-fpgas/
https://www.xilinx.com/support/documentation/ip_documentation/hbm/v1_0/pg276-axi-hbm.pdf
https://www.xilinx.com/support/documentation/ip_documentation/hbm/v1_0/pg276-axi-hbm.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2020_2/ug1399-vitis-hls.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2020_2/ug1399-vitis-hls.pdf
https://doi.org/10.1145/3219819.3219823

	Abstract
	1 Introduction
	1.1 Challenges in Session-Based Recommendation System

	2 RELATED WORK
	3 BACKGROUND
	3.1 NISER

	4 MODEL EXECUTION ON CPU AND GPU
	5 DESIGN AND PERFORMANCE MODELLING ON FPGA
	5.1 Memory allocation for Item Embeddings
	5.2 Graph Creation
	5.3 GNN
	5.4 Position Embedding
	5.5 Attention Layer
	5.6 Scoring Block

	6 EVALUATION OF DEPLOYMENT OPTIONS
	7 EXPERIMENTAL EVALUATION ON FPGA
	7.1 Profiling embedding lookup performance on HBM
	7.2 An end-to-end inference on FPGA-CPU (F-C) hybrid

	8 DISCUSSIONS
	9 CONCLUSION
	References

