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ABSTRACT
Cloud-native applications are often composed of lightweight con-
tainers and conform to themicroservice architecture. Cloud providers
offer platforms for container hosting and orchestration. These plat-
forms reduce the level of support required from the application
owner as operational tasks are delegated to the platform. Further-
more, containers belonging to different applications can be co-
located on the same virtual machine to utilize resources more effi-
ciently. Given that there are underlying shared resources and con-
sequently potential performance interference, predicting the level
of interference before deciding to share virtual machines can avoid
undesirable performance deterioration. We propose a lightweight
performance interference modelling technique for cloud-native
microservices. The technique constructs ML models for response
time prediction and can dynamically account for changing runtime
conditions through the use of a sliding window method. We eval-
uate our technique against realistic microservices on AWS EC2.
Our technique outperforms baseline and competing techniques in
MAPE by at least 1.45% and at most 92.04%.

CCS CONCEPTS
• Software and its engineering → System administration.
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1 INTRODUCTION
The DevOps paradigm promotes teams to manage the end-to-end
lifecycle of an application themselves in order to promote own-
ership and enable continuous delivery of their application [14].
DevOps favours the microservice architecture in which an appli-
cation is broken down into several smaller services so that each
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service has a single responsibility. The microservice architecture is
well suited towards efficient scaling and in addition, horizontal scal-
ing. Application developers are increasingly shifting away from the
monolithic architecture in favor of the microservice architecture.
Furthermore, microservice applications are frequently deployed
as cloud-native applications on cloud platforms like Amazon Web
Services (AWS) [3] or Google Cloud Platform [6].

Cloud-native microservices are frequently deployed in light-
weight containers. Cloud providers offer container platforms tai-
lored to the microservice architecture on which the application
owner may even delegate management of the application runtime
to the provider. In order to efficiently utilize resources, cloud-native
applications are often co-located on the same underlying Virtual
Machine and consequently compete for shared VM-level resources.
While co-location is cost effective, it can negatively impact an appli-
cation’s Quality of Service (QoS). We refer to degradation of appli-
cation performance due to resource competition from a co-located
application as performance interference. Quantifying and mitigating
performance interference is therefore important in sustaining good
QoS. Furthermore, performance interference modelling techniques
can be employed in application deployment strategies to predict
whether co-locating two applications will result in performance
degradation.

Performance engineering techniques typically leverage runtime
metrics that describe the runtime environment as well as the cloud-
native application of interest in order to construct performance
models. In cloud-native applications, there are several layers of
abstraction from which metrics can be derived, for example, the
physical machine, the VM, the containers, or even the application
itself. As a consequence, varying degrees of instrumentation are
required of the environment and application to obtain the necessary
runtime metrics for modelling. These metrics typically include
request response time, throughput, as well as container and VM
utilizations. State-of-the-art performance engineering techniques
often leverage Queuing Networks or Regression models.

Queuing Network models are static models that leverage queu-
ing theory to express application behavior as a function of runtime
metrics. The static models are typically pre-trained in the training
phase and deployed in the runtime phase where they are leveraged
to make predictions. A benefit of static modelling is that model
training can consider a large amount of performance data, often re-
sulting in a well-performing model. However, the two phase nature
of static modelling can be cumbersome. If the training phase takes a
significant amount of time to complete, static modelling techniques
may not keep up with frequent changes in cloud environments.
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Regression models are models that can either be static or dy-
namic, and are derived from runtime metrics often used in statis-
tical or machine learning based approaches. Regression models
are favored for being able to capture application behavior that is
otherwise difficult to express explicitly. Dynamic regression models
are trained at runtime and can quickly capture changes in the cloud
environment. At runtime, model training must be done quickly in
order to leverage the new model that accounts for current environ-
ment conditions. Accordingly, the amount of data required to train
models at runtime tends to be substantially less than that of a static
model. As a consequence, dynamic models may be less accurate
than their static model counterparts.

We propose a Machine Learning (ML) based technique to quan-
tify performance interference in cloud-native applications. Our
technique can be leveraged to construct both static and dynamic
ML models, is non-intrusive, and outperforms competing state-of-
the-art techniques. We utilize a realistic e-commerce application
benchmark as well as an Internet of Things (IoT) microservice to
generate performance interference in our experiments. We attempt
to answer the following research questions with our approach:

RQ-1: How effective is a static ML model based approach to
quantify the impact of performance interference in cloud-based
microservices at runtime when the interfering application used for
model training and deployment is the same? We address the use
case in which the application owner wants to predict the impact of
co-locating applications in a cloud environment. In this scenario,
the interfering application and system resource utilization details
are known. To answer RQ1, we train static ML models to quantify
interference caused by an interfering application that stresses the
same resources as our monitored application. The same interfering
application is used at training time and also at runtime. Our re-
sults show that our approach outperforms competing interference
modelling techniques by at least 14.13% and at most 1271.37%.

RQ-2: How effective is a dynamic ML model based approach
to quantify the impact of performance interference in cloud-based
microservices at runtime? This addresses the use case where an
application owner lacks visibility of interfering applications in the
environment hosting their own application. To address RQ2, we
leverage a sliding window technique to continuously train ML
models at runtime for fixed time intervals. Next, these ML models
are used to quantify interference at runtime for a fixed interval
and then interchanged with another ML model. As highlighted in
our results, our technique outperforms competing state-of-the-art
techniques by at least 1.45% and at most 92.04%.

This paper makes the following three contributions:

(1) We develop a static machine learning based interference
modelling technique that outperforms competing state-of-
the-art static modelling techniques by at least 14.13% and at
most 1271.37%.

(2) We develop a dynamic machine learning based interference
modelling technique that generalizes to unknown interfering
applications at runtime, has minimal model training over-
head, and outperforms competing state-of-the-art dynamic
modelling techniques by at least 1.45% and at most 92.04%.

(3) We present a comparative analysis between our static and
dynamic ML techniques.

The remainder of this paper is organized as follows. Section
2 discusses methodology. Section 3 describes the common envi-
ronment and application setup used in addressing our research
questions. Section 4 details the experimental setup and results of
RQ1. Section 5 presents the experimental setup and results of RQ2.
Section 6 frames the threats to validity. Section 7 details related
works. Section 8 concludes this paper and discusses future work.

2 METHODOLOGY
We use the methodology described in this section to address our
research questions. The microservice application deployed by the
application owner is denoted as the target application and is the
application for which we want to maintain a good QoS. The target
application is hosted in one or more containers which we refer to as
Monitored Application Containers as seen in Figure 1. These contain-
ers are distributed across 𝑛 VMs. An interfering application denotes
an application distinct from the target application but whose con-
tainer instances have been or might be co-located on the same VM
as the target application. Accordingly, the interfering application
competes with the target application for shared resources.

Figure 1: Overview of Interference Modelling Training Phase

2.1 Static Models for Interference
Our static modelling methodology consists of two phases: the train-
ing phase and the runtime phase. Figure 1 presents an overview
of our static interference modelling training phase. The training
phase is an offline phase where controlled experiments are run to
simulate an environment with and without inference present. The
Workload Generator is a configurable tool that sends traffic to the
target application at varying intensities. In that fashion, a wide
range of utilization levels can be generated for the target applica-
tion. In addition, the interfering application, called probe, can be
co-located on the same VM as the target application. Similarly to
the target application, the utilization of the interfering probe can
be varied on demand to cover a large space of resource utilization.

Furthermore, in the training phase, the environment and the
target application are monitored by the Metric Monitor. The Met-
ric Monitor collects data from the VM(s), container(s), and target
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application at a fixed time interval 𝑡 . The metrics obtained by the
Metric Monitor are used to construct static models. In our experi-
mentation, the static models predict the response time of the target
application. Other metrics of interest can be predicted with our
proposed technique however.

The static models are deployed in the runtime phase to quantify
the impact of interference on our target application’s response time.
In the runtime phase, as seen in Figure 2, instead of a Workload
Generator and Interfering Probes, we have the Client Workload
and Interfering Applications which in practice are not controllable.
The runtime phase further leverages deployed models to make
predictions. As previously mentioned, a benefit of static modelling
is that we do not have frequent model re-training although as a
consequence, static models may be less accurate in their predictions
if they do not generalize well.

Figure 2: Overview of Interference Modelling Runtime Phase

2.1.1 Layered Queuing Models. We draw from Queuing Theory
to motivate the use of Queuing Networks for quantifying perfor-
mance interference as a static modelling technique. The LQM is
an extension of the QNM and so we start with a discussion of the
Queuing Network model.

In a QNM, the response time of an application 𝑎 running on a
VM is expressed as a function of service demand as well as the total
utilization of a resource 𝑘 as follows:

𝑅𝑎 =
𝐷𝑎,𝑘

1 −𝑈𝑘

(1)

where 𝐷𝑎,𝑘 is the service demand of application 𝑎 at resource 𝑘
and𝑈𝑘 is the total utilization incurred at resource 𝑘 .

Suppose an application 𝑏 is co-located on the same VM and
also stresses resource 𝑘 . Application 𝑏 imposes its own resource
utilization on the VM. The multi-class form of equation 1 that
predicts the response time of application 𝑎 is expressed as:

𝑅𝑎 =
𝐷𝑎,𝑘

1 −𝑈𝑎,𝑘 −𝑈𝑏,𝑘
(2)

where𝑈𝑎,𝑘 represents the utilization incurred by application 𝑎

on resource 𝑘 and likewise𝑈𝑏,𝑘 represents the utilization incurred
by application 𝑏 on resource 𝑘 .

From equation 2, it follows that an application 𝑏 co-located on
the same VMs as our target application, application 𝑎, and which

utilizes the same resource 𝑘 as does application 𝑎, can impact the
response time of application 𝑎.

LQMs are static, non-linear queuing models that represent both
the software and hardware components of a system as a set of
layers [11]. In addition, they explicitly express the topology of an
application to represent the different tiers of the application as
queues. In an LQM the response time, or service time, at each tier
of an application is expressed as a function of the response times of
the previous tiers and any additional queuing time incurred [11].

Given the aforementioned characteristics of LQMs, they are well
suited for modelling microservice applications. Accordingly, we
leverage LQMs as a competing static model that we evaluate our
static ML technique against. Our method uses the aforementioned
Metric Monitor to obtain utilization values of the target application.

We leverage OPERA [18], a tool that has been used in prior
work for constructing LQMs for performance modelling of cloud-
native applications [10]. OPERA constructs LQMs given workload
specifications, application topology, resource utilization metrics,
and system demand estimates. The workload specification defines
the client throughput to the target application 𝑎. The application
topology is representative of application 𝑎 and the environment.
Resource utilization metrics are obtained from the Metric Monitor
and consist of CPU utilization metrics from the VMs and contain-
ers in use. Finally, the system demand estimates are derived from
resource utilization metrics and the workload specification. OPERA
[18] is employed in the training phase to construct the LQMmodels.
The LQM models are used for performance interference modelling
of the target application 𝑎.

2.1.2 Static Machine Learning Models. Automatic Machine Learn-
ing (AutoML) frameworks aim to abstract away the complexity
required to train well performing ML models. These frameworks
train and evaluate a variety of ML models on a user’s dataset and
output the best performing model. In addition, AutoML optimizes
the model search space and may make trade offs between explo-
ration and exploitation. Furthermore, popular AutoML frameworks
can be run with several constraints configured. For instance, user’s
can constrain the AutoML training time to a maximum time bud-
get. In our work, we leverage the H2O AutoML framework [17] to
construct ML models for performance interference modelling.

The H2O AutoML framework considers several ML algorithms
like Deep Neural Networks, XGBoost, and Stacked Ensembles. Each
algorithm may have one or more hyperparameters that the AutoML
framework tunes. H2O AutoML performs a random grid search
over the set of hyperparameters when training models of each ML
algorithm in an attempt to produce the best performing models.

Our ML technique relies on CPU and Memory utilization metrics
from the VMs and containers in the environment as well as the
throughput of the target application 𝑎. This combination of multi-
layer metrics make up the feature set for our ML models. These
metrics are obtained from the Metric Monitor. Our models predict
the response time of our target application as a regression problem.

We utilize the H2O AutoML framework to train ML models in
the training phase of our technique. Trained ML models are subse-
quently deployed in the runtime phase to be used for performance
interference modelling of the target application 𝑎.
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Figure 3: Overview of Dynamic Interference Modelling
2.2 Dynamic Models for Interference
Our dynamic modelling technique consists of one single phase;
the runtime phase. All operations, including model training and
deployment, are conducted at runtime. Figure 3 depicts an overview
of our dynamic interference modelling technique. As in the static
modelling approaches, the dynamic approach has a target applica-
tion, interfering application, client workload(s), and Metric Monitor.
In addition to these components, the dynamic modelling technique
has a Model Manager as depicted in Figure 4.

The Model Manager is responsible for the end to end life cycles
of models trained and deployed in our runtime phase. The Model
Manager employees a Model Deployment Strategy, as defined by
the DevOps team, that defines when a model should be trained.
When model training is done at runtime, this constitutes a dynamic
modelling technique. If the Model Manager indicates a newmodel is
required, the Model Manager triggers the Model Training process.
In the Model Training process, the Model Manager queries the
Metric Monitor for the relevant metrics and trains a new model at
runtime. When a new model is trained, the Model Manager swaps
out the old model for newly trained one, which we refer to as the
Active Model. The Model Prediction process invokes the Active
Model to obtain runtime performance predictions. We predict the
response time of our target application in our experimentation
although our technique can be used to predict other metrics of
interest as well.

2.2.1 Gaussian Process Models. Gaussian Process (GP) [21] mod-
els are probabilistic models that utilize Bayesian theory to derive
their predictions. Prior works [16, 22] have employed GP models
with sliding windows in modelling response time of containerized
applications. In particular, the recent work of Kang and Lama [16]
uses GP models for the modelling of microservice performance
interference. As such, we consider their implementation of the GP
model as a competing technique in our work.

Kang and Lama [16], as with other prior works, leverage VM,
container, and application metrics for their feature sets. These met-
rics are used to train GP models at runtime as well as utilizing
those same models for response time predictions. In their model
definition, Kang and Lama [16] formulate their GP models using

Figure 4: Overview of Model Manager

the sum kernel of the Radial Basis Function (RBF) kernel plus the
Rational Quadratic kernel. Furthermore, they employ a sliding win-
dow technique in which a limited number of datapoints, in this case
200, are used to train GP models at runtime such that the training
time as a result is less than 30 seconds. Their motivation for doing
so is to keep overhead like the data collection and model training
times less than their sampling interval.

2.2.2 Dynamic Machine Learning Models. Our Dynamic Machine
Learning technique utilizes a Sliding Window Model Deployment
Strategy in conjunction with the AutoML framework as detailed
in section 2.1.2. Our dynamic AutoML technique’s feature set is
made up of the same metrics used in our static AutoML technique’s
feature set as mentioned in section 2.1.2. That is, it consists of
CPU and memory utilization from the VM and target application
containers as well as the target application’s throughput.We predict
the response time of our target application which again constitutes
a regression task.

Prior works have employed a sliding window technique to trig-
ger model training and re-training at runtime [16, 22]. Sliding win-
dow techniques configure a fixed time interval 𝑡 . Model training
is conducted with respect to this time interval 𝑡 . That is, model
training only considers a dataset of points acquired within the fixed
time interval 𝑡 . The intent is to set 𝑡 such that there are enough
points to construct a well performing model while also keeping 𝑡
small enough as to minimize required model training time. With a
small enough 𝑡 , it follows that sliding window techniques can be
employed at runtime.

By utilizing a sliding window for model training, changes in
the cloud environment can be captured in a dynamic fashion. For
instance, assume a new unknown interfering application is co-
located alongside the target application. The use of a slidingwindow
technique allows for new models to capture the interference impact
this new interfering application has on the target application at
runtime.

AutoML frameworks like H2O have parameters in which a user
can set a fixed training time budget. Model training time cannot
exceed this budget and so the framework optimize how best to
spend the training time. In our technique, we set the H2O AutoML
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training time budget equal to 𝑡 . That is, the Model Training process
does not exceed the sliding window interval. For each interval, a
new model is trained and deployed at runtime.

3 GENERAL EXPERIMENT SETUP
We run experiments in the AWS cloud on EC2 VMs running in the
same availability zone. We utilized m5.large VMs running Ubuntu
16.04 and Docker 19.03.13. Each VM was allocated 2 VCPUs, 8GiB
of Ram, and 64GiB of Elastic Block Storage. We conduct two sets of
experiments. The first set of experiments deploys the target appli-
cation on a single VM, which we refer to as the 1VM deployment
strategy. The second set deploys the target application across 2
VMs, which we refer to as the 2VM deployment strategy.

3.0.1 Target Application. The target application we use is called
Acme Air [1] which is an e-commerce benchmark microservice
previously used in other related works [24, 25]. Acme Air consists
of a NodeJs Web Server and a MongoDB database, each of which
are each containerized and denoted as Acme-Web and Acme-Db
respectively.

3.0.2 Interfering Applications. In our experiments, we leverage
three different interfering applications. Only one interfering appli-
cation is ever deployed concurrently with our target application.

The first interfering application we leverage is a containerized
version of the stress-ng benchmark [9]. stress-ng has been used
in prior work [12] to induce stress on system resources at varying
configurable levels. stress-ng is well suited for our experiments
given we can configure the level of stress induced on the system.
We can evaluate how well our models work at varying levels of
performance interference.

Our second interfering application is a second copy of Acme Air
that runs concurrently with the target application. The interfering
application copy of Acme Air has its own distinct and configurable
workload making for a more realistic deployment scenario. We use
a second copy of Acme Air to model scenarios with high levels of
performance interference. Given that the interfering application is a
copy of the target application, their resource utilization patterns are
the same. Therefore, there will be abundant resource competition.

Finally, our third interfering application is an Internet of Things
(IoT) microservice application called the Air Quality Monitor [2].
We leverage the Air Quality Monitor as an interfering application
to represent a realistic scenario in which two distinct microservices
are co-located. We refer to the Air Quality Monitor application as
IoT.

3.0.3 Client Workloads. We devise workloads to each target and
interfering application such that they incur incremental step size
increases in utilization. Doing so allows us to capture performance
interference behavior across a wide range of resource utilization
levels. Each workload is run for 𝑁 = 40 repetitions in each environ-
ment to ensure variance is captured. Furthermore, each workload
is run for a duration 𝑥 = 120 seconds.

For our target application, Acme Air, we leverage httperf [19] to
serve as the Workload Generator. The workload itself represents
the default workload mix provided with the Acme Air application.
The step size increase of this workload is approximately 12.5% CPU
utilization. For our interfering application, stress-ng, we configure

the application itself through a command line script to stress CPU
resources with a step size increase of 20% CPU utilization. The
command line script represents the Workload Generator for stress-
ng. Next, when we use a second copy of Acme Air as the interfering
application, we leverage the same default workload mix previously
mentioned to incur a step size increase of 12.5% CPU utilization. The
target application copy of Acme Air and the interfering application
copy of Acme Air each have their own distinct workloads that may
be configured at the same or different levels at any one point in
time. Finally, for Air Quality Monitor, we leverage JMeter [4] as
the Workload Generator. The step size increase for the Air Quality
Monitor is 20% CPU utilization.

3.0.4 Metrics Monitor. Prometheus, a frequently used open-source
monitoring tool serves as the Metrics Monitor in our experiments.
Prometheus integrates with metrics exporters to obtain metrics
as configured by the user. To obtain VM level metrics, we utilize
a metrics exporter known as Node exporter [8]. With respect to
container level metrics, we use cAdvisor [5], a metrics exported
that integrates with Docker. Application level metrics for our target
application, Acme Air, are obtained from the logs output by its
Workload Generator, httperf. Grafana [7] is utilized to query, merge,
and export VM and container metrics.

We configure the metrics exporters to record only CPU and
Memory utilization metrics as our target application, Acme Air,
heavily utilizes just these two resources. Metrics are configured in
Prometheus to be collected at sampling interval 𝑡 = 5 seconds as to
incur a minimal overhead of 2% CPU utilization on each VM.

3.0.5 VMDeployment Strategy. We construct performance interfer-
ence models for two deployment strategies. The 1VM deployment
strategy consists of deploying our target application, Acme Air,
along with one of the interfering applications on a single VM. The
2VM deployment strategy distributes our target application, Acme
Air, across two VMs. Acme Air’s Web Server is deployed on one
of the VMs and Acme Air’s Database is deployed on the other VM.
With respect to the interfering application, each of the two VMs has
its own copy of the interfering application deployed to it. Therefore,
both VMs can be subject to performance interference.

4 RQ1: STATIC ML FOR KNOWN
INTERFERING APPLICATIONS

To quantify performance interference with respect to RQ1, we uti-
lize the setup as presented in section 3 in which we can induce
performance interference on a target application. For the experi-
mentation in this section, we assume the interfering application
is known to the target application owner. We induce performance
interference as described in section 3 and collect the resultant target
application’s performance metrics. With these metrics, we evaluate
the performance of our static technique versus baseline and com-
peting techniques. Section 4.1 describes our experimental setup.
Section 4.2 presents the results of our experiments.

4.1 Experiment Setup
For each deployment strategy, we sent varying workloads to both
target and interfering applications while monitoring the environ-
ment. The metrics collected are used in training static performance
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interference models. We evaluate our proposed static AutoML tech-
nique, as detailed in section 2.1.2, against baseline and competing
state-of-the-art techniques. We leverage Linear Regression as a
simple, statistical baseline technique. We further evaluate our tech-
nique against the competing Layered Queuing Model (LQM) as
described in section 2.1.1. As mentioned before, LQMs have fre-
quently been used in performance modelling of monolithic and
microservice applications [10, 13, 23].

4.2 Results Analysis
4.2.1 Observed Resource Utilization. By varying the target and
interfering application workloads, we observed a wide range of
resource utilization values. The VM CPU and Memory utilizations
each ranged from 2% to 100%. The target Acme Web container’s
CPU utilization, which is the primary resource it uses, ranged from
3% to 82%. The target Acme DB’s Memory, which is the primary
resource it uses, ranged from 1% to 59%. Incurring a wide range of
resource utilization enables us to model performance interference
impact at varying levels of resource consumption. Notably, we are
able to evaluate periods of little to no interference, periods of high
interference, and levels of interference between those two extremes.

4.2.2 Observed Response Times. We report the response time ranges
observed in our experimentation as shown in Table 1. The 𝑅𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒
column depicts the range of baseline response times for our target
Acme Air application when there is no interference present. The
𝑅𝑖𝑛𝑡𝑒𝑟 𝑓 . column depicts the range of response times for our tar-
get Acme Air application subject to performance interference. The
Percent Increase column represent the worst case percent increase
in response time subject to interference relative to the baseline
response time. When a second copy of Acme Air is used as the
interfering application we see the largest percent increase in re-
sponse time. This is followed by the IoT interfering application.
stress-ng interference causes the least impact on the target Acme
Air application’s response time.

VMs Interfering
App.

Rbaseline
(ms)

Rinterf.
(ms)

Percent
Increase

1VM stress-ng 1.33-9.00 1.34-12.53 39.22%
1VM Acme Air 1.22-7.35 2.66-518.53 6954.83%
1VM IoT 2.38-16.48 8.10-590.88 3485.44%
2VM stress-ng 1.11-5.66 1.81-24.10 325.80%
2VM Acme Air 1.11-3.46 2.46-202.47 5751.73%
2VM IoT 1.24-2.32 5.46-90.22 3788.79%

Table 1: Observed Response Time Ranges

4.2.3 Model Evaluation. We evaluate the effectiveness of models
by the Mean Absolute Percentage Error (MAPE) as used in prior
works [16, 20]. MAPE is defined as:

• Let n denote total number of records observed
• Let 𝑅𝐴,𝑖 denote actual response time observed for record i
• Let 𝑅𝑃,𝑖 denote predicted response time made for record i

𝑀𝐴𝑃𝐸 =
1
𝑛
∗

𝑛∑︁
𝑖=1

𝑅𝐴,𝑖 − 𝑅𝑃,𝑖

𝑅𝐴,𝑖
(3)

We calculate the MAPE for each combination of interfering ap-
plication and deployment strategy in use. Table 2 details the MAPE
of our static AutoML approach as well as baseline and competing
techniques. Across all scenarios, our static AutoML technique out-
performs baseline and competing techniques by as little as 14.13%
and as much as 1271.37%. In all scenarios, AutoML selected the Gra-
dient Boosting Machine (GBM) as the best performing ML model
considered. Furthermore, QNM ranks in second place by outper-
forming the corresponding baseline Linear Regression models in
all scenarios.

VMs Interfering App. Model MAPE
1VM stress-ng Regression 109.06%
1VM stress-ng LQM 98.07%
1VM stress-ng AutoML 3.87%
1VM Acme Air Regression 1297.9%
1VM Acme Air LQM 50.28%
1VM Acme Air AutoML 26.53%
1VM IoT Regression 701.37%
1VM IoT LQM 69.76%
1VM IoT AutoML 19.26%
2VM stress-ng Regression 122.83%
2VM stress-ng LQM 38.59%
2VM stress-ng AutoML 5.88%
2VM Acme Air Regression 558.52%
2VM Acme Air LQM 48.39%
2VM Acme Air AutoML 14.92%
2VM IoT Regression 243.45%
2VM IoT LQM 43.52%
2VM IoT AutoML 29.39%

Table 2: Static Model with Known Interfering App

In scenarios with less interference impact observed on response
times relative to baseline response times as measured by the Percent
Increase column in Table 1, we observe a lower MAPE as seen in
Table 2. Conversely, the greater the impact on response time relative
to baseline response times, the larger we observe MAPE to be. We
observe the least amount of performance interference impact on
response time when stress-ng is the interfering application and
likewise the smallest MAPE scores. When a second copy of Acme
Air is the interfering application, we observe the most amount of
interference impact and consequently the largest MAPE scores.
Finally, the IoT interfering application generates more impact on
response time than stress-ng but less than a second copy of Acme
Air and the same pattern is observed in MAPE scores.

5 RQ2: DYNAMIC ML
As previously mentioned, cloud-native application owners may not
have visibility of other co-located interfering applications on their
physical server or even VM. In contrast to the work presented in
section 4 where static modelling techniques were employed, in this
section we evaluate the performance of dynamic performance inter-
ference modelling techniques. Section 5.1 discusses experimental
setup. Section 5.2 highlights the results of our dynamic modelling
technique. Finally, section 5.3 presents a comparative analysis and
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practical considerations between static and dynamic AutoML mod-
els and their performance across our different scenarios.

5.1 Experiment Setup
We compare the performance of our dynamic modelling technique
as described in Section 2.2.2 against baseline and competing tech-
niques. To that end, we leverage the static LQM technique as de-
picted in section 2.1.1 as our baseline technique. Furthermore, we
leverage a state-of-the-art Gaussian Process technique as presented
in section 2.2.1 which itself is a dynamic technique. Dynamic Au-
toML models are constructed following the methodology in section
2.2.2.

We employ 1VM and 2VM deployment strategies for our target
application Acme Air as described in Section 3. In addition, we
leverage the same Prometheus Metric Monitor. We utilize stress-ng,
a second copy of Acme Air, and the IoT application as interfering
applications in our experiments.

For the dynamic techniques, model training occurs at runtime.
Consequently, the Active Model is likely to be employed when
there is runtime interference from the same interfering application
encountered in model training. Should the interfering application
change at runtime, the new interfering application is unknown to
the Active Model. However, given the dynamic nature of the sliding
window, subsequent models trained at runtime will detect the new
interfering application’s impact in their respective model training.

5.2 Results Analysis
Response time ranges are presented in Table 1 which are also con-
sistent across our experimentation. In Table 3, we detail the MAPE
of our technique and competing techniques across each scenario.
Notably, AutoML outperforms both the LQM and GP models across
all scenarios. In four of the six scenarios, the GP model comes in
second place by outperforming the LQM. In two of the six scenarios,
the LQM outperforms the GP model to come in second place.

VMs Interfering App. Model MAPE
1VM stress-ng LQM 98.07%
1VM stress-ng GP 7.48%
1VM stress-ng AutoML 6.03%
1VM Acme Air LQM 50.29%
1VM Acme Air GP 50.67%
1VM Acme Air AutoML 38.29%
1VM IoT LQM 69.75%
1VM IoT GP 36.13%
1VM IoT AutoML 26.74%
2VM stress-ng LQM 38.59%
2VM stress-ng GP 20.9%
2VM stress-ng AutoML 18.54%
2VM Acme Air LQM 48.39%
2VM Acme Air GP 32.81%
2VM Acme Air AutoML 24.04%
2VM IoT LQM 43.52%
2VM IoT GP 54.46%
2VM IoT AutoML 38.85%

Table 3: Dynamic ML vs. Dynamic GP and Static LQM

5.3 Comparative Analysis and Practical
Considerations

We present a comparative analysis of the best static and dynamic
AutoML techniques as captured in Table 4. The table is partitioned
by the runtime interfering application and the VM deployment
strategy in use for the target application. Furthermore, we denote
the evaluated technique; either Static AutoML or Dynamic AutoML.

It’s noteworthy that the static AutoML technique with inter-
ference visibility outperforms its counterpart dynamic AutoML
technique. However, the applicability of static techniques with in-
terference visibility is limited to scenarios where the application
owner knows what interfering applications are co-located with
the target application. Nevertheless, this is a useful scenario when
the application owner wants to scale manually or automatically
known applications and would like to see the effects on another
application. These static AutoML models were trained using data
collected over a period of 40 hours and as previously noted, the
cloud-native application owner may not have visibility into the
co-located interfering applications. If we consider the generalized
form of our static AutoML technique, where the interfering appli-
cation is unknown at runtime, we observed the MAPE degrades by
approximately 2x - 6x. It is therefore unwise to use static models to
predict interference impact induced by unknown applications.

The dynamic AutoML technique performs comparatively well
versus its static AutoML counterparts. While it does not outper-
form the static AutoML models that assume interference visibility,
the dynamic AutoML models perform within 2.16% and 12.66% of
their counterpart. The dynamic AutoML technique does not require
visibility of co-located interfering applications so it can account for
changing environment conditions. Also, it does not require a long
training time unlike the static technique counterparts. Therefore
the dynamic modelling is highly recommended for modelling the
interference cause by applications unknown at runtime.

VMs Interfering
App.

AutoML
Technique

MAPE

1VM stress-ng Static 3.87%
1VM stress-ng Dynamic 6.03%
1VM Acme Air Static 26.53%
1VM Acme Air Dynamic 38.29%
1VM IoT Static 19.26%
1VM IoT Dynamic 26.74%
2VM stress-ng Static 5.88%
2VM stress-ng Dynamic 18.54%
2VM Acme Air Static 14.92%
2VM Acme Air Dynamic 24.04%
2VM IoT Static 29.39%
2VM IoT Dynamic 38.85%

Table 4: Comparison of Static and Dynamic ML

6 THREATS TO VALIDITY
We describe some threats to validity with respect to our work. We
leverage the threats to validity classification of Wohlin et. al. [26].

We note that an internal threat to validity is the configuration of
the fixed number of datapoints considered in the sliding window
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of our dynamic AutoML technique. If this configuration is set too
small, the MAPE of our trained models may deteriorate. If this
configuration is set too large, model training may become too slow
to keep up with changing environment dynamics.

We further note as an external threat to validity that our experi-
ments were conducted in a single availability zone in the AWS cloud.
Our experimentation considers multi-VM deployment strategies
within the same availability zone. We do not consider deployment
strategies cross multiple availability zones.

7 RELATEDWORK
Several performance engineering techniques model an application’s
runtime behavior in order to predict application performance [11,
15, 16, 20, 22]. Prominent performance engineering techniques often
construct LayeredQueuingModels (LQM)which are an extension of
Queuing Network Models (QNM) [10, 13, 23] or Regression models
[15, 16, 20, 22].

Prior works have utilized LQMs as performance models for
both monolithic and microservice software applications [10, 13, 23].
Barna et al. [10] utilize the LQM for response time predictions of
their proposed model identification adaptive controller technique
to maintain system goals with robustness and cost-effectiveness.
Shoaib and Das [23] similarly utilize the LQM for application re-
sponse time predictions. These serve as an input to their proposed
genetic algorithm for optimizing cloud-native application scale and
placement. Gias et al. [13] propose ATOM, an autoscaling controller
for microservices that leverages the LQM to evaluate potential per-
formance gain resulting from deployment decisions.

Iqbal et al. [15] build polynomial regression models to predict
response time of applications hosted on virtual machines. They
subsequently leverages response time predictions to assess risk of
breaking service-level agreements and if so, their technique auto-
scales the application. Rahman and Lama [20] construct several
types of Machine Learning models to predict microservice perfor-
mance. These models utilize metrics from the multiple abstraction
layers of the cloud including the VM, container, and application
layers.

Shekhar et al. [22] propose an online Gaussian Process method
that uses sliding windows to make response time predictions for
containerized monolithic applications. Based on those predictions,
their method decides whether to vertically scale the application or
not. Kang and Lama [16] similarly propose an online probabilistic
Machine Learning method that leverages Gaussian Process models
and sliding windows to predict microservice performance. The mod-
els use metrics from multiple abstraction layers and are trained in
real time to adapt to the dynamically changing cloud environment.

8 CONCLUSIONS AND FUTUREWORK
We propose static and dynamic Machine Learning techniques for
performance interference modelling in cloud-native applications.
No application instrumentation is required to obtain these metrics
and collecting the metrics imposes minimal overhead. We evalu-
ate our technique against competing state-of-the-art techniques
using realistic microservice application benchmarks and across
varying deployment strategies. Our static ML models outperform
competing methods by 14.13%-1271.37% when the interfering appli-
cation is known. Likewise, our dynamic ML technique is effective

in quantifying performance interference and outperforms compet-
ing state-of-the-art techniques by 1.45%-92.04%. Furthermore, our
dynamic ML technique is practical in that it does not require long
training times and can efficiently account for changes in the cloud
environment.

With respect to future direction, we intend to integrate our
performance interference modelling technique with microservice
placement strategies. Quantifying the potential impact of microser-
vice co-location provides a meaningful signal to derive suitable
microservice placement.
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