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Abstract
Function as a Service (FaaS) is a new software technology with

promising features such as automated resource management and
auto-scaling. Since these operational aspects are transparent, soft-
ware engineers may not fully understand the scaling characteristics
as well as limitations of this technology and this lack of informa-
tion can lead to undesired performance results. To address these
concerns, we perform a study to characterize FaaS’ scalability with
intensive workloads on three popular FaaS cloud platforms, namely
Amazon AWS Lambda, IBM and Azure Cloud Function. We also
study a workload smoother design pattern to examine if it enhances
FaaS overall performance. The results show that different FaaS plat-
forms adopt distinct scaling strategies and by applying a workload
smoother, software engineers can achieve 99 - 100% success rates
compared to 60 - 80% when FaaS’ system is saturated.

CCS Concepts
• Software and its engineering → Software infrastructure.

Keywords
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1 Introduction
Software architecture and technology have evolved rapidly in

the last decade, with software deployment transitioning frommono-
lithic architecture operating on Virtual Machine (VM) to Microser-
vice architecture running on light-weight containers such as Docker.
To relieve the software engineers from operational tasks such as
resource management and capacity planning, a new technology
called Function as a Service (FaaS) was popularized since 2014. FaaS
is an event-driven cloud platform that enables software engineers
to focus on business logic and leave the infrastructure management
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to cloud providers [2]. FaaS implementation are snippets of source
code developed in supported programming languages and executed
inside a container on a cloud platform, they are usually referred to
as cloud functions. When a cloud function is triggered, the cloud
provider will automatically create a new container and load the
source code for execution into this container [4].

One of the promising FaaS features is resource auto-scaling,
which is the automatic provisioning and de-provisioning of com-
puting resources in response to workload changes [3]. This feature,
on one hand, simplifies the software engineering operational aspect,
but on the other hand, poses a challenge to performance planning.
Software engineers may need to know in-depth about how each
cloud provider scales their cloud functions, how reactive the scaling
is or what are the limitations when scaling up or down. Hence, a
load and performance benchmark is essential to justify this tech-
nology’s auto-scaling feature.

Most previous studies on FaaS focused on evaluating the perfor-
mance by running heavy CPU, Memory, I/O and Network bench-
marks on different FaaS platforms. There were only a few research
studies that focused on the auto-scaling aspect of FaaS [11, 14].
Those studies only used a small number of concurrent clients and
low intensity workloads.

In this paper, we describe an empirical study of FaaS’ auto-scaling
and report the results of our systematic load and performance ex-
periments. The results show auto-scaling strategy is implemented
differently by different cloud providers. Then, we examine the use
case when FaaS has spawned all the allowable cloud function in-
stances to serve the traffic (i.e., the upper concurrency capacity
limit has been reached). Next, we evaluate the effects of introduc-
ing a workload smoother which is a software component located
in-front of a target system to smooth the workload and prevent
overloading. Our studies were conducted on three popular cloud
providers, namely Amazon AWS Lambda, IBM and Azure Cloud
Function. The contributions of this paper are:

• We simulate intensive workload scenarios, evaluate and re-
port FaaS’ auto-scaling characteristics on different cloud
platforms.

• Wepropose and show the advantages of aworkload smoother
which implements the Queue-Based Load Leveling microser-
vice design pattern [24]. Our prototype implementation shows
that it can achieve a 99 - 100% success rate compared to 60 -
80% when FaaS’ system is saturated.

The paper is organized as follows. Section 2 introduces the back-
ground and related work for FaaS’ scalability. Section 3 presents the
research questions and methodology used in our study. Section 4
describes our experimental setup. Section 5 presents the evaluation
results. Section 6 outlines potential threats which might impact
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our results. Finally, section 7 discusses and concludes our research
work.

2 Background and Related Works
In this section, we first provide an overview of the FaaS in Section

2.1. Then we discuss the related work in Section 2.2.

2.1 Background
2.1.1 FaaSOverview: Since its introduction in 2014, FaaS has gained
the attention of both academic researchers and industry practition-
ers for its auto-scaling feature which is automatically adding more
container instances to elevate processing capacity. While providing
auto-scaling, all FaaS cloud platforms impose an upper concurrency
limit, for example, by default AWS Lambda restricts the maximum
concurrency at 1,000 concurrent clients. Beyond this limit, requests
will be throttled with “Too Many Request” error (HTTP-429). Soft-
ware engineers can reduce AWS Lambda concurrency level by using
“reserved concurrency” option. Similarly, IBM cloud function also
caps the maximum concurrent executions to 1,000 but does not
provide reducing option. Under basic Consumption Plan, Microsoft
Azure allows a cloud function to scale up to 200 instances and claims
that each cloud function instance can serve multiple concurrent
requests [15].
2.1.2 Scalability and Elasticity: Herbst et al. [8] defined scalability
as the ability of the system to sustain the increasing workload by
using of additional resources. Hence, scalability of a platform can
be measured as the number of additional resources it can provide
to sustain a workload burst.

Elasticity, on the other hand, is described as the degree to which
a system is able to adapt to workload changes by provisioning and
de-provisioning resources in an automatic manner [8]. Elasticity is
mainly related to “the change in resources and the reaction time
is of importance” [12]. Consequently, elasticity of a system can be
evaluated as the speed of scaling up a system from under-optimal
to optimal states.
2.1.3 Cloud Design Patterns Overview: Cloud design patterns are
documented solutions pertaining to specific software engineering
problems. Each cloud design pattern includes the discussion about
the context, problem, solution, issues and considerations. Software
engineers and architects apply cloud design patterns to ensure
that the software system is reliable, scalable and secured. Taibi et
al. [24] reviewed 32 patterns that can be used for FaaS, some of
these patterns, such as queue-based load leveling, have been used
with microservices [17]. We implemented the queue-based load
leveling pattern for FaaS to determine if this pattern can improve
the performance and by how much.

2.2 Related Works
When benchmarking FaaS, most previous research focused on

CPU, Memory, I/O, Network and only a few studies concentrated
on the scalability. Kuhlenkamp et al. [11] presented an elasticity
benchmark for AWS Lambda, IBM, Azure and Google Cloud. Their
study used Node.js and a variety of evaluation metrics such as
reliability, request-response latency, throughput, execution cost.
The benchmark was designed to send slow ramping requests (60
seconds). Martins et al.[14] defined a suite of seven tests to bench-
mark the raw performance of AWS Lambda, Azure, Google and
IBM cloud functions using latency and throughput measurement.

The results showed that AWS Lambda, Azure and Google cloud
functions exhibited almost linear throughput increase when the
number of concurrent requests accelerated. Our study is different
from above research in the following ways: we evaluate FaaS’ scal-
ing characteristics using a high intensity workload [23]; we use
Java, which is a very popular programming language [20]; we in-
vestigate the response to burst workloads, where requests ramp up
in short periods; we also followed well-established methodologies
conducted by Cooper et. al. [6] to examine the software system at
saturation point.

3 Research Questions and Methodology
In this section, we describe our Research Questions (RQ) and

corresponding methodologies.

3.1 Research Questions
We formulate two following RQs:
• RQ-1 (Scalability): What are the FaaS’ scalability and elas-
ticity characteristics under heavy load test?
In RQ-1, we focus on FaaS’ scalability and elasticity with
different workload intensities. Based on the scalability and
elasticity definition presented in Section 2.1.2, we chose to
test with multi-concurrent clients.

• RQ-2 (FaaS Under Saturation and Performance Im-
provement Patterns): What is FaaS’ performance under
saturation? Does workload smoother pattern help to improve
the performance?
In RQ-2, we inspect FaaS’ performance at saturation level
(i.e., when the throughput of a system stops increasing [6])
and apply the workload smoother design pattern to verify
the performance improvement.

3.2 Methodology
3.2.1 RQ-1 Methodology: We used JMeter client [5] to send multi-
concurrent requests to testing cloud functions. We note that previ-
ous studies experimented with concurrency level at 1, 5, 10, 20, and
30 concurrent requests [14, 19]. To simulate intensive workload,
we decided to test the platforms with 100 concurrent clients.

In addition, the workload intensity was also controlled by the
following JMeter parameters:

• Ramp Up Time refers to how long JMeter takes to create
100 testing threads. We noted that this parameter was also
used by Somu et al.[21]. We used four discrete intervals
which are one (1s), three (3s), six (6s) and ten seconds (10s).

• Total Number of Requests refers to the size of the examin-
ing workload. We designed three workload sizes which were
1000, 3000 and 7000 requests representing low, medium and
high levels.

We evaluate FaaS’ scalability and elasticity based on the follow-
ing four metrics which were inferred from the definitions discussed
in Section 2.1.2:

• The number of function instances spawned: In this metric, we
counted the number of cloud function instances provisioned
based on a unique cloud instance identifier (discuss in Section
3.2.3). This metric helps to discover the scaling patterns
adopted by each cloud platform.

• The ramp duration to expected number of instances: In this
metric, we measured the time it took cloud platforms to scale
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up to required number of instances. The ramp duration was
calculated as the time difference between the first response
and the response which was first served by the lastly added
instance. For example, if a test requires cloud platform to pro-
vision 100 instances, the ramp duration would be measured
as the time difference between the first response’s timestamp
and the response’s timestamp which was first served by the
100th instance. This metric indicates how quickly a cloud
platform can add more instances. The shorter it takes, the
better the elasticity is [8].

• The system’s throughput: System throughput is a commonly
used performance metric. It is measured as the number of re-
quests processed in a unit of time. We calculated the through-
put as follow:

𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 =
Total Number Of Request
Execution Time In Second

∗ 60 (1)

Throughput shows how many requests have been served in
a unit of time (i.e., minute). The higher the throughput, the
better the system performance is.

• The median response time: We measured the median response
time which is also a commonly used performance metric.
This response time shows the duration a system needs to pro-
duce the result. Compare to average response time, median
response time is known to be less sensitive to short-term
fluctuations such as cold-start or unexpected timeout [10].
The lower the response time is, the better the performance
delivers.

The experiments were conducted over extended period of April 5th
- 12th, 2021.
3.2.2 RQ-2 Methodology: As discussed in Section 2.1.1, all FaaS
platforms impose upper concurrency limit. Hence, in RQ-2, we aim
to study the system’s behavior when the workload has reached
FaaS’ maximum concurrency limit. We also study if a workload
smoother design pattern can help to improve the system’s perfor-
mance. Among the proposed design patterns [17, 24], we choose to
implement a workload smoother based on the Queue-Based Load
Leveling Pattern because this pattern is effective when the target
system intermittently experiences the high load.

We followed the strategy discussed by Cooper et al. [6] about
measuring the response time as throughput increases until the point
at which it stops increasing, i.e., the system is saturated.We first sent
the workload to FaaS system until a point the throughput reached a
consistent level. Then, we stopped and recorded the total number of
requests (including the passed and failed). Next, we re-sent the same
number of requests to a system with the workload smoother and
recorded similar performance metrics. This methodology helps us
to evaluate if a workload smoother can improve FaaS’ performance.

We chose to experiment the workload smoother with AWS
Lambda and Azure Cloud Function since these cloud platforms
offer configurable concurrency limits. We did not examine IBM
Cloud Function because a concurrency level of 1,000 with no con-
figurable option is beyond the scope of this study. We configured
AWS Lambda to have a maximum concurrent executions of 100 us-
ing “reserved concurrency”. To prevent overloading, we configured
the workload smoother so that there were at most 100 concurrent
requests sending to AWS Lambda functions. JMeter client was set

to test the system with 150, 200 and 250 threads ramped in 10 sec-
onds. These workloads were equivalent to 1.5x, 2x and 2.5x times
of the FaaS’ capacity and thus would help us to assess the system
at saturated level. Microsoft Azure claims that each Azure function
instance can serve multiple concurrent requests hence to ensure the
same experimental setup, we set Azure function instance to only
serve at most one concurrent request. Experiments showed that
although the maximum number of instance can reach 200, we only
observed about four instances spawned in all experiments. Con-
sequently, we configured our workload smoother so that it would
send at most five concurrent requests to Azure cloud function and
set JMeter to create five, seven and ten threads (equivalent to 1.25x,
1.75x and 2.5x of FaaS’ capacity) ramped in 50 seconds.

We conducted experiments for each cloud provider twice to avoid
cloud instability. AWS Lambda systems were assessed on May-5th
and May-25th, 2021 and Azure cloud platform was evaluated on
May-28th and June-5th, 2021. In these experiments, we measured
median response time, coefficient of variation (CV) which is the
ratio in percentage between standard deviation over mean response
time, the number of passed, failed, total requests, success rate which
is the ratio in percentage between passed requests over the total
requests, throughput and the number of instances provisioned.
3.2.3 Function Instance Identification: For RQ-1 and RQ-2, it is
essential to quantify how many cloud function instances were pro-
visioned hence uniquely identifying the cloud function instance is
important. To achieve this goal, we used the following approaches:

For AWS Lambda, we used the unique “logStreamName” which
is tied to the function executing instance and extracted from the
execution context.

For Azure Cloud Function, we queried the Monitoring - Log to re-
trieve requests’ “customDimensions” which contained the executing
instance identifier.

For IBM Cloud Function, we followed the self-generate mecha-
nism presented by Lloyd et al. [13] to create a universally unique
identifier (UUID) for the function instance. When a cloud function
is invoked, it checks the local file “/tmp/host.txt” for the UUID. If
this file does not exist, it means this is a new instance and a UUID
is created and stored in this file. To ensure thread safety, we im-
plemented the synchronization with double lock mechanism while
creating and storing the UUID. When the “/tmp/host.txt’’ exists,
subsequent execution can retrieve the UUID without acquiring the
lock to avoid performance degradation.

4 Experimental Setup
Cloud Providers: Based on Eismann et al.[7] FaaS’ study, we

chose to evaluate on three most popular cloud providers, namely
AWS Lambda (AWS), IBM Cloud Function (IBM) and Microsoft
Azure Function (Azure) because they occupied majority of FaaS use
cases (80%, 10% and 7% respectively). Google Cloud Function only
accounted for a small use case percentage (3%) and therefore not
generalized enough.

Runtime: We focused on Java in this paper because Java and
Node.js are known to be the most popular studied language in FaaS
software industry research [20]. Among different versions of Java,
we used Java version 8 since it is the commonly supported version
on all participating platforms.
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Tools: We used Apache JMeter (version 5.2.1) to conduct multi-
concurrent client load tests. JMeter is a pure Java application de-
signed to load test functional behavior and measure performance.
While benchmarking the cloud functions, we cross-verified how
many threads were spawned by JMeter using VisualVM tool [25].

Testing Function: We developed a CPU-intensive cloud func-
tion which calculates the factorial of a number similar to Somu
et al.[21] experiments. However, our cloud function is a single
function compared to their multiple chained cloud functions. We
followed the FaaS Principles and Best Practices suggested by AWS
Lambda, IBM and Azure cloud providers which recommend that
each cloud function should perform only one action and not to
make the functions call each other [1, 9, 16]. Our cloud function
was designed to compute the factorial using loop iteration and no
cache storage was used to ensure performance consistency. We
chose 4000 as the testing parameter as this number is large enough
to simulate intensive processing. Our source code is published for
reproduction purpose [26].

For AWS Lambda and IBM cloud function, we allocated 512MB
memory since this is appropriate for the factorial calculation. On
Microsoft Azure, we deployed the function on a standalone function
app which ran on Linux Operating System. We exposed all testing
cloud functions to have HTTPS endpoints for JMeter invocation.
Fig. 1 illustrates our RQ-1 experiments.

Figure 1: Load and Performance Experiment Benchmark
With JMeter On Three Cloud Platforms

Figure 2: Cloud Functions With Workload Smoother
For RQ-2, we re-used the RQ-1 structure as depicted in Fig. 1

to experiment a system without a workload smoother introduced.
Next, we developed a workload smoother application powered by
Spring Boot Technology [22] as shown in Fig. 2. Internally, the
workload smoother has two fixed-size thread pool executors which
execute the submitted tasks using one of the available threads in
the pool [18]. Each thread pool executor corresponded to one target
FaaS system, i.e., AWS Lambda and Azure Cloud Functions. The

thread pool size was configured to align with the maximum con-
current capacity that each FaaS system could handle. Furthermore,
each thread pool has implicit unbounded queue which automati-
cally en-queues the request when all the threads are busy. Once a
thread becomes available, the request will be de-queued and for-
warded to the FaaS system. The workload smoother also exposed
two corresponding HTTPS endpoints for AWS Lambda and Azure
cloud function and was deployed on U.S-East region (Ohio) EC2
t2.large instance (2 vCPU and 8GB Memory). We used t2.large in-
stance because this instance type can sustain high CPU and network
requirements therefore eliminate potential performance bottleneck.
It should be noted that deploying the workload smoother on Ama-
zon AWS EC2 environment did not introduce performance bias to
AWS Lambda because each service in the system was built as a
standalone component and communicated to via HTTPS APIs.

5 Evaluation Results
We describe the experimental results with respect to research

question RQ-1 (Section 5.1) and RQ-2 (Section 5.2).

5.1 RQ-1: Scalability of FaaS
In this section, we present the scalability and elasticity charac-

teristics of FaaS under different intensity levels.

# of
Re-
quest

Ramp Up Time
AWS IBM Azure

1s 3s 6s 10s 1s 3s 6s 10s 1s 3s 6s 10s
1000 99 82 54 29 100 108 101 109 4 4 3 4
3000 100 86 67 43 107 108 112 113 5 6 5 5
7000 97 88 70 66 113 105 120 123 7 7 7 7

Table 1: Number of Instances spawned by different Ramp Up
Times and Workload Levels

5.1.1 The Number of Function Instances Spawned: Table 1 shows
the number of instances spawned by three cloud providers across
different ramp up times andworkload levels.When the workload be-
came more intensive by reducing the ramp up time, AWS increased
the instances spawned accordingly. This pattern was consistent
across three testing workload levels. In addition, when the workload
expanded from 1000 to 7000 requests, AWS Lambda exhibited two
different patterns. For long ramp up time (6s and 10s), the number
of instances increased in accordance with the increase in workload
(54 - 70, 29 - 66 instances respectively). However, for short ramp up
time (1s and 3s), the number of instances only changed by a small
number (99 - 97, 82 - 88 instances).

On the contrary, IBM cloud platform shows a similar number of
100 to 120 instances spawned across the ramp up times. There was
no clear pattern in the relationship between changing the ramp up
time and more instances getting provisioned. Nevertheless, when
workload extended from 1000 to 7000, the number of instances
spawned increased accordingly in most cases (three out of four
cases except for the ramp up time of 3s).

Microsoft Azure cloud function shows that the number of in-
stances spawned was almost constant across different ramp up
times. When the workload level increased from 1000 to 7000, we
noticed that Azure cloud platform nearly doubled the number of
instances from four to seven.

In this metric, we observed that IBM cloud platform scaled their
instance fleet to around 100 - 120 instances in all testing config-
urations. These values were quite close to 100 concurrent clients
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Number of
Requests

Ramp Up Time
AWS IBM Azure

1s 3s 6s 10s 1s 3s 6s 10s 1s 3s 6s 10s
1000 900 3,329 3,725 3,728 37 1,050 2,156 9,023 32,341 36,202 25,291 30,735
3000 652 2,638 6,120 6,790 122 8,333 17,062 10,355 43,293 51,583 43,208 42,056
7000 718 2,593 7,915 10,942 26,589 15,359 24,664 33,319 68,036 63,018 62,689 62,349

Table 2: Ramp Duration To Expected Number of Instances (in ms)

Number of
Request

Ramp Up Time
AWS IBM Azure

1s 3s 6s 10s 1s 3s 6s 10s 1s 3s 6s 10s
1000 14,648 10,870 8,408 5,578 4,193 4,467 4,056 1,354 1,679 1,369 1,741 1,938
3000 20,258 25,564 18,036 13,349 2,850 3,748 7,047 5,712 3,174 3,229 3,737 3,840
7000 34,291 34,440 27,299 19,592 13,338 12,812 14,596 9,810 5,667 5,837 5,866 6,089

Table 3: Cloud Function Throughput (requests per minute)

Number of
Request

Ramp Up Time
AWS IBM Azure

1s 3s 6s 10s 1s 3s 6s 10s 1s 3s 6s 10s
1000 219 204 180 113 325 355 415 376 2,644 2,561 2,926 2,878
3000 125 116 98 88 384 380 360 354 1,346 1,241 1,165 1,125
7000 97 89 90 98 303 296 318 320 768 754 773 754

Table 4: FaaS Median Response Time (ms)

which leads us to the conclusion that IBM cloud platform provi-
sioned the number of instance similar to the number of concurrent
clients. AWS Lambda exhibited similar characteristic only when
the workload was intensive (i.e., 1 second). Other less intensive
ramp up times show a smaller number of instances spawned. Azure
Cloud Function scaled their fleet to only a small number of four
to seven instances, this could be due to each Azure cloud function
instance can process multiple concurrent requests hence a small
number of instances is adequate to process the workload [15].
5.1.2 The Ramp Duration To Expected Number of Cloud Function
Instances: Table 2 shows the duration cloud providers ramped their
fleet to expected number of instances. For AWS Lambda, we noted
that when the ramp up time reduced, the time taken to increase
the fleet decreased three to 15 times (3,728ms vs 900ms, 10,942ms
vs 718ms). This pattern was observed on all workload levels. In the
best scenario, we recorded that AWS Lambda could scale their fleet
to 100 instances within 652ms.

Similar to AWS Lambda, IBM cloud platform slowly provisioned
and deployed the function instances when the ramp up time was
long (6s and 10s). However, when this duration was shorter (1s and
3s), IBM cloud platform increased the instances 84 to 243 times
faster (9,023ms vs 37ms, 10,355ms vs 122ms). In one best scenario,
we observed this platform ramped 100 instances in just 37ms. Never-
theless, we also noticed that the IBM performance was inconsistent.
In 1s-ramp up time and 7000-request level, it took IBM more than
26 seconds to increase the fleet capacity. We hypothesize that this
might be due to the VM cold provisioning which takes more time
to provision a new instance [13].

Different from AWS Lambda and IBM Cloud Function, Azure
cloud platform required 30 - 60 seconds to deploy more instances
to the optimal level. This might be due to the characteristic that
each Azure instance can process multiple requests concurrently
hence Azure cloud platform only considers to add extra instances
at a later stage of the test.

In this metric, we noted AWS Lambda and IBM cloud function
demonstrated similar behavior. When the workload arrives at inten-
sive pace, these platforms quickly provisioned more cloud function
instances in short period which shows good elasticity. Azure cloud
function operated differently in which each instance could serve
multiple concurrent requests and hence the duration to scale up
the fleet was longer.
5.1.3 The System’s Throughput: Table 3 presents the throughput
measured in requests per minute on all cloud platforms. We ob-
served that AWS Lambda produced a consistent throughput in-
crease when the workload became more intensive. This pattern
demonstrates a good performance sincemore resources added to the
system should result in more requests processed and consequently
increased the system’s throughput.

IBM cloud platform on the contrary, exhibited an inconsistent
throughput changing pattern. The results fluctuated because in
some cases, we noticed a number of requests returned after 30 - 35
seconds. We hypothesize that these calls might be served by newly
provisioned VM and it would require more time to complete. As a
result, the overall execution duration increased and further reduced
the system’s throughput.

Azure cloud function showed a consistent throughput across
different ramp up times. When the workload level increased from
1000 to 7000, more cloud function instances were added to the
system leading to a boost in throughput.
5.1.4 The Median Response Time: Table 4 displays the median
response time recorded on all testing platforms. For AWS Lambda,
at low and medium level workload (i.e., 1000, 3000-request), when
the ramp up time decreased, the response time increased around
42% - 93% (88ms vs 125ms, 113ms vs 219ms). Nonetheless, when
the workload level was high (i.e., 7000-request), there was no major
difference between the response times. This result might be due to
the cold-start, where FaaS system needs to provision and initialize
the function instances before execution. This activity introduces
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additional delay in response time for early requests (i.e., cold-start
requests), but subsequent requests are processed faster (i.e., warm-
start requests). Among the three workload sizes, the 7000-request
had more warm-start requests than the other two levels therefore
the median response time of this workload level was less susceptible
to cold-start and hence delivered stable median response time.

IBM cloud platform produced a consistent median response time
across the experiments. This could be due to the fact that IBM cloud
platform provisioned a similar number of instances in all testing
scenarios and therefore the workload was equally distributed, thus
producing stable results.

Microsoft Azure cloud function exhibited a consistent median
response time across different ramp up times. Nevertheless, when
the workload level increased, the median response time was greatly
improved with a reduction from 2,600ms to 1,200ms then 760ms.
This improvement pattern was similar to AWS Lambda mentioned
above.

Summary: Through RQ-1 experiments, we conclude that though
providing auto-scaling, each platform adopts different scaling strat-
egy. AWS Lambda and IBM provision the number of instances
similar to the number of concurrent requests whereas Azure plat-
form only spawns a small number of instances since each instance
can process multiple concurrent requests.

When the workload becomes more intensive, all three platforms
demonstrated an increase in computing resource provisioned and
hence, elevate the processing capability (higher throughput). Sys-
tem’s median response time might be impacted if the workload size
is small, however, in the long run, when the workload size is larger,
median response time will be stable.

5.2 RQ-2: FaaS Under Saturation and
Performance Improvement Patterns

Here we present the FaaS’ performance at saturated level and
the advantages gained by employing a workload smoother.

Metrics 1.5x Capacity 2x Capacity 2.5x Capacity
Direct WLSM Direct WLSM Direct WLSM

Median
Resp. Time
(ms)

80 201 84 268 103 372

Coefficient
of Varia-
tion

49.60% 56.03% 51.41% 47.50% 62.69% 39.56%

Throughput
(req./min)

96,036 37,088 118,873 38,706 97,707 36,378

Number of
Instances

100 95 101 98 101 96

Pass 349,206 351,600 364,624 380,400 298,005 371,750
Fail (HTTP-
429)

2,288 0 15,702 0 73,558 0

Total Re-
quests

351,494 351,600 380,326 380,400 371,563 371,750

Success
Rate

99.35% 100.00% 95.87% 100.00% 80.20% 100.00%

Table 5: Performance Comparison on AWS Lambda FaaS
without (Direct) and with Workload Smoother (WLSM).

5.2.1 AWS Lambda with Workload Smoother: Table 5 shows the
comparison between direct invocation to AWS Lambda (Direct) and
through a workload smoother (WLSM). Overall, direct invocation

Metrics 1.25x Capacity 1.75x Capacity 2.5x Capacity
Direct WLSM Direct WLSM Direct WLSM

Median
Resp. Time
(ms)

84 151 82 154 85 187

Coefficient
of Varia-
tion

59.22% 34.42% 53.98% 33.97% 156.61% 24.36%

Throughput
(req./min)

2,942 1,755 3,866 2,413 3,843 2,921

Number of
Instances

4 4 4 4 4 4

Pass 15,167 15,651 22,174 26,444 15,543 25,314
Fail (HTTP
429)

545 64 4,473 205 9,929 166

Total Re-
quests

15,712 15,715 26,647 26,649 25,472 25,480

Success
Rate

96.53% 99.59% 83.21% 99.23% 61.02% 99.35%

Table 6: Performance Comparison on Azure FaaS Cloud
Function without (Direct) and with Workload Smoother

(WLSM).

to AWS Lambda resulted in better median response time, it took the
cloud function 80 - 103ms to calculate the result. When there were
more concurrent clients added, response time fluctuated with CV
increased from 49% to 63%. AWS Lambda provisioned about 100 -
101 instances as expected when we configured “reserve concurrency”
to 100. The system throughput could reach 118,000 requests per
minute. Nevertheless, a large number of requests were throttled
with “Too Many Request” error in 2x- and 2.5x-capacity setting
(15,000 and 73,000 requests, respectively). These results demonstrate
that when AWS Lambda is overloaded, excessive requests will be
throttled hence reduced the success rates.

In contrast, by having a workload smoother, the system could
achieve 100% success rates in all scenarios. Excessive requests were
queued and later de-queued for processing hence no request was
throttled. However, since the requests had to pass through one
additional component and potentially stayed in the queue, certain
performance metrics were lower compared to direct invocation. In
particular, it took a request 200 - 370ms to complete. Although it
was much longer to process a request, the system response times
were less fluctuated with CV reduced from 56% to 48% then 40%.
There were 96 instances spawned by cloud platform which was
slightly less than the 100 concurrent clients configured in the work-
load smoother. This gap might be attributed to workload intensity
reduction by adding the workload smoother.
5.2.2 Azure Function with Workload Smoother: Table 6 shows the
performance comparison of Azure cloud functions with workload
smoother added. Similar to AWS Lambda, the direct invocation
produced better median response time. On average, the task was
completed in 82 - 85ms. Nonetheless, the CV increased from 59%
to 156% which shows major response time fluctuation. In all ex-
periments, we observed Azure cloud platform only spawned four
instances regardless of workload intensity. The throughput of the
Azure cloud functions were between 3,000 - 3,800 requests per
minute. The success rates deteriorated when the workload became
more intensive, 96% - 83% - 61% for 1.25x, 1.75x and 2.5x-capacity, re-
spectively. Considering that there were only four instances spawned
(which was far below the 200-instance capacity claimed by Azure)
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and a large number of requests were throttled, this raised a concern
about the Azure cloud platform’s auto-scaling algorithm. Cloud
provider did not add more instances to address the workload but
throttled the excessive requests while the number of instances had
not reached the maximum level.

On the contrary, when workload smoother was added, the sys-
tem achieved more than 99% success rates in all three experiments.
The 1% failure might be due to the mismatch between the num-
ber of threads in workload smoother and the number of instances
provisioned. We configured five working threads in the workload
smoother while Azure cloud platform only spawned four instances.
As a trade-off for improving the success rates, median response
time was almost doubled compared to direct invocation, one re-
quest was processed in 150 - 187ms. Nevertheless, the CV in all
three experiments were reduced which means response time were
relatively consistent (34% - 33% - 24%). Throughput was reduced in
between 1,700 to 3,000 requests per minute.

Summary: RQ-2 experimental results show that when the FaaS
cloud function system is saturated, excessive requests will be throt-
tled hence causing low success rates. To address this issue, we can
add a workload smoother to queue these excessive requests and
thus improve the system’s success rate. The more intensive the
workload is, the higher the success rate can be achieved. Nonethe-
less, certain performance metrics such as median response time
and throughput will be reduced because of the waiting time in the
queue.

6 Threats To Validity
In this section, we outline the potential internal, external and

construct threats that might affect our results.
6.1 - Internal Validity: Our results may be impacted by the cloud

platform’s memory configuration. AWS Lambda is known to allo-
cate more powerful CPU if the cloud function is allocated higher
memory.

6.2 - External Validity: Our experiments were conducted on free-
tier instances hence the results may change on paid subscriptions. In
addition, our findings might also not apply to other cloud platform
such as Google Cloud Functions. Further research needs to be done
to characterize this platform.

The testing experiments were carried out on platforms run on
Linux OS hence the findings may not be the same on Windows
OS. Moreover, there might be other use cases which implement the
cloud function different from ours hence the finding may also vary
in these cases.

6.3 - Construct Validity: There might be unexpected delay in
network communication between client and FaaS function. We had
conducted our experiments twice to average and mitigate these
delays.

7 Discussion and Conclusion
In this research work, we characterized the scalability and elas-

ticity of FaaS implemented on three most popular cloud platforms.
Experimental results show that different cloud providers adopt dis-
tinct scaling strategies. Nevertheless, all examining cloud platforms
demonstrated good auto-scaling feature which is when the work-
load becomes intensive, more resources are automatically added
and consequently increased the system’s capacity. All cloud plat-
forms impose upper concurrency limits a cloud function can have

and some platforms provide options for manual configuring the
concurrency level. Furthermore, we examined the usefulness of
applying workload smoother design pattern when FaaS’ capacity
was saturated. The prototype showed major improvement from
60 - 80% to 99 - 100% success rate in trade-off for certain perfor-
mance metrics such as median response time and throughput. This
improvement has emphasized the importance of having a request
queue with configuring options implemented implicitly at the cloud
provider’s side to prevent intermittent throttling issue. Therefore,
cloud providers such as AWS Lambda and IBM Cloud Function
should include this feature to offer better performance achievement
to cloud subscribers.
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