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ABSTRACT
In this paper, we explore the use of Wasmer and WebAssembly
(WASM) as a sandboxed environment for general-purpose run-
time scripting. Our work differs from prior research focusing on
browser-based performance or SPEC benchmarks. In particular,
we use micro-benchmarks and a macro-benchmark (both written
in Rust) to compare execution times between WASM and native
mode. We first measure which elements of script execution have the
largest performance impact, using simple micro-benchmarks. Then
we consider a Web proxy caching simulator, with different cache
replacement policies, as a macro-benchmark. Using this simulator,
we demonstrate a 5-10x performance penalty for WASM compared
to native execution.

CCS CONCEPTS
•General and reference→Performance; Evaluation; • Software
and its engineering→ General programming languages; Software
libraries and repositories; Scripting languages.
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1 INTRODUCTION
WebAssembly [22] (WASM) is a sandboxed low-level virtual ma-
chine originally designed to be used alongside the JavaScript virtual
machine in Web browsers. It is often a compilation target for lan-
guages like C, Rust [6] and Go [8], which can run the compiled
modules safely in a sandbox on a client machine.

Despite the name WebAssembly, there are no aspects of the de-
sign that constrain its use solely to the Web context. In fact, there
are multiple browser-independent implementations of WASM, in-
cluding Wasmer, WasmTime, and the runtime embedded in Node.js.
The WASM specification allows for implementations to provide
methods to the runtime environment to facilitate interacting with
the outside world, but defines very few itself. This means that even
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though it originated as a feature for browsers, WASM can be used
in other environments.

One problem that hampers development of complex applications
in WebAssembly is that WASM does not support functions with
arguments other than integers and floats. Because of this limitation,
it is difficult to implement a general scripting environment.

One possible solution involves memory sharing for arbitrary data
types, similar to the use of shared-memory [4] or message-passing
to communicate between processes. In this approach, each module
first defines a static array of memory. The host environment writes
data to that array, and then calls the module using a function that
specifies the size and location of the memory to read (effectively
a pointer). The module then reads that memory to create its own
internal version of the struct (i.e., data structure).

The goal of this paper is to evaluate the impact of this approach
on performance, especially in programs that involve many invo-
cations of simple scripts. This will be done by creating a set of
benchmarks to measure the performance impact of this memory
sharing technique in WASM.

Our work focuses on the functionality and performance of We-
bAssembly, rather than its security aspects. Specifically, we devise
a generalized solution for function calls from a host program into a
WASM script, with arbitrary data types. We develop and evaluate
our solution using the Wasmer runtime.

Our benchmarking programs are implemented in Rust [6], which
is a low-level systems programming language that prioritizes pro-
gram correctness. It was originally released in 2012 by Mozilla
Foundation as an alternative to C++ that sought to prevent entire
classes of bugs (e.g., segmentation faults) at compile time. It has
changed a lot since 2012, and reached v1.0 in 2015. At this point,
the language tracks memory ownership and memory lifetimes us-
ing a system called the Borrow Checker, obviating the need for
a garbage collector. The correctness of this system has not been
formally proven, but the overall algorithm has been studied, for
example in 2015 with a proxy of the language called Patina [20]
and in 2021 with a calculus core [19]. This memory safety property
makes it easy to write fast and lightweight modules for WebAssem-
bly that prevent memory bugs from happening. Furthermore, the
modules do not require bundling with a large runtime system, such
as with Blazor/C# [17]. These advantages make Rust and WASM
an attractive environment for general-purpose runtime scripting,
which we demonstrate and evaluate in our paper.

The rest of this paper is organized as follows. Section 2 sum-
marizes prior related work on WASM benchmarking. Section 3
describes the experimental methodology used for our benchmark-
ing study. Section 4 presents results from the micro-benchmarks,
while Section 5 focuses on the macro-benchmark results. Finally,
Section 6 concludes the paper.
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The experiment source code and the full set of result graphs are 
available on GitHub: https://github.com/Sonicskater/wasm-simulator.

2 PREVIOUS WORK
2.1 WebAssembly
WebAssembly [22] is designed as a sandboxed low-level, stack-
based virtual machine, meant to be used as a compilation target by 
other languages like C and Rust. While originally created for the 
browser, its design does not constrain it to those environments.

2.2 Security
The WebAssembly standard is also designed for creating secure 
sandboxed environments. The level of security provided ultimately 
depends on the implementation of the host runtime. Prior work has 
studied the basic level of security in the browser [9]. The binary 
security of a WASM module has a variety of flaws, including vulner-
abilities to several known exploits [11]. An even more serious flaw 
in the host security could allow a malicious module to break out of 
the sandbox, allowing arbitrary file writes from WASM scripts [11]. 
Due to these flaws, we cannot make any assertions about the perfor-
mance of our solution in a fully-secure WebAssembly environment.

2.3 Runtimes
There are two standalone WebAssembly runtimes: WasmTime and 
Wasmer. WasmTime [2] is written by the Bytecode Alliance group, 
who are responsible for defining WebAssembly. Wasmer [25] is 
made by an independent group. Wasmer claims to be superior to 
WasmTime due to supporting multiple JIT backends, and being 
capable of faster runtime performance as a result.

Wasmer has three different options for its JIT backend: LLVM [12], 
Cranelift [1], and Singlepass. These all support different features [23] 
for the compiled code, such as enabling threads or multi-value func-
tion return. For this paper, we are interested in the speed of the 
compiled code. According to Wasmer [24], LLVM is the fastest, 
although it takes the longest to compile the bytecode. Singlepass 
is a simple compiler designed to compile code quickly, although 
the generated machine code isn’t optimized. Cranelift is an inde-
pendent compiler written in Rust, which falls between LLVM and 
Singlepass for both compile time and code optimization.

2.4 Benchmarking Efforts
To the best of our knowledge, the most substantial academic ef-
fort for benchmarking WASM performance appeared at the 2019 
USENIX conference [10]. The authors tested the SPEC benchmark 
suite in various browsers, using an environment simulating an OS 
kernel in the browser. They found up to a 2.5x performance penalty 
when running SPEC benchmarks (compiled to WebAssembly code) 
in the browser, depending on the workload and browser chosen.

The focus of our work is to test non-browser environments, using 
micro-benchmarks to identify performance bottlenecks. Relative 
performance comparisons could be made to the prior work [10], 
but the vast differences in technology between the two solutions 
means such comparisons might not be very useful. Additionally, 
our research focuses on measuring and comparing the base cost

of calling a function hosted in WebAssembly, not on the overall
execution time of the function that is called.

2.5 WebAssembly Scripting
Lunatic [14] is a multi-language runtime built using WebAssembly.
It is designed to host programs written using any language that can
target WASM, in a highly concurrent and reliable environment. It
is not a standalone runtime, instead being a library that uses either
Wasmer or WasmTime at the developers discretion. It can be used
to create highly concurrent programs like a web server, where each
endpoint is modelled as a WASM module that is invoked when a
request is received, with each WASM module being a short-lived
script that is run many times.

WebAssembly is also used to support user provided modifica-
tions in the open-source video game Veloren [21]. Similar to Lunatic,
this is centred on an event-driven architecture, with small event
handler scripts that are triggered by events like the player clicking
an object or an entity taking damage. While these are two very
different applications, they both use WebAssembly to allow for
multi-language sandboxed scripting. Particular to our experiments,
they both use a pattern of a host executable that triggers a handful
of scripts repeatedly, with potentially thousands of separate invo-
cations of the script in a short period of time. Our experiments are
designed to benchmark this particular pattern of use, instead of
fewer large executions, such as in the SPEC benchmarks [10].

3 EXPERIMENTAL METHODOLOGY
The goal of this paper is to show thatWebAssembly can be used as a
scripting runtime to create useful applications. We do so by develop-
ing micro- and macro-benchmarks, and evaluating execution-time
performance of WASM versus native mode. In particular, we in-
vestigate the performance of many short executions, jumping in
and out of the WASM sandbox from our native host program, to
represent scripting use cases like Lunatic [14] and Veloren [21].

Our benchmarking experiments involve five components: (1) the
WebAssembly runtime itself; (2) a benchmarking program using
that runtime module; (3) a set of basic WASM modules for testing
that runtime with the benchmarking program; (4) a Web proxy
caching simulator program built on that WebAssembly runtime
as a macro-benchmark; and (5) a set of WASM modules to run
in the simulator. This suite of benchmarks was made completely
custom based on some simple operations, since there are no existing
programs that can both be instrumented to measure the precise
part of the code we want to measure, and also provide the level of
configuration that our testing factors require. All code is written in
Rust, because it is the implementation language for the runtimes
being used, and it has amatureWASM backend for its compiler. This
also allowed us to reuse the exact same module implementations
when comparing WASM performance to native execution.

3.1 Runtime Environment
All of our benchmarking experiments were done usingWasmer. The
limited documentation available for WasmTime made it difficult
to create an apples-to-apples comparison, so WasmTime was not
used. Our Wasmer runtime module contains the methods used for
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copying arbitrary data into memory for a WASM module to use in 
any potential applications.

3.2 Micro-Benchmark Design
Table 1 provides a tabular summary of the experimental design 
for our micro-benchmarking experiments. We created a custom 
micro-benchmarking program to measure the performance impacts 
of individual techniques for optimizing WebAssembly. Overall, the 
benchmark tests four main factors: the optimization level of the 
compiler, the JIT backend, the ABI (Application Binary Interface) of 
the WebAssembly module, and the caching of Wasmer references.

The optimization level determines how carefully the Rust com-
piler optimizes the generated code for the host program. We tested 
the host code using both Debug and Release modes, which are de-
fined in the Rust toolchain [5]. These modes change several things 
about the compilation, but the main variable is the opt-level, which 
is similar to C-style optimization levels. Debug mode is Level 0, 
with no optimizations. Release mode is Level 3, which applies all 
implemented optimizations.

All three JIT compiler backends supported by Wasmer were 
tested. Since this is a compile time setting, these were tested in 
separate runs, in the same manner as the optimization level. We 
tested the Singlepass backend, which is provided by Wasmer as a 
quick to compile, low optimization option for quick development. 
On the other extreme, we tested the LLVM backend, [12], which is 
more complicated to implement and has the longest JIT compile 
times, but has the most optimizations available. Finally, we tested 
the Cranelift [1] backend, which is a component of the WasmTime 
project. It provides moderate compile times and optimizations, act-
ing as a middle ground between the other two options.

There were three different ABI’s tested: Pair, Bincode, and Byte-
muck. The Pair ABI passes the two numerical arguments (integers 
or floats) directly to the multiplication function used in our micro-
benchmark. Bincode uses a binary encoding to store the data, and 
then passes pointers to that stored data. Finally, we used the Byte-
muck library to store a standard C struct encoding, which is similar 
to Bincode. All three of these approaches are listed under ABI in 
Table 1.

Reference Caching is used to cache the memory references in 
the compiled code returned by Wasmer. Caching was applied to all 
possible references. It was tested with either all applicable values 
cached, or none of them being cached. In addition, the Pair and 
Bytemuck ABIs had additional factors specific to them, in the form 
of Preload versus Hotload for the Pair ABI, and static versus dy-
namic memory for Bytemuck. These are the columns Loading and 
Memory in Table 1, respectively. Pair also tested a different form of 
caching, in the form of Self-Referential Structs (SRS in Table 1).

All twelve of the configurations in Table 1, are tested within one 
execution of the program. The program measures the time required 
to call the multiplication function 100,000 times, and then replicates 
this test 100 times to compute mean, standard deviation, and 95%
confidence intervals on results. It performs this test for each of the 
twelve combinations of factors, printing and graphing the average 
times in seconds, as measured using Rust std::time::Instant [18]. 
This is a monotonically increasing timer [7] with sub-microsecond 
precision [18]. It calls the Win32 QueryPerformanceCounter on

the Windows 11 machine used for the experiments. Each of these
batches of 12 executions is performed for each compilation level
and each compiler backend, for a total of 72 configurations.

Table 1: Experimental Factors for Benchmarking Tests

3.2.1 Benchmark Modules. A set ofWASMmodules was developed
to benchmark basic WASM operations, so that we can compare the
impact of different operations. These modules all perform basic
multiplication, using different ABIs for passing the parameters.
These modules each have their own linear memory segment, which
is used for both the heap and stack.

3.2.2 Application Binary Interface (ABI). In the benchmark, a se-
ries of options were tested for calling a very basic multiplication
function that is in the WASM virtual machine. Three main ABIs
were tested for these modules. Pair passes the arguments directly to
the function in the virtual machine, while Bincode and Bytemuck
use shared memory to pass the variables. Bincode [15] uses an un-
specified binary encoding to serialize and deserialize the memory.
Bytemuck copies raw C-style structs to and from the module, while
providing a thin wrapper for alignment checking [13]. Both are
invoked by passing a pointer and length as direct arguments to
the function, which are then used to fetch the relevant memory
containing the parameters.

Bytemuck was tested with both static and dynamic memory
allocation. Static allocation allows the buffer to be reused on subse-
quent calls, while dynamic allocation requires a new buffer from
the module on every call. Due to the overhead of this extra call, dy-
namic allocation is about twice as slow as static memory allocation,
which can cache and reuse the pointer.

3.2.3 Reference Caching. The final optimization testedwas caching
the WASM structs returned by the Wasmer library. These structs
each represent what is essentially a function pointer. That is, they
act as a reference to a function that we can invoke in a WASM
module. In the micro-benchmark, we have two settings for Cached
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(Yes/No), and two more (Yes/No) for Self-Referential Struct (ex-
plained in the next subsection). Both of these cache the function 
reference when the module is first loaded, instead of each time it is 
called. Since this call involves at least one string comparison to find 
the name of the matching function, there is a small performance 
penalty, even if the Wasmer library caches those functions. The 
library does not specify how it stores and indexes the compiled 
WASM bytecode. A more in-depth analysis of the library’s source 
code could allow for improvements, such as better caching if it’s 
not already present. Since this paper approaches the problem from 
the perspective of a library user, this detail is out of scope.

3.2.4 Self-Referential Structs. The final version that was tested 
used self-referential structs, which are more representative of an 
object-oriented approach. Each loaded module is represented as 
a struct, with methods on the struct exposing the methods of the 
underlying WASM. This seemingly obscure factor has a noticeable 
impact on the performance of the solution because of how the 
library works and how Rust manages its memory. Notably, Was-
mer does not return a concrete struct(Function), but rather a 
reference to a struct (&Function). The actual Function struct is 
owned by the Instance struct, so its ownership cannot be transferred. 
In essence, our benchmark borrows the struct as a reference.

Borrow tracking is a core element of Rust’s compile-time memory 
management, and is why it doesn’t need a garbage collector. This 
creates a problem, though, because these references are like C++ 
references, and point to a location in memory. This means the 
reference is invalidated if the Instance is ever moved (i.e., pointing 
to where the struct used to be, not where it currently is). This means 
that creating the naively-designed struct in Figure 1 is impossible, 
since the module must be moved inside the struct to create the 
struct, thus invalidating the &Function and &Memory references.

pub s t r u c t WasmCachedBincodePolicyModule {
module : I n s t an c e ,
mem: &Memory ,
a l l o c : &Funct ion ,
send : &Funct ion ,
i n i t : &Func t ion ,
s t a t s : &Funct ion ,

}

Figure 1: Naive Self-Referencing Struct

Since Rust does not allow us to just assign null arbitrarily, the
struct must be changed to use Option<T>, which we can set to
None initially, and then update later with Some<T>, so that the
module isn’t moved after the references are created.

This delayed initialization approach works fine until we try
to move the struct, such as storing it in a list of modules for a
benchmarking test run. At that point, the same problem arises
again, because it attempts to move the struct into the new data
structure, which invalidates the references again.

The next solution, illustrated in Figure 2, is to store the Instance
on the heap, and pin the memory so that it cannot move. In this
approach, Box<T> is a type that represents a heap allocation, and

automatically de-allocates the memory when the Box leaves the
stack. Since a Box itself does not forbid movement, we also use
Pin<T> to prevent the contained data from moving.

pub s t r u c t WasmCachedBincodePolicyModule {
module : Pin <Box< In s t an c e > > ,
mem: Option <&Memory> ,
a l l o c : Option <&Funct ion > ,
send : Option <&Funct ion > ,
i n i t : Option <&Funct ion > ,
s t a t s : Option <&Funct ion > ,

}

Figure 2: Self-Referencing Struct with Pinned Instance

4 MICRO-BENCHMARK RESULTS
4.1 Overview of Results
We used our micro-benchmark program to determine which factors
affected WASM performance. As would be expected, Debug mode
in Figure 3(a) was a lot slower than Release mode in Figure 3(b).
Specifically, Release mode improved execution time by about an
order of magnitude (note the different vertical scales on the graphs).

The results for the rest of the micro-benchmark configurations
are structurally similar in Figure 3(a) and Figure 3(b), though there
are a few small differences. Most notably, the relative performance
of "Bincode" changes. In Debug mode, Bincode is the slowest option,
but in Release mode it surpasses "Bytemuck". This could not be
explained by the different libraries used, becausewhile both Bincode
and Bytemuck copy data to shared memory, Bincode also serializes
it. One possible explanation is that Bincode’s serialization process is
faster than Bytemuck’s memory alignment checks in release mode.

All WebAssembly modules for the remaining benchmarking
experiments were compiled using Release mode. This mode better
represents modules provided by third parties. It also allows us to
focus the benchmark on fine-grain interactions with the virtual
machine, rather than measuring how fast the module code is.

4.2 ABI
The results show that Pair is the fastest ABI version. This makes
sense since it avoids the overhead of passing the arguments as a
struct. However, this method doesn’t work for types that cannot be
represented as an integer (i32, i64) or floating point (f32,f64). Types
such as strings would have to be passed through shared memory
using one of the other two methods. While it’s possible to represent
more complex types as raw integers passed this way, the resulting
ABI would be difficult to implement for third parties, such as in the
case of a plugin system, and would be incapable of passing data of
unknown or arbitrary length.

The two other ABIs pass the data using the memory sharing
technique, instead of passing data directly like Pair. Among these
approaches, the Bincode and the dynamic Bytemuck version were
the slowest. This is because both versions require two calls to be
made: one to allocate the memory, and the other to actually call the

LTB 2022 ICPE ’22 Companion, April 9–13, 2022, Bejing, China

100



(a) Debug (b) Release

Figure 3: Micro-benchmarking Results: Execution Time (in seconds) for Each Configuration with Cranelift Backend

function. Notably, even though Bincode is a parsed binary encoding,
it isn’t significantly slower than Bytemuck, which just uses a raw
C struct format. Since Bincode isn’t currently formally defined,
there is no way to know for certain how Bincode serializes the data.
However, based on additional experiments (not reported here), we
believe that Bincode’s binary representation results in a C struct
for the case of two 32-bit integers (i32). This observation provides
some insight into why they perform similarly.

Our results show that there is negligible performance difference
between Bincode and Bytemuck in the simple case. Bytemuck’s
performance improves when static memory is used, making it faster
than Bincode. Note that static allocation is not possible with Bin-
code, since Bincode is unable to determine serialized size at compile
time (a strict requirement for static allocation).

The static Bytemuck solution is faster than Bincode, but slower
than Pair. This Bytemuck library just casts a given C-style struct to
an array of raw bytes, which can be copied and cast back, either
using Bytemuck or any other mechanism to treat this set of bytes as
a given C-style struct. Bytemuck only checks formemory alignment,
so there is very little overhead other than copying the data into the
shared memory.

Despite their performance differences, all three ABIs have their
potential use cases. For simple data types, such as integers, Pair is
the obvious solution, since it is the fastest, and the easiest to imple-
ment. For more complex data, the static Bytemuck option is faster,
but the Bincode version could still have value when a C-struct is
insufficient. However, a formal specification of Bincode format [16]
is needed to facilitate its implementation in other languages. While
Bincode itself currently only works with Rust, a similar protocol
such as ProtoBuff could be leveraged to use this technique with
multiple languages.

4.3 JIT Backend Results
In Figure 4(a), Singlepass was the slowest compiler backend, al-
though this was expected as it is not intended for production use.

In Figure 4(b) LLVM performed faster, and only slightly slower
than the Cranelift backend results from Figure 3(b), but was much
slower when performing JIT compilation as seen in Figure 5 when
we include those compile times, taking over twice as long as the
Cranelift version in the worst case. This second pair of results
make sense because the code we are using in the test modules is
extremely simple, so LLVM’s additional optimizations are overkill,
and it wastes time trying to apply them.

4.4 Memory Allocation
Using static memory allocation in Bytemuck substantially improved
performance, as seen when comparing the "Bytemuck" columns to
the "Bytemuck, Static" ones in Figure 3(b). Doing so reduces the
number of calls into the VM from 2𝑛 to 𝑛+1, where 𝑛 is the number
of times we call the multiplication method. That is, it makes only
a single call to get the memory pointer, rather than doing it every
time. Since the WASM virtual machine defaults to a 32-bit machine,
we can return this to the host program using only a single 64-bit
integer, with the first 32 bits for the pointer, and the remaining
32 bits for the allocated size. This pointer is then reused for every
subsequent call.

4.5 Reference Caching
Caching Wasmer references improved execution time by up to 15%.
This was the case for both the simple caching in the "Pair, Cached"
results in Figure 3(b), where the reference is held in a local variable,
and the more complex self-referential struct option in the "Pair, Self-
referential Struct" results. This is good, because the self-referential
version better represents realistic programming requirements, such
as the simulator scenario discussed next. This performance im-
provement is maintained for the Bincode and Bytemuck as well, for
simple caching.
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(a) Singlepass (b) LLVM

Figure 4: Micro-benchmarking Results: Execution Time (in seconds) for Singlepass and LLVM backends

(a) Cranelift (b) LLVM

Figure 5: Micro-benchmarking Results: Execution Time (in seconds) for Cranelift and LLVM backends, including JIT compile
times

5 MACRO-BENCHMARK RESULTS
For our macro-benchmark, we developed a Web proxy caching sim-
ulator as an example of an application program. We implemented
the simulator in Rust, closely following the code of an existing
simulator in C++ [3]. The simulator models the movement of dif-
ferent Web objects into and out of a Web proxy cache. Simulation
parameters specify the size of the cache, as well as the replacement
policy used to manage the cache space. The input to the simulator
is a sequence of Web object requests, each expressed as a tuple
of object ID and size, using two i32 values. The experiments used
a synthetically generated request stream with 1 million requests
generated to 30,000 objects. The macro-benchmark experiments

generate a workload containing many small executions of differ-
ent scripts, for different cache configurations, with the input trace
passed using the memory sharing technique.

5.1 Web Caching Simulator
We implemented four different cache replacement policies in our
simulator. These were FIFO (time-based), LRU (recency-based), LFU
(frequency-based), and GD-SIZE (size-based) policies to produce
different CPU and memory demands on the virtual machine. FIFO is
relatively simple, just using a queue, while the other three use prior-
ity queues. LRU and LFU need their priorities updated dynamically,
making them more demanding computationally. Each algorithm
was created as its own Rust file, which was then imported into
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four separate Rust projects: one for the simulator itself for native 
execution, and three different WASM modules, with one for each of 
the ABIs in the benchmark. All modules for the macro-benchmark 
were compiled using Release mode.

5.2 Experimental Design
To reduce the number of WASM experiments, a few factors were 
omitted, based on the micro-benchmarking results. For example, 
static memory allocation performed strictly better in the micro-
benchmarks, so dynamic allocation was not considered. Similarly, 
Preloading was always superior to Hotloading. Furthermore, we 
restricted these experiments to self-referential structs, since this 
is required for general-purpose scripting. This resulted in seven 
different scenarios for each algorithm. First, the native one serves 
as a baseline for comparison; it is embedded directly in the program 
and uses no WASM at all. Then each of the three ABI configurations 
gets two tests: one with reference caching, and one without.

5.3 Simulator Correctness
As a sanity check, we verified the simulator’s correctness by com-
paring its object hit rate (and byte hit rate) results for different 
policies and cache sizes to those from a C++ version of the same 
simulator [3]. Each version of each policy matched the expected hit 
rate. The hit rates improve as the cache gets larger, until reaching 
a plateau as shown in Figure 6. The remaining experiments focus 
on execution-time performance of the simulator, rather than its 
application-level Web caching results.

Figure 6: Simulator Hit Rates

5.4 Reference Caching Results
In the simulator, the performance increase from reference caching
was not as pronounced as it was in the micro-benchmarks (see
Figure 7 results for a 4 MB proxy cache size). This is likely because
the cost of calling intoWASM is a fixed overhead, and this overhead
gets amortized when the called function does some meaningful
computational work.

5.5 JIT Backend Results
The Singlepass backend performed much worse than Cranelift or
LLVM, which makes sense because the code is performing actual
work in this benchmark, so there are optimizations the other com-
pilers can make. The LLVM backend provides a marginally faster
execution time, but again at the cost of much longer JIT compile
times. This tradeoff has different implications for different pro-
grams, because these JIT results can be cached by the runtime.
In programs such as ours that take a user script and run it many
times, this tradeoff likely favours LLVM. However, for programs
like an interactive programming language or some similar program-
ming environment, where the JIT cache is frequently invalidated,
the Cranelift backend faster compile times would likely have the
advantage.

5.6 ABI Results
Once again, Pair was the fastest ABI, since it doesn’t need to copy
and read any memory. We also see that the Bytemuck solution is
now faster than the Bincode one, instead of being the same. The
reason is that Bytemuck is using static memory allocation, while
Bincode has to rely on dynamic allocation. In these experiments,
Bytemuck was only 20% slower than Pair. For each of these, caching
Wasmer references improved performance, but not by as much as
in the micro-benchmark. Again, this is because more computational
work is happening, instead of a basic multiplication. So in a more
realistic problem such as this, reference caching is still worthwhile,
but the performance gains aren’t as pronounced.

5.7 Relative Performance
Our results indicate that there is a fixed cost to calling a WebAssem-
bly function from outside the sandbox. This cost doesn’t depend
on how long the actual WASM code takes to execute. In Figure 7,
for example, the Native version of FIFO is more than twice as fast
as the Native version of LFU, but the WASM versions don’t show
nearly the same relative difference. This is further demonstrated
by the fact that all six WebAssembly versions run the exact same
source code on the exact same data, but have drastically different
execution-time results. This fixed penalty for making a function
call into WASM explains the 5-10x difference between the Native
and WASM versions, as seen in Figure 7. This is far worse than the
2.5x difference reported in prior work [10]. This indicates that our
benchmark implements a pattern that Wasmer is not optimized
for, because of the frequent hopping into and out of the sandboxed
module. This means for a high performance workload, a longer
running script is preferred as this fixed performance penalty is paid
per invocation into WASM, and doesn’t scale with the length of
that invocation.

6 CONCLUSION
In this paper, we have explored a memory sharing technique to
allow general-purpose runtime scripting of WASM in Wasmer, run-
ning WASM code outside the browser. Our benchmarking experi-
ments (micro and macro) show that WebAssembly suffers a large
performance slowdown, which is attributable to the fixed cost over-
head of making calls into the VM. To reduce this overhead, caching
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Figure 7: Execution-Time Performance of Simulator

the Wasmer references helps in all cases, so it should be done when-
ever possible. Among the three ABIs tested, they all have potential
use cases. Pair is the fastest, but only works for data that can be rep-
resented as a fixed-length tuple of integers or floats. Bytemuck with
static memory allocation is the next fastest for passing arbitrary
data, however, this method might face challenges in the case of
complex pointers or references within the data. Finally, Bincode is
the slowest, but if it is possible to remove the extra call for dynamic
memory allocation, it could be as fast as Bytemuck, while offering
many more features.

When comparing the JIT backends, Singlepass is inferior unless
extremely fast JIT times are desired. If the performance of the
code generated by the JIT compiler is important, then the Cranelift
or LLVM compilers are preferred, with the LLVM making a small
performance gain in some programs, at the cost of amuch slower JIT
process than Cranelift, in addition to a more complex compilation
process for the host program.

There are several potential directions for future work. These
include exploring the differences between Bincode and Bytemuck
on more complex data types. Additionally, these methods could be
tested and verified using other languages that support WebAssem-
bly, such as C, C++ and C#. Another avenue is investigating the per-
formance of these methods with variable-length data, and batching
the data to reduce the number of calls in the sandbox. Finally, there
are forthcoming features of WASM called WebAssembly Interface
Types, and WebAssembly Reference Types. Once available, their
performance should be compared to these other ABI techniques, to
see if a built-in solution in the runtime is better.
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