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ABSTRACT
Datacenters need to become more power efficient for political and
climate reasons. In this work, we introduce an idea for the com-
munity to further explore. We test the idea via an example policy
which we call TaskFlow: a makespan conservative, energy-aware
task placement policy for workflow scheduling. Using static, rough
numbers and simulation, we obtain energy savings between [4.24,
47.00]% and [0.1, 13.6]%, respectively. We also present some pitfalls
that should be investigated further, notably starvation of large tasks
when using TaskFlow.
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1 INTRODUCTION
Energy consumption is increasingly the focus of optimization for
the cloud sector. As the number of datacenters and our need for
computational capacity is rising, our society needs energy-saving
innovations in all aspects of cloud operations, from hardware to
software. The latter includes scheduling workloads, which is the
focus of this work. Current approaches focus on making trade-offs
by, e.g., using dynamic voltage and frequency scaling (DVFS) to
increase makespan and reduce power consumption [1]. This causes
schedulers to pay attention to non-functional requirements (NFRs)
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Figure 1: Electricity production in The Netherlands between
2017-2019 grouped by renewable and non-renewable energy
sources. The bottom part zooms in and annotates the total en-
ergy consumption of all datacenters in the country. For both
groups, we show the percentage of power being consumed
by the datacenters, with the overall consumption percentage
to the right. Data from cbs.nl.
such as deadlines and/or budgets, as resources rented trough In-
frastructure as a Service (IaaS) providers work on a fine-grained,
time and financial, budget. Managing these elements increases
scheduling complexity, and hampers adoption in practice due to
concerns about, e.g., its effects on fairness [2]. As workloads in-
creasingly consist of workflows [3], the complexity introduced by
the inter-dependent tasks (see § 2.1 for a common model) could
become unmanageable. Addressing the complex trade-off, in this
work we design and evaluate TaskFlow, a relatively low-complexity
approach for energy- and makespan-aware workflow scheduling
in cloud-like environments.

Energy consumption has a direct impact on Earth’s climate. The
ICT sector is already responsible for more than 4% of the global
electricity consumption and could increase to an estimated 20.9%
in 2030 [4]. Datacenters have an outsized contribution, with an
estimated 3-13% of global power consumption by 2030 [5]. With
increasing computational needs, e.g., the goal of exascale super-
computers, additional energy savings are imperatively required; it
is estimated we need to reach 50Gigaflops/Watt [6] to keep energy
consumption within reasonable limits.

Besides practical limits, there are also political sides to the energy
consumption of datacenters. Taking the Netherlands as an exam-
ple representative of digitalized economies, the public demands
efficiency and overall accountability of energy use. Correspond-
ingly, the Central Bureau for Statistics (Het Centraal Bureau voor de
Statistiek, CBS) collects and publishes regularly information about
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energy production and consumption. Figure 1 shows an analysis 
we conduct on such data, collating and depicting multiple datasets 
published by the CBS regarding the period 2017-2019 (CBS will 
release soon its final, rather than merely preliminary, data for 2020). 
The top of the figure depicts the electricity production in the Nether-
lands, by renewability of the source (two stacks, one for renewable, 
another for non-renewable), and by detailed source (see legend). 
The bottom of the figure zooms into the first 3%  and indicates, 
through horizontal segments, the fraction of electricity consumed 
by datacenters. We make three main observations. First, datacen-
ter power consumption shows a rapidly increasing trend. Already in 
2017, datacenters consumed 1.4% of all electricity production. This 
level of consumption increases yearly by double-digit percentage 
points, to 2.3% in 2019 (2.7 TWh). The forecast for 2020 was that 
this percentage would grow to ≈ 3% [7], a prediction matched by 
preliminary data that indicate growth to 2.8% [8] (3.2 TWh). By 
2030, the official body mandated by  the Dutch Government (De 
Rijksoverheid) projects further increases to nearly 20% (14 TWh), 
mainly due to plans for an additional 20-25 datacenters [9–11].

Second, non-renewable energy production isn’t increasing. The 
non-renewable energy sources produced roughly 104 TWh in 2017 
and 2019, with a small dip in 2018. To avoid requiring additional 
energy from non-renewable sources to fuel datacenters, one ap-
proach is to increase the renewable energy production, which seem 
to happen at an accelerated pace. The period 2017-2019 shows an 
increase of 33.6% in renewable energy production. Preliminary data 
for 2020 indicate further rapid growth of this percentage, to 191.5%
compared to 2017 (a 43.3% increase compared to 2019) [12]1.

Third and last, datacenters consume a sizable chunk of the renew-
able energy pool: 12.8% in 2017 and 16.2% in 2019. At the same time, 
the Dutch government is taking measures to meet the Paris climate 
agreement, e.g., by enabling more households to become greener. As 
renewable energy is currently subsidized by the Dutch government, 
the situation where cloud datacenters consume much of the elec-
tricity generated by the new subsidized projects is leading, justly 
or not, to much public resistance (especially against datacenters 
built by Amazon, Microsoft, Google, and Facebook) [7, 10, 13, 14].

To match increasing computing demands yet reduce these issues, 
cloud datacenters need to consume electricity much more efficiently. 
Various directions to reduce datacenter power consumption are 
being explored in parallel. These directions include using special-
ized, power-efficient hardware [15, 16], making use of the already 
present heterogeneity [1], powering down components [1, 17], im-
prove chip instruction sets [18], etc.

In this work, we focus on energy efficiency achieved by  im-
proving the energy-awareness of the workflow management sys-
tems (WMSs) often found in datacenters. Applications structured as 
workflows are widely adopted in cloud and clusters environments, 
supporting domains ranging from business critical applications to 
bioinformatics, and from data analytics to machine learning [3]. 
Consequently, WMSs are required to manage up to millions of 
incoming jobs, from up to thousands of users. They operate at a 
high-level in the datacenter software stack, being able to use the 
different hardware resources and their software capabilities. WMSs
1After an EU agreement, biomass is now labeled as green energy. The numbers in this 
paragraph are based on this change. The other numbers in this section are based on 
the old standard.

Figure 2: A workflow example. Tasks with darker (red) back-
ground form the critical path (see § 2.1).
are designed to maximize performance based on one or more met-
rics. Additionally, Quality of Service (QoS) requirements set by the
users, which are typically composed of both NFRs and functional
requirements (FRs), form additional constraints that must be met.

In this work we present our idea embedded in a task placement
policy called TaskFlow. This policy exploits the structure of work-
flows to reduce the overall power consumption while aiming to
avoid affecting the workflow’s makespan. Our main objective with
this work is to introduce the core ideas and preliminary evidence
for the community to explore further. To this end, we make three
main contributions:

(1) We introduce TaskFlow, which uses a new method to reduce
energy consumption for workflow execution (§ 2). TaskFlow
takes a conservative approach, leveraging workflow struc-
ture to identify slack, and in turn using slack to improve
power efficiency while avoiding impact on the makespan.
This approach limits runtime and memory complexity to
O(|𝑉 | + |𝐸 |), where 𝑉 is the set of tasks, and 𝐸 is the set
of their inter-dependencies. Thus, this approach works for
scheduling both online (at runtime) and offline (before exe-
cution).

(2) We analyze the effectiveness of using slack to become more
power efficient (§ 3). Using realistic traces from three differ-
ent domains and optimistic execution models, we compute
the potential gain of using DVFS and exploiting resource
heterogeneity.

(3) We analyze the performance of TaskFlow more realistically
through extensive simulations (§ 4). Analyzing each work-
flow on its own through static analysis yields an upper bound.
However, in real systems, changing on which machine a task
is executed potentially affects other executions. Through
simulations, we investigate this cascade.

2 SLACK IN WORKFLOWS
In this section we provide background in workflow scheduling and
explain our definition of slack. Next, we discuss how slack can be
exploited by introducing several directions.

2.1 Workflows and their Critical Paths
We use the workflow model of Coffman and Graham [19]. In this
model, a workflow is composed as a Directed Acyclic Graph (DAG)
= (V, E), where V is the set of vertices and E is the set of edges,
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Table 1: Pros and cons of look ahead for identifying slack.

Pros Cons

(1) Simple heuristic algo-
rithm.
(2) Low runtime complexity.
(3) Low space complexity.
(4) Easy to parallelize.

(1) Requires knowledge of
the structure and arrival
times of the direct parents a
priori.
(2) Does not work for Bags-
of-Tasks workflows.

respectively. Each vertex represents a task and each edge a compu-
tation or data constraint. Figure 2 depicts a synthetic, exemplary
workflow. A start-node is a task without any incoming edge, which
can thus start immediately. An end-node is a task without any out-
going edge, and thus marks the end of a computational chain of
tasks. In our example, there are two start-nodes and one end-node.

The critical path defines the path(s) from any start node to any
end node that forms the largest sum of runtimes (including wait
times such as data (estimated) transfer times etc.). In our example
workflow the verticesmarked red denote the critical path. Assuming
enough resources and no abnormalities, the critical path dictates
the total runtime of the workflow, 62 time units in our example.

2.2 Parallelism and Slack in Workflows
In workflow execution, it is common that multiple (chains of) tasks
can be executed in parallel. In prior work we demonstrated, through
extensive characterization of real-world execution traces, that most
workloads exhibit parallelism [3]. The idea is to exploit the dif-
ference in task runtimes. For simplicity, we assume data transfers
times are included in the task runtimes. In our example workflow,
there are two parallel chains at the start. Both have length 1 (a
single task) and end at Task 3. Task 1 has a runtime of 10, whereas
the runtime of Task 2 is 15; we can delay Task 1 by up to 5 seconds
before becoming the critical path of the workflows. We refer to this
room for delay as slack.

The idea we leverage in this work is to use slack to reduce power
consumption by running tasks that can be delayed on slower, but
more power efficient hardware, or slow down the runtime by, e.g.,
using DVFS techniques. As we only use slack, the tasks on the
critical path are not slowed down, which causes the critical path to
remain the same. Thus, the workflow makespan, which is the time
elapsed since the start of the workflow until the completion of its
last remaining task, remains unchanged—a common QoS-goal.

2.3 Identifying Slack
To identify slack in a workflow, we use in this work a look-ahead
approach that has been used in prior work [20, 21]. The core opera-
tion is to compute the earliest possible start time of each task based
on the runtimes of all its parents, recursively. For each task, we
then obtain the available slack by computing the difference between
the earliest finish time of this task and the earliest start time of
all its children. We outline the computation of the start times in
Algorithm 1 and the assigning of slack in Algorithm 2. Topolog-
ical sorting of a graph has a runtime of O(|𝑉 | + |𝐸 |) which was
proven by Kahn [22]. The computational runtime of the topological
sorting can be lowered through the use of parallel and distributed

Algorithm 1:Minimal task start times computation. Run-
time: O(|𝑉 | + |𝐸 |) Space: O(|𝑉 | + |𝐸 |)

Input: A workflow𝑤

Result: A map with the lowest possible start time of each
task in𝑤

1 𝛾 ← map of task arrival times;
2 𝜁 ← map of task runtimes;
3 foreach wave 𝜔 in topological sorting of𝑤 do
4 foreach task 𝑡 in 𝜔 do
5 𝑓 𝑡 ← 𝛾 [𝑡] + 𝜁 [𝑡];
6 foreach child 𝑐 of t do
7 if 𝑓 𝑡 > 𝛾 [𝑐] then
8 𝛾 [𝑐] ← 𝑓 𝑡 ;
9 end

10 end
11 end
12 end
13 return 𝛾 ;

Algorithm 2: Assigning slack after topological sorting.
Runtime: O(|𝑉 | + |𝐸 |) Space: O(|𝑉 | + |𝐸 |)

Input: Map of minimal start times 𝛾 from Algorithm 1 and
workflow𝑤

Result: Mapping of slack per workflow
1 initialize slack as empty map;
2 foreach task 𝑡 in𝑤 do
3 if 𝑡 has no children then
4 𝑠𝑙𝑎𝑐𝑘 [𝑡] = 0;
5 else
6 𝑐𝑚𝑖𝑛 =𝑚𝑖𝑛{𝛾 [𝑐] for each child 𝑐 of 𝑡};
7 𝑠𝑙𝑎𝑐𝑘 [𝑡] = 𝑐𝑚𝑖𝑛 − 𝛾 [𝑡]+ runtime of 𝑡 ;
8 end
9 end

10 return slack;

computing, which would help in a distributed computing environ-
ment [23]. As we loop over the topological order, the assignment
of slack also has a runtime of O(|𝑉 | + |𝐸 |), a potential improve-
ment over the runtime of O(|𝑉 |2) proposed by Li et al. [20]. As
the workflow is kept in memory and only a mapping of slack per
task is required to be maintained, the space complexity for both
algorithms is O(|𝑉 | + |𝐸 |).

To illustrate the outcome of our look ahead algorithm, we apply
it visually to our example workflow where we assume all tasks
arrive at time 0, see Figure 3. As explained before, the two chains at
the start both have task 3 as a child. Hence, the earliest start time
of Task 3 is at time 15. As Task 1 has a runtime of 10, it gets a slack
assigned of 5: its parents minimal start time is 15 due to Task 2, and
its own start time plus runtime equals 10, a difference of 5. Using
similar reasoning, we obtain a slack of 5 for Task 5.

Next, we investigate the presence of slack in real-world IT oper-
ations. We apply for this purpose the look-ahead algorithm to the
traces hosted by the Workflow Trace Archive (WTA) [3]. The WTA
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Figure 3: The example workflow from Figure 2, with “Slack”
annotations for the amount of slack identified per task using
the look-ahead method (see § 2.3).

Table 2: Task slack inmilliseconds per percentile per domain.

1𝑠𝑡 25𝑡ℎ 50𝑡ℎ mean 75𝑡ℎ 99𝑡ℎ

Engineering 0 0 23,113 92,903 76,621 1,140,122
Industrial 0 9,000 31,000 136,728 101,000 1,987,000
Scientific 0 0 80 169,695 1,952 3,200,659

is a high-quality, curated, community archive of real-world traces
of workloads of workflows. From the Alibaba trace provided by the
WTA, we use the first 100,000 workflows (31.6 million tasks) sorted
by their IDs as the entire dataset is too large to analyze without
large computing resources.

Table 2 summarizes the results, tabulating by application domain,
using WTA-provided labels. We observe that workflows across all
domains contain slack. Engineering workloads offer the lowest slack
on average and at the tail-levels. Although scientific workflows
have the highest slack on average, they have the lowest median
value: 50% of all tasks having a slack of 80ms or lower, indicating sci-
entific workloads have the heaviest tail and the fewest possibilities
to reduce power consumption using our conservative approach. In-
dustrial tasks have the highest median slack and the second-highest
99𝑡ℎ-percentile value. We will investigate next to what extent we
can use slack with different distribution to improve energy con-
sumption.

3 USING SLACK TO REDUCE ENERGY
CONSUMPTION

In this section, we consider two methods that can use slack identi-
fied by TaskFlow to reduce energy consumption:

(1) Slow down tasks using dynamic voltage and frequency scal-
ing (DVFS).

(2) Schedule tasks on potentially slower, yet more power effi-
cient hardware.

We investigate the potential gains these approaches offer through
static analysis of the tasks and their slack. In this analysis, we as-
sume plenty of resources are available and that all support DVFS.
It is unlikely that this assumption capture reality well, as this anal-
ysis assumes that delaying a task has no impact on any other task.
Nonetheless, by using this assumption we can provide an optimistic
bound of the effects of using slack to reduce energy-consumption.
This type of analysis aligns with that of, among others, [1, 21, 24, 25],
which all assume resources are infinite or that additional resources
can always be obtained from (external) cloud environments.

Table 3: Delay and energy savings of four DVFS settings.
Data from [26].

ID 1 2 3 4

Delay 0% 22.86% 53.44% 147.28%
Energy Savings 0% 8.6% 12.60% 12.40%

Table 4: Average energy reduction per domain using DVFS.

Domain Engineering Industrial Scientific

Energy reduction 7.62% 11.35% 4.24%

Overall average 11.31%

3.1 Using DVFS
Using DVFS, the voltage and/or frequency of a machine is lowered
to reduce its power consumption at the cost of processing speed.
While the returns are diminishing with modern hardware [27] and
results vary per workload, there are still scenarios where power
savings are possible. Tasks that have slack available can thus po-
tentially be delayed to save some energy.

Few articles present numbers in terms of delay and energy saved.
We couldn’t find any article that offers both their code, setup, and
datasets used in experimentation. To this end, we use the numbers
reported by Dhiman et al. [26]. The authors use single-threaded and
multi-threaded workloads using four DVFS settings. We use (and
assume they hold) their multi-threaded results ([26], table 3) and
average the numbers as our workloads are likely a mix of multiple
applications, see Table 3. From this table, we observe that the delay
increases substantially versus energy saved. Moreover, we note that
the last settings does not yield any benefit on average compared to
the third option.

Using the numbers in Table 3, we investigate how much energy
can be saved, see Table 4. We select the highest delay factor from
Table 3 that is less than or equal to 𝑡𝑟+𝑡𝑠

𝑡𝑟
for each task where 𝑡𝑟 is

the runtime and 𝑡𝑠 is the slack. We omit tasks that have a runtime of
0 as they could theoretically be delayed indefinitely. From this table
we observe that across all domains, we can achieve a 11.31% energy
reduction by trading off slack using DVFS. This number is skewed
in favor of industrial tasks due to the large number of these tasks
in our analysis. The industrial domain shows the most potential
gain on average at 11.35%. This matches our prior findings where
industrial tasks have the most slack on average and by median.
The engineering domain has the second highest gain on average
at 7.62%, which also corresponds to our earlier findings. Scientific
tasks show the least average potential gain at 4.24%.

3.2 Using Heterogeneity
Next, we look at exploiting heterogeneity of hardware. Using slack,
we might be able to run tasks on less powerful yet more power
efficient nodes when available. Some nodes might even offer this
themselves by using, e.g., the big.Little configuration [28, 29] Simi-
lar to DVFS, we trade computational speed for power, yet do not
alter configurations of hardware. We do assume here that all tasks
fully utilize the required cores, and that energy consumption is pro-
portional to the number of cores used and the machine’s Thermal
Design Power (TDP). This assumption does not hold in general as
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Table 5: Power consumption statistics for some of the latest
CPU models.

Model Base Clock
[GHz]

Logical
Cores

TDP
[W]

W/GHz/
core

AMD Ryzen Threadripper 3990X 2.9 128 280 0,75
AMD Ryzen 9 5900X 3.7 24 105 1,18
Intel i9-10900K 3.7 20 125 1,69
AMD Ryzen 7 5800X 3.8 16 105 1,73
Intel i7-10700K 3.8 16 125 2,06
AMD Ryzen 5 5600X 3.7 12 65 1,46
Intel i5-10600K 4.1 12 95 1,93

Table 6: Average energy reduction per domain using hetero-
geneity.

Domain Engineering Industrial Scientific

Energy reduction 28.31% 41.61% 16.68%

Overall average 41.47%

the available I/O, memory, and storage impact task performance.
However, if power normalization [15] becomes a reality these as-
sumptions would hold.

Table 5 shows six recent CPUmodels. In this table we list the base
clock speed, number of cores, and TDP reported by the respective
manufacturers. We assume TDP is the upper limit as these values
are not exceeded in modern HPC clusters [30]. Assuming power
normalization, we compute the Watt per GHz per core. From this
table, we observe clear differences when comparing power per GHz
per core, with the lowest being the Threadripper 3990X at 0,75 and
the highest the i7-10700K at 2,06, an increase of 2,75×.

We take for each distinct clock speed the best performing model
based on the Watt usage per GHz per core. We assume all task
runtimes are based on the highest base clock and scale linearly
in clock speed. Additionally, we assume large tasks can be split
across multiple machines (of the same type). For each task, we
select the machine with the lowest W/GHz/core ratio such that
𝑡𝑟+𝑡𝑠
𝑡𝑟
≤ 𝑏𝑐𝑚𝑎𝑥

𝑏𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑡
where 𝑏𝑐𝑚𝑎𝑥 is the highest base clock speed of

any machine where the task can run on and 𝑏𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑡 is the base
clock speed of the machine being checked. The results are in Table 6.

From this table, we observe significantly higher gains than using
DVFS with an overall average reduction of 41.47%. This makes
sense as the delay observed in base clock is at most 1.41× with
energy gains of up to 2.75×. Again, the industrial domains contains
the most slack and hence benefits the most through heterogeneity,
on average a reduction of 41.61%. For the scientific and engineering
domains, this reduction is 28.31% and 16.68%, respectively. While
optimistic and an upper bound, the results underlines the power
efficiency of different systems. The results align with the findings
of similar studies that present even higher gains by using non-
conservative approaches, e.g., [1, 25].

3.3 Using heterogeneity and DVFS
Finally, we investigate if combining these two techniques can lead
to a higher efficiency, theoretically. We apply the machine selection
approach of Section 3.2 and attempt to use DVFS to further consume
any leftover slack. The results are in Table 7. From this table, we
observe DVFS indeed can consume some leftover slack, rising the

Table 7: Average energy reduction per domain using both
heterogeneity and DVFS.

Domain Engineering Industrial Scientific

Energy reduction 32.11% 47.00% 18.45%

Overall average 46.85%

overall average energy reduction from 41.47% to 46.85%.We observe
additional reductions of 3,80%, 5,39%, and 1,77% for the engineering,
industrial, and scientific domains, respectively. While the gains are
diminishing, it does show that these approaches, on paper, can be
combined to increase efficiency.

4 SIMULATION EXPERIMENTS
In this section we perform several experiments through simulation.
We assumed prior that identified slack can be trade-off without
consequence and that machines of each model are available without
limit. In real systems this is rarely the case. Resources are finite and
it might be that machines of a certain type are completely booked,
forcing us to make a less desirable choice.

Increasing the runtime of a task has consequences on the runtime
(and slack!) of tasks waiting in the queue. While these cascading
effects are not taken into account in our static analysis, we do
potentially run into these effects during simulation. Via simulations
we can investigate this effect and check to what extent TaskFlow
is indeed makespan conservative. We opt for simulation to replay
workloads that would otherwise take significant resources and time
to execute in emulation or in a real-world setting.

4.1 Experimental Setup
Next, we describe our experimental setup per component.

Simulator. For our simulations, we use a discrete event simula-
tor that we used in our prior work [3]. We expand the simulator
by adding a baseline policy, TaskFlow, and required code for en-
ergy analysis. The simulator uses a backfilling approach where it
attempts to put smaller tasks on available slots if the task at the
head of the queue is too large. Important to note is that due to the
complexities mentioned earlier, TaskFlow makes a best effort ap-
proach for scheduling tasks on resources2. If there are insufficient
resources to run a task before its parents’ start times, but there
are enough (slower) resources available to schedule this task right
now, TaskFlow will use those resources. Determining if sufficient
resources become available in the near future so that the task does
not delay its parents will significantly increase the complexity of
the policy, which would decrease its adoptability.

Workloads. We use all traces from the WTA [3] that feature
DAG-based workflows. Some of these traces features large bursts of
task arrivals at the start, causing tasks to queue, reducing their slack.
Additionally, the resource requirement vary significantly between
these traces, up to 1,000 resources per task. Workflows and their
tasks arriving at identical times are ordered on their respective
identifiers to make our experiments reproducible when running
our policies.

2We use the generic term resources as the original tasks required different resources,
e.g., threads, CPU (cores), VMs, etc.
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Figure 4: Total energy consumption per domain using the baseline and TaskFlow exploiting heterogeneity with and without
DVFS enabled.

Figure 5: The cumulative workflow delay per domain for the baseline and TaskFlow exploiting heterogeneity with and without
DVFS enabled.
Table 8: Workflow delay in minutes per percentile for the
Alibaba workload using TaskFlow with DVFS enabled.

1% 25% 50% 75% 90% 99% 100%

Delay 0.00 0.00 0.00 3.11 28.13 168.02 560.27

The computing environment. We use two different machine
models, the fastest (by base clock) and most power efficient from
Table 5. To challenge our policy, for each workload, a static environ-
ment is provisioned based on a 40% utilization rate. This utilization
rate matches hyper-scale cloud computing environments [31]. To
determine the utilization rate, for each workload, we compute the
average resource seconds required by dividing the total resource
seconds in the workload by its length.The number of machines per
model is set to serve half of the workload with a minimum of 1 for
each to enforce heterogeneity.

The baseline. To measure the impact of TaskFlow, we use a
greedy policy as baseline. It focuses on throughput by scheduling
each task on the fastest machine available.

Assumptions. We assume that data transfer times are included
in the task runtimes and that tasks scale with the base clock speed of
machines. Tasks are not rescheduled once placed. Next, we assume
that machines are energy-proportional and that we can apply DVFS
instantly to specific cores, matching [21, 25]. We only track energy
consumed by executing tasks, i.e., idle time is not included. Tasks
with a runtime of 0 are considered having a runtime of 1.

4.2 Experimental Results
To measure the performance of TaskFlow, we compare the total
energy consumption and cumulative job delay per domain with that
of the baseline policy. We run TaskFlow with and without DVFS
enabled to observe the additional impact DVFS has after exploiting
the available heterogeneity.

Figure 4 shows the total energy consumption per domain for the
three settings, while Figure 5 shows the amount of time that all
workflows in each workload were delayed in respect to their critical
paths. From these figures we observe that TaskFlow has the lowest

impact on Scientific workloads, reducing energy consumption by
0.1% solely using heterogeneity and by 0.9% through the addition
of DVFS. The change in workflow delay is also minimal: between
[-0.6, 1]%. Engineering workflows have a larger power reduction,
between [3.8, 4.2]% at the cost of 0.1% and 0.7% additional delay,
respectively. The industrial workloads show significantly different
behavior. Their power reductions are significantly higher, with
10.0% solely using heterogeneity and 13.6% using heterogeneity
and DVFS. However, the cumulative delay increases substantially,
with 16.4% and 98.7%, respectively. We observe tasks in the Alibaba
workload are starved, mainly due our backfilling approach. The
additional delay introduced by DVFS could cause more jobs to enter
the system in the meantime that also get backfilled, additionally
starving the large tasks, increasing the delay to 98.7%. Table 8 shows
the delay per workflow for the Alibaba trace. We observe from this
table that workflow delays show long tail behavior, pointing to a
few workflows causing the majority of the delay. This finding was
surprising to us and underlines the importance of investigating
all aspects of the scheduler, as we discuss in our prior work [32].
Even though our policy focuses on being conservative, cascading
effects can lead to significant impacts. We note that other policies
using similar performance-energy trade-off techniques likely face
similar issues when starvation occurs, and that techniques such as
fair scheduling could solve this particular problem.

As the total sum does not sketch the full picture, we present
in Figures 6 and 7 boxplots of the workflow delay per workflow,
grouped by domain and method. From these figures we observe
barely any difference in workflow delay for the scientific and en-
gineering domain, as expected. The industrial domain shows for
solely using heterogeneity a very similar pattern to the baseline,
only showing an increase in delay at the long tail, as observed ear-
lier. The combination of heterogeneity and DVFS does significantly
increase the delay and the number of workflows delaying. There
thus seems to be a point where delaying tasks start to increase the
queue, delaying workflows that shouldn’t be delayed.
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Figure 6: Workflow delay per domain for the baseline and TaskFlow exploiting heterogeneity with and without DVFS enabled.
The white dot depicts the average.

Figure 7: The results values presented in Figure 6 with outliers removed. The original averages are retained.
5 RELATEDWORK
In this section, we cover related work on energy-aware workflow
scheduling. We focus on articles that use conservative approaches
and slack. We discuss our contributions with respect to each one.
Overall, none of the related work using simulation use the extensive
suite of traces that we do.

Conservative approaches: Few articles use a conservative ap-
proach. Xu et al. [33] focus on pipeline workflows (sequential work-
flows), which this work extends to the general notion of DAG-
based workflows. Second, they consider solely machine placement
whereas we also investigate the effect of DVFS.

Trading slack: Closest to our work is Xie et al. [17]. Their ap-
proach focuses on turning of as much hardware as possible and
then check if delaying concurrent running tasks is possible. Their
approach is non-conservative as the critical path of a workflow is
extended (see, e.g., Figure 6 in their work). Second, their method of
computing slack differs. By looking at concurrent running tasks, its
possible slack is missed that would otherwise be found by TaskFlow.
Li et al. [20] propose another method, where their slack compu-
tation is identical. Their algorithm for slack detection requires
O(|𝑉 |2), whereas ours requires O(|𝑉 | + |𝐸 |). Our work addition-
ally complements theirs by considering the heterogeneity of the
physical hardware, where they consider VMs. Piteri et al. [34] intro-
duce an offline scheduling approach. They first use HEFT to create
a schedule plan and then check which machines can be delayed
through DVFS without exceeding a deadline to save energy. Tang et
al. [25] extend the work of [34]. Different from our work, their work
employs an offline approach. First, a plan is created using HEFT
and the workflow makespans are based on that. Next, workflows
are delayed to stay below a defined deadline. Medara et al. [21]
use a similar approach to [25], yet take into consideration network
energy costs next to improving the reliability of the system by
taking into account the possible errors caused by DVFS. Wiesner
et al. introduce a method to use different regions where it’s likely
to reduce emissions, at the expense of delaying workloads [35]. In
their model they take power grid fluctuations and green energy
into consideration.

6 THREATS TO VALIDITY
In this section we discuss the main threats we perceive to the
validity of this work.

The first threat is that we assume knowledge of task runtimes.
Prior work has already demonstrated that even with very simple
heuristics, one get reasonable task runtime estimates [36]. More
complex predictors yield even better results. Moreover, this work
fits very well with WMSs such as Airflow. Workflows in these
environments can be executed periodically, akin to cronjobs. Pars-
ing, e.g., daily logs or performing routine checks can be predicted
very well. One of the biggest threats to this model is performance
variability, where identical tasks using identical input on identical
hardware vary in runtime due to multi-tenancy or other factors [37].
Such variability could be mitigated by lowering the found slack
by a certain factor, to allow for additional uncertainty. However,
overall, we believe using estimated runtimes is feasible.

Another threat is requiring the structures of the workflows be-
forehand. It’s possible that structures are unknown for streaming
or dynamic workflows. We acknowledge that this poses limitations,
however, our method could be used on groups of tasks that only
share common parents. Tasks with a lower runtime than the max-
imum in such a group can never be the critical path, even if this
parent is part of the critical path. Hence, the entire structure of
a workflow need not to be known then. Yet, this might reduce
the amount of slack identified. Second, there are frameworks and
products that explicitly operate on entire DAGs. Spark and Apache
Airflow are two examples of applications where the entire DAG is
known beforehand. Finally, one could make use of predictions to
guess the structure of the workflow, based on past executions of
streaming or dynamic workflows.

A third threat is CPU usage and energy proportionality. In this
work, we assume that tasks fully utilize their assigned resources
and that energy consumption is proportional to the number of cores
used. Currently, most machines have their top energy efficiency at
100% CPU utilization [38], with 70% to 100% being the best range
for almost all systems. However, this landscape is changing with
providers such as Google pushing for energy proportionality to
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become a primary design goal across the entire spectrum, including 
network [16] and CPU power consumption [15]. TaskFlow is triv-
ially adaptable to the current energy efficiency profiles, yet would 
require information on the (predicted) resource utilization.

A fourth threat is that for the industrial workloads only the 
Alibaba and Shell traces qualify. The other industrial traces in the 
WTA do not express task dependencies. We cannot overcome this 
limitation unfortunately, as the disclosure of realistic industrial 
traces is at the discretion of industrial companies. Already, in our 
prior work [3] we advocate for companies to release more traces, 
as approaches such as this work can then be validated on their 
workloads, which is also to their benefit.

A fifth threat is that we do not consider making trade-offs when 
putting machines into idle or sleep mode. In this work, our main 
goal is to posit this technique and demonstrate its performance. Le 
Sueur and Heiser show that in certain cases introducing idle modes 
improves energy savings when using DVFS [27]. Thus, our method 
should be even more efficient in such scenarios. We therefore do 
not perceive this as a threat to the validity of the work, yet as future 
work to explore the full potential of this technique.

7 CONCLUSION AND ONGOING WORK
Addressing the increasingly pressing need to make cloud opera-
tions more energy-efficient, we focus in this work on the workflow 
scheduling component. We leverage the idea of using the workflow 
structure to identify tasks that can be delayed without impacting the 
critical path. We then investigate two techniques that can use this 
form of slack to run the workflow more energy-efficiently. Using 
first optimistic analysis and then detailed simulation, we provide 
support for further investigating this idea and identify parts that 
require immediate attention. We also signal that the problem is not 
trivial—if tasks are starved, such an approach can actually make 
the situation worse.

We hope that the community finds additional ways to exploit 
slack. In the future, together with the community, we aim to investi-
gate how well TaskFlow performs with an anti-starvation policy or 
backfilling disabled, and, further, how this idea affects various NFRs. 
Costs is a popular NFR; slack could influence cost-based decisions 
as different resources can have different costs depending on the 
cost model. Moreover, providers violating Service Level Objectives 
(SLOs) often pay a penalty to the affected client, it could be studied 
how often a policy like TaskFlow would violate SLOs. Other NFRs 
such as fault-tolerance through preemptively running speculative 
copies in identified slack-gaps might be worthwhile to investigate.

REPRODUCIBILITY AND OPEN-ACCESS DATA
To support reproducible science, we offer the software used to an-
alyze as open-source data at https://github.com/atlarge-research/
TaskFlow-software. The simulator and traces are available at https://
github.com/atlarge-research/wta-sim/tree/tasks-across-machines and 
https://wta.atlarge-research.com, respectively.
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