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ABSTRACT
With the evolution of microservice applications, the underlying
architectures have become increasingly complex compared to their
monolith counterparts. This mainly brings in the challenge of ob-
servability. By providing a deeper understanding into the function-
ing of distributed applications, observability enables improving the
performance of the system by obtaining a view of the bottlenecks
in the implementation. The observability provided by currently
existing tools that perform dynamic tracing on distributed appli-
cations is limited to the user-space and requires the application to
be instrumented to track request flows. In this paper, we present a
new open-source framework MiSeRTrace that can trace the end-
to-end path of requests entering a microservice application at the
kernel space without requiring instrumentation or modification
of the application. Observability at the comprehensiveness of the
kernel space allows breaking down of various steps in activities
such as network transfers and IO tasks, thus enabling root cause
based performance analysis and accurate identification of hotspots.
MiSeRTrace supports tracing user-enabled kernel events provided
by frameworks such as bpftrace or ftrace and isolates kernel activity
associated with each application request with minimal overheads.
We then demonstrate the working of the solution with results on a
benchmark microservice application.
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1 INTRODUCTION
Most of the recent client-server web applications are adopting mi-
croservice architectures due to their benefits like modularity and
scalability [11] over their monolith counterparts [17]. The highly
networked microservice architecture brings in challenges of visibil-
ity into the underlying functioning of the application, introduces
overheads [16], and influences server design [12]. Our solution en-
ables the required observability of the application through dynamic
tracing at the kernel space. Dynamic tracing is the process of track-
ing the end-to-end path of user requests from the time the request
hits the load balancer of the application until a response to that
request is sent out. MiSeRTrace1 (MicroService Request Trace)
provides insights into how every client request is serviced in the
kernel which aids in identifying and understanding performance
differentials.

Containers in a microservice application communicate with
other containers through lightweight API calls which are inter-
nally TCP network transfers. Every container in a microservice
application is a process, and this process forks many threads to
handle the incoming requests. MiSeRTrace primarily tracks these
events in order to isolate the path of every client request through
the application. This level of monitoring avoids the requirement
of tracing libraries such as the OpenTracing API [7] for instru-
mentation or proxy sidecars like Istio [5]. The tool utilizes certain
static and dynamic kernel tracepoints to track the above events.
Monitoring these tracepoints is enabled by kernel tracing utilities
such as bpftrace [1] and ftrace [4]. Bpftrace is a high level trac-
ing language based on extended Berkeley Packet Filter (eBPF) [3],
which allows programs to execute sandboxed code in the kernel.
Ftrace is a tracing framework that is built into the Linux kernel and
provides visibility primarily into kernel functions and static events.
Henceforth, we will refer to the data captured by these frameworks
as trace logs.
1https://github.com/MiSeRTrace/MiSeRTrace

HotCloudPerf 2022 ICPE ’22 Companion, April 9–13, 2022, Bejing, China

77

https://doi.org/10.1145/3491204.3527462
https://doi.org/10.1145/3491204.3527462


Our implementation supports both bpftrace and ftrace as trac-
ing backends. Apart from tracepoints utilized by our framework,
users can enable any of the tracepoints and features provided by
bpftrace/ftrace that they wish to monitor. MiSeRTrace initially iden-
tifies the request spans, i.e. the duration spent by a particular thread
on servicing a client request or a subsequent internal request. It
then associates all these request spans with unique traces. MiSeR-
Trace subsequently buckets all the time-stamped user-enabled trace
logs into the request spans that triggered them to assist in latency
estimate studies.

2 RELATEDWORK
When it comes to dynamic tracing, there are various tools that are
widely used to monitor hotspots in the application. The OpenTrac-
ing API is one such framework that utilizes Trace IDs and Span IDs
to achieve application instrumentation. A trace is used to uniquely
identify all operations performed for an incoming client request,
and a span is used to refer to a single operation within a trace. Jaeger
[6] and Zipkin [10] are a couple of dynamic request tracers that
utilize the Opentracing API. They are open source tracing tools that
are used for monitoring and troubleshooting large scale distributed
microservice applications. Kieker [14] is another tracing software
used to monitor and analyze the performance of monolithic and mi-
croservice applications and performs request tracing with the help
of measurement probes. Dapper [15], which is Google’s distributed
system tracing infrastructure, relies on the instrumentation of RPC
libraries, control flow libraries, and threading. Dapper is capable of
identifying distributed control paths with almost no intervention
from the developers.

These tools make use of low latency datastores where the data is
frequently pushed to and the developers can gather this information
generally through a web based interface. However, they provide
insights that are limited to the user space i.e they provide informa-
tion about the path of the request through the various containers in
the microservice and corresponding latency estimates. All kernel
activity as a consequence of the client request is mostly unobserved.
These frameworks also require the application being monitored or
underlying libraries to be instrumented. Both the above issues are
overcome by MiSeRTrace by providing the capacity to observe all
kernel activity of an un-instrumented application.

3 ARCHITECTURE
The end-to-end usage and working of MiSeRTrace involves 4 main
steps which are broadly illustrated in Figure 1.

(1) Trace Specification: MiSeRTrace currently supports bpf-
trace and ftrace as tracing backends. Events built into the kernel,
tracers built into ftrace, custom user probes and events are all sup-
ported. The events required by the tool to trace requests through
the application are enabled by default. The user can specify a trace
configuration to observe kernel activity beyond the default setting.
Trace environment specifications like PIDs of the application to be
tracked, tracking of forked processes, clocks, and buffer sizes can
be configured.

(2) Workload Generation and Tracing of the container-
ized microservice application: The specified kernel activities
are efficiently recorded into the bpftrace/ftrace in-memory ring

Figure 1: MiSeRTrace workflow

buffer during the workload execution. On tracing the select events
required by MiSeRTrace, there is a reduction of request throughput
by around 5-6%. Further, kernel events can be enabled based on the
user’s interest. MiSeRTrace post-processes the trace logs and hence
does not add to the overhead. Upon completion of the workload,
the trace logs generated are passed onto the tool.

(3) Processing of the Trace Logs: MiSeRTrace performs se-
quential post processing on the kernel trace logs. Upon processing,
the generated data consists of all the request spans, where spans are
represented as states of the application threads as we will explain in
the Thread State Model (TSM). All kernel events that were enabled
by the trace specification are associated with the respective states.

(4) Generation of Isolated Request Traces: Once the trace
logs have been completely processed, the Directed Acyclic Graph
(DAG) Generator consolidates all the states associated with each
unique client request and isolates them into time ordered traces.
Each request trace is a DAG that is generated by a depth-first
recursive algorithm.

MiSeRTrace is designed and implemented as the following 3
hierarchical cohesive entities.

(1) Trace Processor: The trace processor is responsible for the
creation of thread pools and socket pools maintained inMiSeRTrace.
The kernel trace logs are passed into the trace processor ordered by
time of occurrence. Generation of trace IDs that uniquely identify
the client requests is also handled here. The trace logs are validated,
preprocessed, and sent to the thread processor. Once all the trace
logs are processed by the lower levels, the trace processor trans-
forms the state-based trace data into a representation suited for the
DAG Generator.

(2) Thread Processor: The thread processor maintains the
thread pool created by the trace processor. It tracks and creates rep-
resentations of threads of the application brought about by forking
of threads during workload runs. The threads are maintained in
two pools, a pool of active threads and a pool of terminated threads.
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(3) Thread State Processor and Thread State Model (TSM):
Each thread object has its own State Processor which processes all
trace records associated with that thread, updates states as per the
TSM, and also propagates the trace ID through the request lifecycle.
TSM is motivated by a need to associate steps within the request
lifecycle to application threads. As per the model, there are two
types of states depicted in Figure 2, namely Network Thread States
and Fork Thread States. Each state is associated with only a single
application thread.

Figure 2: Types of Thread States

Network Thread States:
They are created to track
incoming TCP requests
to a thread. A thread has
one state for every in-
coming request. Each net-
work state in a thread can
be uniquely identified by
a source thread, TCP 4
tuple, and the trace ID
of the incoming request.

The source thread refers to the thread which is sending data. Any
communication between two threads involves the usage of a socket
which is identified by the TCP 4 tuple which consists of the IP
addresses and ports of both the sender and receiver. Each socket is
transmitting either an application REQUEST or RESPONSE. The
span of this state is from the time of request arrival to the time a
response is sent for that request.
Fork Thread States: They are createdwhen a thread forks to handle
multiple incoming requests or send multiple asynchronous requests
to other threads. Each state is uniquely identified by the parent
thread and the trace ID of the request which triggered the parent
thread to spawn the child thread. The span of this state is from the
time the child thread is created to the time it terminates.

4 IMPLEMENTATION
MiSeRTrace has been implemented to allow flexibility in terms of
intrusiveness by giving the user control over the amount of tracing.
In order to minimize the overhead caused by tracing, only the PIDs
that belong to the application are traced. This is done by examina-
tion of the PIDs present on the containerization engine’s network
and passing on the same to the tracing backends (bpftrace/ftrace).
The size of the in-memory ring buffer is to be set depending on
how much kernel activity is being captured to prevent loss of data
in the trace logs.

The basis of tracing request flows through the application is by
monitoring a set of system calls activated when sending and receiv-
ing messages (SendSyscallsSet and RecieveSyscallsSet in Algorithm
1), and kernel events that occur within these system calls. These are
available as static tracepoints in the tracing backends. In addition
to these, a custom kprobe required by MiSeRTrace is inserted into
the kernel. This probe is associated with the sock_sendmsg and
__sys_sendmsg functions and is used to detect data being sent over
a TCP connection after necessary permissions are acquired. Custom
probes such as these can also be added by the user to gain a view of
kernel activity at maximum configurability. The tracing backends

Algorithm 1: TSM algorithm to handle network transfers
ThreadPool←Map[Pid→Thread]
SocketPool←Map[(IpPair, PortPair)→socket]
SendSyscallsSet← Set{sendto, sendmsg, write, writev}
RecieveSyscallsSet← Set{recvfrom, recvmsg, read, readv}
NetworkStateStore←Map[(SrcThread, tcp4tuple, TraceId)
→ NetworkState] // one store per thread

if currentSyscall ∈ SendSyscallsSet then
if currentTracepoint.event = tcpSendKprobe then

senderSock←
SocketPool.get(currentTracepoint.tcp4tuple)

senderSock.senderThread← currentThread
senderSock.type← REQUEST
/*To check if a Response is being sent*/
forall state ∈ NetworkStateStore.values() do

/*Source and destination here refer to the pairs
(sourceIp, sourcePort) and (destinationIp,
destinationPort) respectively*/

if state.source = senderSock.destination then
senderSock.type← RESPONSE
state.endSpan()
break

end
end

end
else if currentSyscall ∈ RecieveSyscallsSet then

if currentTracepoint.event = tcpRcvSpaceAdjust then
recieverSock←
SocketPool.get(currentTracepoint.tcp4tuple)

if receiverSock.type = REQUEST then
senderThread← receiverSock.senderThread
/*All active threadStates of the senderThread are
propogated to the currentThread*/

forall traceID ∈ senderThread.allTraces do
stateKey← (senderThread,
receiverSock.tcp4tuple, traceId)

state← createNetworkState(stateKey)
state.source← receiverSock.source
state.startSpan()
NetworkStateStore[stateKey]← state

end
end

end
end

have respective provisions to add and activate such probes. To cap-
ture the reception of data over a TCP connection, a static tracepoint
called tcp_rcv_space_adjust is used, which is triggered every time
data is copied to the user space at the receiver’s end. A total of 21
events are utilized by MiSeRTrace. The information provided by
these events is used to update the thread states of the TSM in order
to trace the request flow. Algorithm 1 is a simplified version of the
process of creating and updating the Network Thread States for
any given thread by monitoring the networking events. A similar
algorithm also manages the Fork Thread States by utilizing the
scheduling events - sched_process_fork and sched_process_exit.
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While using ftrace, the logistics of managing the trace data is
handled by trace-cmd [8], an interface for ftrace. In the case where
bpftrace is used as the backend, there are a few extra steps to ensure
while collecting trace logs. Bpftrace does not notify when space for
the ring buffer is allocated or when the trace logs have been written
to disk and hence these need to be managed by the user. The logs
obtained from bpftrace are per-CPU time ordered logs but are not
time-ordered globally across CPUs. MiSeRTrace also encompasses
a sorting system for the ingestion of such trace logs from bpftrace.

5 RESULTS
MiSeRTrace was put to use on an open-source microservice bench-
mark suite known as DeathStarBench [13], which consists of many
end-to-end services with representative workloads. The social net-
work application is one of the benchmarks in DeathStarBench,
implemented with loosely-coupled containerized [2] microservices
communicating with each other via Thrift RPCs. It primarily con-
sists of 3 levels - the front end (load balancer, Nginx), the logic, and
the backend stores (Memcached, MongoDB, Redis).

The benchmark was run on a system with two CPU sockets,
where each socket is an AMD EPYC 7401 24-Core Processor. Each
core has 2 logical CPUs, and hence the machine has a total of 96
CPUs. Each socket consists of 4 NUMA nodes. This non-uniform
memory access configuration where local and remote memory
accesses take different times was used to simulate a distributed
cluster-like environment. This server runs Linux kernel 5.4.0 and
has a working memory of 128 GB.

A workload was generated on the benchmark using wrk [9], a
HTTP benchmarking utility. Any form of statistical/state-based
analysis using kernel events can be performed by feeding stubs
of code into MiSeRTrace. As an example, the trace-points sched:
sched_migrate_task and exceptions:page_fault_user were enabled
for monitoring with the objective of counting the number of oc-
currences of these events. These trace logs were then processed by
MiSeRTrace which produced the request flow DAGs for all client
requests, one of which is represented in Figure 3. Each segment
here represents a state as defined by the Thread State Model, whose
span is represented by the length of the segment. Each state in
the figure shows the PID of the associated thread and the name of
the microservice running on it. In Figure 3, PID 2066822 forks PID
2066823 which sends a TCP request to PID 1966384. The span of
a state is concluded upon sending a response/death of the thread.
One of the insights that can be derived from this is that the number
of page faults that occurred in the Home-Timeline Redis span is
comparatively higher. These statistics can also be compared across
multiple request traces to understand the performance differentials.

6 CONCLUSION AND FUTURE WORK
We have presented MiSeRTrace, a framework for tracing requests
to microservice applications at the kernel space. It is capable of
monitoring an un-instrumented application with minimal over-
heads. The tool includes provisions for enabling all the features and
events of tracing backends such as bpftrace/ftrace. Subsequently,
we demonstrated the usage of MiSeRTrace to trace the end-to-end
path of client requests and user enabled events on a benchmark mi-
croservice application. With the exhaustive observability brought

Figure 3: A representative section of states of a single client
request trace along with the tally of the monitored events

about by this approach, kernel-based application optimizations be-
come much more accessible. In this paper, our experiments were
conducted on a large core-count server. As future work, MiSeR-
Trace can also be extended to support tracing of kernel activity on
a cluster of machines to derive kernel insights irrespective of the
scale of the application.
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