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ABSTRACT
The microservices architecture enables independent development
andmaintenanceof application components through its fine-grained
and modular design. This has enabled rapid adoption of microser-
vices architecture to build latency-sensitive online applications. In
such online applications, it is critical to detect and mitigate sources
of performance degradation (bottlenecks). However, the modular
designofmicroservices architecture leads to a large graphof interact-
ingmicroserviceswhose influenceoneachother isnon-trivial. In this
preliminary work, we explore the effectiveness of Graph Neural Net-
work models in detecting bottlenecks. Preliminary analysis shows
that our framework, B-MEG, produces promising results, especially
for applications with complex call graphs. B-MEG shows up to 15%
and 14% improvements in accuracy and precision, respectively, and
close to 10× increase in recall for detecting bottlenecks compared
to the technique used in existing work for bottleneck detection in
microservices [32].

CCS CONCEPTS
• Computer systems organization→ Reliability; • Software
and its engineering→ Softwaremaintenance tools.
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1 INTRODUCTION
The microservices architecture is an architectural style that allows
applications to be decomposed into fine-grained, modular, and inter-
acting services, calledmicroservices. Under this architecture, each
microservice can be independently designed, thereby enabling inde-
pendent development, maintenance, scaling, and fault isolation (at
the level of microservices) [14]. These benefits make the microser-
vices architecture well suited for designing online, customer-facing
applications where performance and availability are critical [11, 12].

Detecting and mitigating performance bottlenecks in online ap-
plications is crucial to provide a good customer experience [6, 12].
Long tail latencies that significantly affect the revenues of online
applications are often a result of performance bottlenecks that do not
necessarily lead to errors or faults and instead arise due to resource
saturation, resource contention, or microservices application mis-
configuration [14, 15, 32, 38]. Regardless of the underlying cause
of performance bottlenecks, it is essential to have a technique that
quickly adapts to dynamic online workloads and accurately detects
bottlenecks with high recall and precision.

Microservices architecture has unique characteristics compared
to other architectural styles that complicates bottleneck detection:
• While the modular architecture allows isolating performance
issues at the level of individual microservices, the complex in-
teraction between microservices leads to back-pressure effects
and cascading performance degradation, making it difficult to
precisely pinpoint the performance bottleneck(s) [30].

• Employing data-driven approaches that can learn such complex
interactions is difficult due to scarcity of labeled data for bottle-
necked class in production systems [15].

• Frequent software updates, and components like caches, message
queues, etc., which are inherent to microservices architecture,
lead to time-varying interactions between microservices [26, 32]
necessitating a technique that can generalize to such dynamicity.
Forapplications implementedusingmonolithicormulti-tier archi-

tecture, the problem of bottleneck detection has been studied exten-
sively [3–5, 8, 18, 33, 34, 39, 41, 42]; these studies continue to influence
bottleneck detection research for microservices. For the microser-
vices architecture, a popular approach to detect bottlenecks is to em-
ploy end-to-end distributed tracing systems like Jaeger [22], that are
commonly employedbydistributed systemsdeployed in the industry
today [27]. However, such systems cannot capture the complex rela-
tionships betweendifferentmicroservices [32]; further, such systems
still requiremanual effort and insight to actually detect performance
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bottlenecks. In general, the problem of detecting bottlenecks has gar-
neredwide attention from the academic community aswell [7, 16, 17,
19, 24, 25, 40, 44–46]. Recently, the availability of vast amount of trac-
ingdatahasmotivateddata-driven approaches for performanceman-
agementofmicroservices architecture [13, 15, 26, 32].However, prior
works that incorporate data-driven approaches either fail to fully use
the structural information of the application deployment [15, 32], or
usemultiple complexmodels, thereby complicating the solution [13].

This work explores the use of Graph Neural Networks (GNNs) [9,
49] to detect bottlenecks in onlinemicroservices applications. GNNs
are ideally suited for analyzing microservices applications:
• GNNs and their variants have produced ground-breaking per-
formance on graph data [49] making them a natural choice for
analyzing microservices call graphs [26, 28, 30].

• Models like GNNs are ideally suited to capture back-pressure
and cascading performance degradation [14, 30] along the call
graphs as they learn thedependenceof graphs viamessagepassing
between the nodes of graphs [49].

• GNNs can generalize to dynamic graphs through transfer learn-
ing [20, 21]making theman ideal choice as call graphs are dynamic
in nature [26, 32], saving retraining costs.

• GNN architectures can be regularized to ensure representation
learning equilibrium across multiple classes thereby avoiding
the multi-class imbalance problem seen in traditional ML algo-
rithms [35]. The difficulty in collecting traces with bottlenecks
in production systems makes GNN an ideal choice as it does not
overfit on the majority (non-bottlenecked) class [15].
Motivated by the aboveobservations, thiswork-in-progress paper

explores the use of GNNs for detecting performance bottlenecks
in microservices applications by designing B-MEG (Bottlenecked-
Microservices Extraction usingGNNs), a frameworkwith two stages
of GNNmodels. Preliminary results on a public dataset [31] are en-
couraging and show that B-MEG performs better than existing work
that we compared against [32] for benchmark applications with a
large number of microservices and complex call graphs (even when
the training dataset is highly imbalanced). Compared to the Support
VectorMachine (SVM)model used in existingwork, B-MEGprovides
up to 15% and 14% improvements in accuracy and precision, respec-
tively, and close to 10× improvement in recall of the bottlenecked
classes. A detailed empirical comparison of B-MEG against other
models and tools discussed in Section 2.1, is left for future work.

2 BACKGROUNDANDRELATEDWORK
Call Graphs and Traces: The series of Remote Procedure Calls
(RPC) between microservices that service a user request is called a
call graph [26]. The nodes of the call graph are RPCs of microser-
vices and the edges correspond to an invocation of RPC from an
upstreammicroservice to a downstreammicroservice. An analysis
of microservices deployment in Alibaba clusters showed that at least
10% of the call graphs contain more than 40microservices, and some
call graphs can have thousands of microservices [26].

A single request type can have different call graphs due to differ-
ent user parameters, components like caches and message queues,
and asynchronous executions [26]. Further, agility in microservices
architecture can lead to updates in microservices that can change
the dependencies between them, thereby changing the call graphs.

Call graphs can be obtained using end-to-end tracing systems like
Jaeger [22]. A trace is a data/execution path through the system, and
can be thought of as a directed acyclic graph of spans,where a span is
a logical unit of work. A distributed application can be instrumented
at the RPC-level to get call graphs of each request.
GraphNeural Networks (GNN)GNNs are neural networkmodels
that are designed to learn representations on graph-structured data
via feature propagation and aggregation. The input to a GNN is the
graph representation of the problem being solved, where the graph
could be explicit like in the case of call graphs, or implicitwhere an ef-
fort is involved to build the graph [49].GNNoutputs a representation
for the inputgraph, called theembedding,using the featuresof the ini-
tial graph representation and the structure of the graph. These learnt
representations are used to perform downstream tasks like graph
classification, graph clustering, node classification, etc. The key ad-
vantage of GNN compared to standardML frameworks is that GNNs
can provide hierarchical convolutions in non-euclidean spaces. This
is accomplished by a message passing process aggregating the em-
beddings of the neighbors of individual nodes, which in turn contain
information about their neighbors. This way, the influence of neigh-
boring microservices in a call graph can be learnt and the patterns
that lead to propagation of bottlenecks to neighbors can be detected.

2.1 RelatedWork
Bottleneck detection inmicroservices applications: There is a
large body of literature related to the general problem of bottleneck
detection;we refer interested readers to a recent survey [37].Wenow
discuss more closely related prior works to put our work in context.

FIRM [32] uses a Support Vector Machine (SVM) model to detect
bottlenecks on the critical path of the call graph. The SVMmodel is
trained usinghand-crafted features that capture the per-critical-path
and per-microservice performance variability. However, FIRM does
not capture structural effects of call graphs as it treats eachmicroser-
vice independently for bottleneck detection. Seer [15] is an online
cloud performance debugging system that leverages CNN and LSTM
networks to learn spatial and temporal patterns that lead to QoS vio-
lations. However, analysis of Alibaba’s production systems suggests
that CNN-based approaches are not applicable to real-world applica-
tions; instead, the authors suggest the use of GNNs [26], motivating
our work. Sage [13] uses Causal Bayesian Network (CBN) to capture
the dependencies between microservices. However, the assumption
inSage that thenon-leafnodes’ latency isdeterminedbythewait time
of its child nodes might not always hold [26]. Recent works [43, 47]
have shown that GNNs can capture such causal relations, making
additional models to capture causality redundant. SuanMing [17]
presents a framework for predicting future root causes to prevent the
consequentperformance loss.However, theassumption inSuanMing
that the performance of the application is only dependent on type
and amount of requests arriving at each service instance need not
hold for data stores of the application which affect performance sig-
nificantly [14, 15]. Even for statelessmicroservices, performance can
dependon thepayload size.T-Rank [46], using latencyasabottleneck
metric, detects bottlenecks based on Spectrum Based Fault Localiza-
tion (SBFL). However, SBFL cannot capture the complex nature of
microservices and incorrectly categorizes hot-spots, microservices
that are shared across a significant number of call graphs [26], as
bottlenecks. Brandón et al. [7] present a graph-based framework
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(a) Graph classifier (stage 1) (b) Node classifier (stage 2)

Figure 1: The two stages in the B-MEG framework.

that employs expert knowledge to detect bottlenecks. Through this
framework, the authors also demonstrate the advantages of using
graph techniques over ML techniques that do not exploit graph data.
Our framework combines these two strategies by using a graphML
technique and alleviates the need of expert knowledge.
Application Performance Monitoring (APM) tools: AppDy-
namics [1] leverages specialized ML models and various metrics
collected across the application to detect bottleneck microservices.
Dynatrace [2] uses context (topology, traces, and code-level) infor-
mation to build and analyse a fault-tree to pinpoint bottlenecks.

3 OBJECTIVEAND SYSTEMDESIGN
Wedivide theproblemofdetectingbottlenecks into twosub-problems,
the detection of potential anomalous traces (i.e., traces affected by
bottlenecks), followed by detection of potential bottlenecks in such
anomalous traces.We translate the sub-problemsofdetectinganoma-
lous traces and potential bottlenecks into graph classification and
node classification tasks, respectively. This division of problem is
motivated by the benefits of hierarchical classifiers [36].

Based on the intuition that traces with bottlenecks would be sim-
ilar to each other irrespective of the specific bottlenecks [29], we
categorize them into one meta class—anomalous traces. This allows
the use of a binary classifier as the first stage that classifies a trace
as anomalous or regular. The traces classified as anomalous are pro-
videdas input to the secondstage thatdetectspotential bottlenecks in
them. The main disadvantage of this design is the error propagation
from first stage which can be controlled by varying the classification
threshold of the first stage. We empirically compared the perfor-
mance of a flat classification model versus the hierarchical model
(B-MEG) and found that the hierarchical model leads to two simpler
modelswith better performancewhich furthermotivated this design.

The B-MEG framework, as shown in Figure 1, consists of 2 stages
with the first stage responsible for classifying potential anomalous
traces and the second stage responsible for classifying potential
bottlenecks. The first stage uses a Deep Graph Convolutional Neu-
ral Network (DGCNN) [10] for classifying if a trace is anomalous,
and the second stage uses an inductive graph convolution training
regime for pinpointing the microservices that are responsible for
causing the anomaly. The choice of DGCNN for graph classification
is due to its superior performance on inductive learning of graph
representations without feature engineering. The node classifier is a
vanilla Graph Convolution Network (GCN) architecture where the
number of convolution layers were decided based on experiments.

The architecture of the DGCNNmodel, shown in Figure 1a, con-
sists of four sequential stages: (i) four GCN layers to hierarchically

extract the local substructure features of a node and define a node
ordering [23]; (ii) one Sort Pooling layer for sorting the ordering
under a pre-defined ordering and unifying the input sizes [48]; (iii)
a sequence of traditional Convolution 1D layer, a max-pooling layer,
and another Convolution 1D layer to read the sorted graph repre-
sentations; and (iv) one post-processing dense layer followed by a
softmax layer to make predictions. For node-classification, we use
a semi-supervised graph convolution framework with three GCN
layers, followed by a post-processing feed-forward and a softmax
layer for predictions. The GCN layers hierarchically extract node
features and pass it on to post-processing layer for classification.
4 EVALUATION
Dataset: The dataset [31] released as part of the FIRM project [32]
contains traces of social networking, media microservices, and ho-
tel reservation applications from the DeathStarBench [14] suite
and TrainTicket benchmark [50]. Most traces consist of a single
bottleneck, the cause of which is an artificially induced resource
interference, while the remaining traces have no bottlenecks.
Methodology: In this preliminarywork, we focus ourmethodology
on studying the effectiveness ofGNNmodels on imbalanced datasets,
which are the norm given the scarcity of production systems traces
with bottlenecks [15]. To evaluate B-MEG’s ability to handle the
multi-class imbalance problem, we create three datasets each con-
sisting of 790,000 traces—A, B, C—with the ratio of number of traces
in the dataset with amicroservice as the bottleneck to the number of
traces without bottlenecks being 0.3, 0.1, and 0.01, respectively. The
choice of 0.3 is to evaluate the performance of B-MEG for a fairly bal-
anceddataset. The choiceof 0.1 and0.01 ismotivatedby similar ratios
reported in production systems [24]. The datasets are created by ran-
dom sampling to avoid any unexpected bias in them.We empirically
evaluated how the performance of B-MEG varies with the total size
of the dataset and chose the size at which the performance plateaued.
The training time for the applications varies from 2–3 hours.

We use the bottleneck detection technique from FIRM [32] as
the baseline to evaluate B-MEG’s performance. FIRM [32] derives
two features, the relative importance and congestion intensity, from
service time of microservices to train an SVMmodel to detect bottle-
necks. Similar to FIRM [32], we train both the models using service
time of microservices as feature as it correlates well with bottle-
neck occurrence, but without any feature engineering. Using 80% of
the traces from each class as the training data, both the models are
trained separately and inductively where each trace is treated as a
stand-alone instance; the remaining 20% dataset forms the test data.
Unlike prior works [15, 32] that focus only on accuracy, we use other
metrics like recall and precision which, as discussed in Section 1, are
important when the dataset is imbalanced.
Preliminary results: Figure 2 shows the results for datasets A, B,
and C (with different degree of class imbalance) and different bench-
marking applications for SVMandB-MEG. For the social networking
(SN) application, as seen in Figure 2a, B-MEGoutperforms SVMwith
respect to all the metrics for dataset A. This suggests B-MEG’s abil-
ity to effectively learn patterns that cause bottlenecks with a fairly
imbalanced dataset without any feature engineering. For dataset B,
B-MEG does better than SVM for all the metrics except for recall of
bottlenecked classes, with SVM’s value being 0.81 and B-MEG’s 0.78.
However, this advantage of SVMcomeswith a very small recall (0.39)
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Figure 2: Performance comparison of SVM and B-MEG on the traces of social networking (SN) [14], hotel reservation (HR) [14],
and train ticket (TT) [50] applications.Metrics employed are accuracy (A), precision for non-bottlenecked (NBP) and bottlenecked
classes (BP), recall for non-bottlenecked (NBR) and bottlenecked classes (BR). For all metrics, higher values are better.

for the non-bottlenecked class, an undesirable trade-off. Moreover,
B-MEG is capable of maintaining a good trade-off between overall
precision (0.74) and recall (0.8) among all the classes, providing a
high recall (0.81) for the non-bottlenecked class even when there is
significant class imbalance. For dataset C, where the class imbalance
is extreme, SVM has higher accuracy (0.78) than B-MEG (0.71), but
suffers from a poor recall for bottlenecked classes (0.07). B-MEG on
the other hand, provides a reasonable recall for bottlenecked classes
(0.67), proving its ability to balance precision and recall even when
the class imbalance is extreme. We see similar trends as dataset C
whenwe further increase the class imbalance ratio from 0.01 to 0.001.
We note that the call graph of social networking application in the
FIRM dataset [31] has 31 microservices and 18 different paths from
therootof thecall graph to the leafnodes, advocatingB-MEG’sability
in learning patterns in complex call graphs to detect bottlenecks.

Figures 2b, 2e, and 2h show that SVM either outperforms or per-
forms similarly to B-MEGacross all the datasets. Figures 2c, 2f, and 2i
show similar trends for the train ticket application. Considering that
the call graphs of hotel reservation and train ticket applications con-
sist of 5 microservices with 3 different paths, and 11 microservices
with 7 different paths, respectively, the results are not surprising.
SVM’s inability to exploit the structural information does not pe-
nalize its performance for these applications since their simple call
graphs aid SVM in learning thresholds that signal bottlenecks. How-
ever, B-MEG still maintains a good balance between precision and
recall for these two applications.

The above evaluation results show that even when the class im-
balance is extreme, B-MEG is effective at detecting bottlenecks for
microservices applicationswith large andcomplex call graphs.Given
that such imbalance is the norm in production system traces [15, 26],
we are encouraged by B-MEG’s ability to maintain a good trade-off
between precision and recall in such cases.

5 CONCLUSIONAND FUTUREWORK
This workmakes the case for employing GNNs to detect bottlenecks
in applications designed using the microservices architecture. We
evaluate our framework, B-MEG, using a recently published trace
dataset [31] and compare the results against SVM, the model used
to detect bottlenecks in FIRM [32]. In our preliminary experiments,
B-MEG shows superior performance in detecting bottlenecks on
imbalanced datasets for large and complex call graphs compared to
SVM. As part of future work, we plan to explore transfer learning
to make B-MEG generalizable, thus building on the strengths of
GNNs. We also plan on collecting and open-sourcing a dataset with
multiple bottlenecks. Creating a dataset that contains multiple bot-
tlenecks, where the causes of these bottlenecks are not just resource
contention [32], would further aid research in the area of bottleneck
detection. Additionally, we will conduct a detailed analysis of the
impact of dataset size on performance and on training effort. Finally,
weplan empirically compare our improved frameworkwith the tools
and models described in Section 2.1.
Acknowledgment: This work was supported by NSF grant CNS-
1750109.
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