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ABSTRACT 
Serverless environments have attracted significant attention in 
recent years as a result of their agility in execution as well as 
inherent scaling capabilities as a cloud-native execution model. 
While extensive analysis has been performed in various critical 
performance aspects of these environments, such as cold start 
times, the aspect of workflow orchestration delays has been 
neglected. Given that this paradigm has become more mature 
in recent years and application complexity has started to rise 
from a few functions to more complex application structures, 
the issue of delays in orchestrating these functions may 
become severe. In this work, one of the main open source FaaS 
platforms, Openwhisk, is utilized in order to measure and 
investigate its orchestration delays for the main sequence 
operator of the platform. These are compared to delays 
included in orchestration of functions through two alternative 
means, including the execution of orchestrator logic functions 
in supporting runtimes based on Node-RED. The delays 
inserted by each different orchestration mode are measured 
and modeled, while  boundary points of selection between each 
mode are presented, based on the number and expected delay 
of the functions that constitute the workflow.  It is indicative 
that in certain cases, the orchestration overheads might range 
from 0.29% to 235% compared to the beneficial computational 
time needed for the workflow functions. The results can extend 
simulation and estimation mechanisms with information on 
the orchestration overheads.  
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1 Introduction 
Serverless computing has emerged as a promising alternative 
execution model within cloud computing, promising better 
utilization of underlying resources, easier and inherent 
scalability as well as agnostic management. One specialization 
of the serverless paradigm, the Function as a Service [1] 
approach, aims to apply the serverless scope also in the way 
application logic is created, embedded and executed. The logic 
needs to be split up in smaller chunks of code, namely 
functions, that are in principle stateless. A series of functions 
may collaborate in a workflow (together as well as with 
external services) in order to implement the end to end logic 
needed by the application layer.  

At the moment, as indicated by related reviews [2], the size 
of FaaS applications is rather small, indicating that 
approximately 82% of them have only up to 5 functions in the 
workflow. New tooling that is available for the domain, in 
terms of inherent orchestration mechanisms of the various 
platforms, as well as the hype around the domain may lead to 
more complex application flows creation. Recent research 
attempts have highlighted new and more versatile 
orchestration means [3] based on additional layers of 
orchestrators that can mitigate functional drawbacks of current 
FaaS platforms, offering visual design and implementing 
workflows of functions with support for more complex 
workflow primitives and subflow groups. 

One of these solutions is the PHYSICS Design 
Environment1, utilizing the IoT originating Node-RED tool. 

1 https://physics-faas.eu/ 
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The latter is a visual, functional programming, event driven 
framework for application development. Due to the existence 
of a sophisticated runtime (based on node.js), its asynchronous 
nature as well as abundance of ready-made functional nodes, a 
Node-RED flow can be easily created and act as an orchestrator 
of functions that are executed on a FaaS platform. The 
functions can execute either inside the Node-RED runtime or 
can be invoked through relevant clients of the FaaS platform. 

The contribution of this paper is to investigate and measure 
the performance overheads between primarily the Openwhisk 
built-in sequence operator and the Node-RED based 
orchestration mechanisms and compare the delays inserted by 
each orchestration mode. The delays can be due to 
initialization times of the orchestration logic or due to the 
inter-function invocation delays needed for passing through 
each step of the workflow. Then the orchestration overhead 
can be compared to the actual useful computational time of the 
workflow and one mode or the other can be selected based on 
the anticipated size and computational time needed for the 
workflow. The results may be useful in extending simulation 
models for FaaS applications so that the latter take 
orchestration overheads under consideration.   

The rest of the paper proceeds as follows. In Section 2, 
related work is examined with relation to the work presented 
in this paper. Section 3 describes the orchestration mechanisms 
taken under consideration, while Section 4 introduces the 
measurement methodology and experiment setup. Section 5 
presents the measurements and analysis of the results in order 
to model the time delays. Finally, Section 6 concludes the 
paper.  

2 Related Work 
A number of works [4,5] indicate the need for enhanced 
tooling for function grouping, reuse and composition in 
Function as a Service platforms. However, this also needs the 
ability to interact between these groups through appropriate 
orchestration mechanisms [6]. From the main open source FaaS 
platforms, Openwhisk2 natively supports only a sequence 
operator at the runtime level [7]. Relevant add-ons such as the 
IBM Composer3 exist, including an extended set of 
orchestration primitives, in the form of a code library [8]. For 
other open source platforms such as OpenFaaS, external 
plugins are also available (e.g. FaaS-flow4), that follow a similar 
approach, supporting more complex workflow primitives in a 
code-like manner. In this case the orchestrating code is by itself 
executed as a function. TriggerFlow [10] is an add-on 
mechanism that supports different workflow primitives, as well 
as eventing mechanisms. 

From a visual workflow creation point of view, 
Kubeflow [9] includes a relevant language for pipeline 
definition and an editor extension for visual definitions of 

2 Apache Openwhisk, Available at: https://openwhisk.apache.org/ 
3 Apache  Openwhisk  Composer, Available at:  
https://github.com/apache/openwhisk-composer. 
4 Faas-flow orchestrator for OpenFaaS, Available at: https://github.com/s8sg/faas-
flow 

workflows. The defined workflow resembles more to a static 
definition of steps, without a respective runtime, orchestrating 
the execution of one task after the other, while the inputs and 
outputs are passed through external object storage services.  
AWS Step functions supports visual programming style and 
extended operators for function workflows (e.g. state 
management ones). Google Cloud Functions5 are based on text 
based yaml files for the definition of a workflow. The same 
yaml approach applies for the AFCL approach presented in 
[15]. In general yaml based approaches can become very 
complex when the size or connections in the workflow scale, 
although in this case the solution comes also with a rich set of 
available constructs that can significantly speed up application 
creation.  

[14] has moved the execution of scientific workflows to a
FaaS model with Hyperflow and compares it to the traditional 
IaaS approach from a cost point of view, not covering however 
orchestration delays in particular. The paper proposes a 
number of architecture alternatives for workflow orchestration, 
with the Direct Executor variation (the main flavor used in its 
experimentation) being very similar to one of the variations we 
measure in this paper (the OW-NR mode described in Section 
3). In [16], SWEEP acts as a workflow management system and 
language, executed as a server, thus may present scaling 
limitations if all workflows need to be regulated through a 
central instance. In terms of workflow primitives, it supports 
an increased number of them as well as the ability to handle 
both function and container execution. The overheads 
examined in this case relate to AWS API throttling or 
invocation retry aspects in case of failures. 

What is evident from the related work is that a number of 
orchestrating options are currently available in FaaS platforms, 
however the performance footprint of these has not been 
extensively investigated. Orchestration overheads intersect two 
out of the 3 performance challenges identified in [11], namely 
the request overheads and the function lifecycle management 
aspects. One exception investigating performance issues in 
depth is Netherite [18], in which a distributed execution engine 
is presented. Netherite applies speculation for minimizing 
delays from state management, which aids in increasing the 
orchestration throughput and workflow latency.   

In [8], a performance analysis is conducted for fork-join 
executions between Amazon Step Functions, Azure Durable 
Functions and IBM Composer, in the form of overheads from 
multiple concurrent executions. The most similar to our work 
is [12], in which the pure orchestration needs are measured in 
sequences of operations for the same providers as [8]. 
Interesting findings are reported with relation primarily to the 
state transition delays affected by the function input size and 
how this affects the total overhead. Other approaches 
investigate more futuristic implementations deploying the 
orchestrators at the Smart NIC level, for minimizing latency in 
function orchestrations [13]. Beldi [17] is a library and runtime 
system for supporting stateful serverless functions. It can be 

5Google Cloud Functions Workflow Specification, Available at: 
https://cloud.google.com/functions/docs/tutorials/workflows. 
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combined with this work in an effort to include state 
management operations in the orchestration overheads 
investigation.  

In the context of this work, the PHYSICS Design 
environment, suggested by [3], utilizes the Node-RED 
framework in order to support visual editing of functions as 
well as workflows packaged and executed as functions on 
target FaaS platforms (mainly Openwhisk). In this manner, any 
workflow primitive that can be constructed through 
appropriate message handling in the runtime can be 
implemented and piggy back on the Node-RED workflow 
specification. Invoked functions can be external ones or 
internal ones included in the runtime. It also enables the 
grouping and reuse of function flows (in the form of patterns) 
that can be used for creation of workflow primitives and an 
abundance of IoT-related nodes.The specific approach is very 
adaptable to a variety of scenarios, including Edge/Cloud 
collaborations for data collection. A complete analysis of the 
reasons behind the selection of Node-RED as the main 
orchestrator for the PHYSICS platform can be found in [19].   

3 Orchestration and Execution Variations 
The first observed mode as mentioned in the Introduction is 
the sequence operator for OpenWhisk (OW) runtime functions. 
This targets workflows that are defined as function sequences 
directly in OpenWhisk, utilizing registered (to OpenWhisk) 
functions as their main building block (Figure 1a).  
Selection rationale: this mode was selected since it is the 
simplest one, involving  only native mechanisms 

The second mode is a function sequence in Node-
RED (NR), executed as a docker action in OpenWhisk (Figure 
1b). The main difference in this case is that the function 
workflow is created in Node-RED and deployed within a 
custom docker image (invoked as a function) that contains the 
Node-RED runtime. Openwhisk supports black box images to 
be executed as functions. In this case all the functions reside 
and execute inside the same environment container.       
Selection rationale: This mode was selected since the runtime 
can act as an orchestrator as well as a function execution 
environment.  

This mode has a disadvantage from a parallelization 
point of view in a general usage context. Its main advantage is 
the fact that it includes a complete runtime, that has message 
tracking abilities, and thus it is able to apply more complex 
workflow primitives like Fork-Join patterns6. Furthermore, 
function subflows can be grouped and reused, while IoT nodes 
can extend data collection and collaboration with external 
systems. 

Given that we can expect a significant delay in the 
start-up of the Node-RED environment, the purpose is to 
investigate what (and if there) is the benefit of one mode 
versus the other compared to the number and duration of the 
functions that are part of the sequence. The motivation behind 

6 Split Join Node-RED pattern, available at: 
https://flows.nodered.org/flow/7a5acfc999b1ad47bb32b5d37419c777 

this is the fact that inter-function communication (ifc) times in 
the sequence will probably differ between the two cases of 
execution, which may create a margin of exploitation of one 
mode over the other.  

This is reasonable to assume, given that in a native 
OW sequence, the invocation from one function to another 
needs to pass through the respective OW mechanism, the new 
action invocation to be queued, and a container found for 
execution (in all potential variations such as cold or warm). On 
the other hand, in the Node-RED Action Image, the invocation 
is passed between the functions inside the Node-RED runtime 
without the need to find further containers (reused or new 
ones). In the case of multiple users, the OW runtime may also 
be forced to cold start more given that each function needs a 
separate container. In the context of this work this parameter is 
not investigated, however container reuse delays for the warm 
executions are also expected. 

A third option is also possible, that is having an 
orchestration flow inside NR that invokes typical functions, 
deployed in any manner in the Openwhisk environment. In 
this case the NR flow acts as a generic orchestrator, while we 
can apply parallelization if applicable (e.g. in the Fork Join 
case). This mode of orchestration (Figure 1c) is expected to 
have higher orchestration delays, since it needs to invoke the 
OW interface. It also suffers from a double billing issue 
(similarly to the IBM Composer, FaaS-flow and Hyperflow 
approaches of Section 2) since the coordinating Action needs to 
execute for the overall duration of the workflow execution. On 
the other hand, it supports any type of workflow primitive. 
Selection rationale: This mode was selected since it resembles 
more the architecture of typical orchestrator alternatives 
examined in the related work, in which orchestrator functions 
are only used for coordination.       

 A summary of the various approaches is included in Table 
1. 
Table 1: Summary of different orchestration modes 

Mode Execut

ion 

Enviro

nment 

Orchestr

ation 

Environ

ment 

Advantages Disadvantages 

OW-

OW 

OW 

node.js 

image 

OW 

Sequence 

Low cold start, any 

combination of 

execution images 

Simple 

sequences only 

NR-

NR 

Custo

m NR 

action 

image 

NR 

runtime 

Arbitrary workflow 

primitives, IoT 

adaptation 

High cold start, 

execution in a 

specific type of 

image 

OW-

NR 

OW 

node.js 

image 

NR 

runtime 

Arbitrary workflow 

primitives, actual 

parallelism inside 

the flow, any 

execution image, 

IoT adaptation 

Double billing 

for the 

orchestration 

action, higher 

cold start 

delays, more 

interactions 
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Figure 1: Comparison of the architecture of the three 
orchestration modes . 

4 Experiment  Description 
4.1 Experiment Setup 
Given that we want to measure the pure orchestration delays 
between function invocations in the three modes, we need to 
create a set of functions for which the execution delay is 
known and set a priori (i.e. a sleep function). In this manner 
one is able to measure the total execution time of the workflow 
(Figure 2) and subtract from this the total delays of the function 
executions (number of functions X inner sleep delay of each 
function). The remaining time will be any initialization time as 
well as the inter-function communication/orchestration delays 
(ifc).  

Figure 2: Measurement approach for the inter-function 
communication/orchestration delays (ifc) 

As mentioned in the Introduction, the aim is to 
investigate the pure, baseline delays needed for transcending 
from one function to the next. For this reason, we have strived 

to reduce potential interferences from external factors that may 
influence the total time of the execution. One of them is any 
complications (e.g. cold starts) that may be caused by increased 
traffic, higher to the number of warm containers available. 
Therefore, only one client request was active at any given time. 
All the experiments were performed in warm containers, 
similarly to the approach in [12], in order to avoid cold start 
delays. Furthermore, the client resided in the same node in 
order to reduce any network latencies. The experiment was 
executed on a local node (AMD Ryzen 3500, 6 GB RAM) , 
running Ubuntu 20.04.3 LTS, with Linux  5.13.0-28-generic 
kernel and x86-64 architecture, Java version 11.0.13, Apache 
Jmeter version 2.13.20180731, Docker version 20.10.7, 
Openwhisk , Node-RED version v2.0.6  and Node.js version 
v14.17.06  

4.2 OW-OW mode 
An artificial delay function has been created as a native 
Javascript function (Snippet 1), accepting as a parameter the 
milliseconds of delay to apply. This function is registered as a 
nodejs function type in OpenWhisk (OW-OW case). The delay 
is received as an input argument and is applied through a 
setTimeout method. This in typical node.js environments may 
not be accurate in terms of the final delay, since it needs to be 
interpreted as the minimum delay to be asserted. However the 
actual delay may be larger due to contention in the node.js 
process. When the timer expires, the reactivation of the 
function is pushed to the end of the FIFO event queue. So if the 
event-loop has a large number of events, the reactivation may 
delay further than the desired delay. However, in cases such as 
our measurement, in which there were no other functions 
contending inside the same node.js process, there was no 
measured difference between the desired and the set value. 
Observation: The specified delay implementation should be 
applied only in non congested nodejs eventloops. 
Snippet 1: Delay function for the node.js action 
function main(params) { 

 return new Promise(function(resolve, reject) { 
  setTimeout(function() { 
    resolve(params); 
  }, params.delay); 

    }) 
 } 

Parametrically named sequences of varying numbers of 
functions (e.g., 1-25 with a step of 5), were set up as 
OpenWhisk function sequences, in order to be invoked by a 
respective Jmeter client. Actions were exposed as web actions. 
4.3 NR-NR mode 
A similar function flow is created for Node-RED (Figure 3). 
The core flow handles a control loop where delay and iteration 
numbers are dynamically passed on as input variables during 
the action invocation. This is needed to enhance experiment 
automation, so that we can pass as arguments the number of 
repetitions of the main delay loop, in order to simulate a flow 
of n functions, each with the desired delay. The respective flow 
should also be executable as an Openwhisk function, which 
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means it needs to abide by the respective interface of the latter 
(one POST /init method and one POST /run method). The 
function node in the middle subflow extracts parameters from 
the incoming message and passes them through the msg.delay 
and msg.iterations fields. The whole process is iterated until 
the number of needed delays are met.  

Figure 3: Node-RED Workflow implementation      for 
dynamic delay and iterations      (NR-NR mode) 

A docker image with the Node-RED delay flow was 
created and registered as an OpenWhisk Docker Action for the 
NR-NR case. The image is available on dockerhub7. The delay 
flow is also available as a standalone flow8. 
4.4 OW-NR mode 
For the hybrid case, the purple NR delay node of the previous 
figure has been replaced by the Openwhisk Node-RED client 
node9 that contacts the basic node.js delay action of the OW-
OW case. Thus in this case the orchestration is performed 
through the Node-RED action flow but the actual execution is 
performed by a native node.js Openwhisk function. The 
respective image has also been made available on dockerhub10 
and is reusable provided that the credentials for an existing 
Openwhisk installation are renewed.Jmeter clients have been 
created that invoke both actions (OpenWhisk sequence with 
delay input parameter and Node-RED action with delay and 
delay loops parameters). Loops to implement multiple 
parameter values are applied in the Jmeter files to measure all 
the needed combinations automatically.  

5 Obtained Measurements and Analysis 
5.1 Initial Data Collection 
Initially, a set of measurements were performed for 1 to 25 
functions, with a step of 5, and a set delay for 1000 milliseconds 
for each function of the sequence. Each execution was 
performed 40 times and the average of each case was extracted. 
Total response times of the three modes appear in Figure 4. For 
one warm function execution the execution time is 
approximately the same for the two modes. However, the more 
functions that are being included and executed (as a sequence) 
the more the average tends to be lower for the NR-NR case.  

7 https://hub.docker.com/r/pekoto/noderedaction 
8https://flows.nodered.org/flow/f0795ad9f25ad2affcadb8deb305fdf3/in/VOf-
0UrN5e2j 
9 https://flows.nodered.org/node/node-red-node-openwhisk 
10 https://hub.docker.com/r/pekoto/owmode3 

Given that the inner delay of each function in the 
sequence is the same, the main source of differentiation is the 
inter-function communication delay. The averaged per 
function orchestration delay appears in Figure 5. For example 
in the NR-NR mode case, on 15 Functions we get 15148 ms 
average execution time. From this value we extract the static 
delay of each function (15×1000 milliseconds) and the 
remaining part is divided by the number of functions used in 
the specific case (15 functions). This indicates the average time 
spent between function calls in each mode, as well as any 
initialization delays in the first call. The fact that Node-RED ifc 
times per function appear higher in lower function numbers 
and then start to get lower can be attributed to the fact that 
any initialization times (not cold starts, since all the executions 
are warm, but any delays in argument passing, reuse of warm 
container delays etc.), are divided between the number of 
functions. Thus, when function numbers are low, the effect of 
this initial delay is higher and diminishes as the number of 
functions grows, since it is averaged on them. 

Figure 4: Total Response Times of the different modes 
for varying number of functions in the sequence and a 
static delay of 1000 milliseconds for each function delay 
Finding 1: From Figure 5, it is evident that we can use the 
average overhead per function time for the OW case, given 
that this is independent of the number of functions used. 
However, for the NR-NR and OW-NR cases, the initialization 
time significantly affects the average produced, as the number 
of functions grows.  
Thus to have a more accurate approach, we need to estimate 
the ifc time (Tifc) from the acquired measurements and split it 
from any initialization time (Tinit).  

Figure 5: Average orchestration delay per function 
sequence size      

1 5 10 15 20 25

OW-OW 1119 5582 11177 16740 22321 27882

NR-NR 1121 5136 10132 15162 20149 25153

OW-NR 1225 5723 11334 16964 22541 28147
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5.2 Model Estimation of the parameters for Tinit and 
Tifc 

     The Pearson correlation coefficient for the dataset is 0.9105, 
indicating a strong linear relationship. Thus we can use a 
simple line to detect the dependency of the total flow delay 
time from the initialization times, intermediate function delays 
and inter function communication, defined as follows: 
Ttotal=Tinit+n×(Tfunctiondelay+Tifc) 
where: 

● Tinit is any initial environment or other initialization
time happening once

● Tfunctiondelay = preset sleep delay of each function in
the sequence, 

● n = number of functions (in sequence)
● Tifc = inter-function communication, the delay

needed to go from one function to the next.  It is kept
as n and not (n-1) that are the number of links in an
n-sequence since we consider that in this way the Tifc

can model any repetitive actions needed in each step, 
including the first step. These, for example, can be
warm container reuse times for the OW-OW and 
OW-NR cases that are needed in each function
invocation. In the case of NR-NR it would include
only the time needed in the Node-RED runtime to 
pass from one function to the next

From the experiments, the total delays Ttotal are known, the 
delay of each function is set and known as well as the n used in 
each case. Given that we have measurements for different 
values of n we can apply a simple regression to estimate the 
parameters Tinit  and Tifc. The previous equation can be 
transformed to: 
Ttotal-n× Tfunctiondelay =Tinit+n× Tifc or  Y=a×x+b  
where x is the number of functions in the sequence and the 
coefficients are the Tifc (a) and Tinit  (b). The curve fit can be 
optimized via a typical method such as the ordinary least 
squares ols function11 of GNU Octave, giving the values of 
128.36 for Tinit  and 1.69 for the Tifc (in the millisecond range) 
for the NR-NR case.  

In a similar fashion, for the OW-OW mode, we have 
a reverse effect, the Tinit  is set at 2.11 and the Tifc at 118.84. 
The latter was expected since the individual values are very 
similar and close to the average value of the ifc graph and 
indicates the fact that we need increased initialization in each 
step.  
Finding 2: In the OW-OW case, the similarity between the 
initialization time of the model and the time needed for 1 
function indicates that the majority of the delay refers to the 
need to set up a (warm) container for the next function in the 
sequence. 
For the OW-NR case, we have a similarly large initialization 
time to the NR-NR case for the orchestration logic in the area 
of 114 milliseconds, while due to the need for external 

11 https://octave.sourceforge.io/octave/function/ols.html 

invocations to the OW environment for each action execution 
we need an extra 121 milliseconds per function step. 

The above times can be off-set by the estimated 
difference in the cold case. For the NR-NR case the difference 
between a cold and a warm start was measured at 7.373 
seconds, and for the OW-OW case at 2.248 seconds. These 
times can be added as penalties in the final function, appearing 
in Table 2. 
Table 2: Estimated Parameters for Tifc and Tinit  

Mode Warm Function Sequence Execution 

(ms) 

Cold Penalty 

(ms) 

OW-

OW 

Ttotal=2.11+n×(Tfunctiondelay+118.94) +2248 

NR-NR Ttotal=128.36+n×( Tfunctiondelay +1.69) +7373 

OW-NR Ttotal=114.08+n×( Tfunctiondelay + 121.70) +9621

5.3 Extrapolation of model estimation 
From the aforementioned functions we can easily create 
parameterized plots for different function sequences and inner 
function delays, to observe how the estimated total execution 
differs for different function numbers and delays (Figure 6). 
Indicatively, in some cases (e.g., OW-OW with 100 ms inner 
function delay) the orchestration delay per function is higher 
than the actual computation needed inside the function (100 
ms), leading to overheads being over 50% of the total time. In 
the case of OW-NR, the behavior is in most cases dominated by 
the large inter-function communication time due to the need to 
trigger the external OW action for the execution. Since this is 
very similar to the action triggering in the OW-OW case, the 
graphs of the two modes significantly overlap for similar inner 
function delays. The orchestration overheads, as estimated by 
the functions in Table 2, are extracted and presented in Figure 
7, by extracting the n×Tfunctiondelay from the function. In this 
case the observed overhead does not depend on the inner delay 
of each function, so we can better observe the pure total 
orchestration overhead.  
Finding 3: The borderline value of 40 functions for the NR-NR 
mode in the cold start case is considerably high given the 
current landscape of FaaS applications[2]. On the other hand, 
in warm executions the NR-NR mode is always better. 
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Figure 6: Usage of the estimated function to predict total 
time for different sequences of functions and inner 
function delays without the cold start penalty 
However this low function usage per application might also be 
limited by the capabilities of the available design and 
development environments of current FaaS platforms. For the 
OW-NR case, the extrapolated boundary is around 60+ 
functions in the warm case. 

Figure 7: Estimated Orchestration overheads in absolute 
times after subtracting the n×Tfunctiondelay part from Ttotal  

5.4 Model Validation 
The created model was based on executions of 1000 millisecond 
functions from 1-25 functions with a step of 5. In order to 
validate whether it has the ability to be used for cases that have 
not been measured, we created a validation set consisting of 
extra executions for numbers of functions with inner delays of 
1000 milliseconds ranging from 30-50 with a step of 5, as well 
as functions with inner delays of 100 and 200 milliseconds for 
the whole sequence size (1-50). The maximum value of 50 
functions was selected since this is the maximum supported by 
the Openwhisk Sequence Operator. Each execution was 
performed for 40 times and the average of the response times 
was compared to the predicted one from the models of Table 2.  

The results of the Percentage error of the estimation 
of the orchestration times per validation point and mode 
appear in Figure 8. In this calculation, we have extracted the 
known delays (n×Tfunctiondelay) so that the percentage of error is 
calculated on the actual orchestration time, without the size of 
the artificial delay affecting it. Accumulatively, OW-OW mode 
has a Mean Absolute Percentage Error (MAPE) of 8.4%, NR-NR 
of 19.88% while OW-NR an error of 6.2%. 
Finding 4: A simple linear model can be used in this case, given 
the absence of more complex parameters like interference. The 
model tends to overestimate the orchestration delays, a factor 
leading to safer executions (from not violating QoS constraints 
point of view). This overestimation happens primarily for the 
NR-NR mode which has the minimum absolute overheads. 
Thus a small deviation in the model results in a large 
percentage error.  

     Figure 8: Percentage Error of the orchestration part 
prediction in validation points for the model accuracy  

Another way of representation, related also to the 
function execution time, appears in Figure 9, by utilizing the 
functions of Table 2. In this case, the orchestration overhead 
(Ttotal-n×Tfunctiondelay) is presented as a percentage of the actual 
useful function execution time (n×Tfunctiondelay).  
Finding 5: In many cases, the overheads may reach up to 250% 
of the useful computational time (in the case of OW-NR and 
small function delays). In most cases of the OW-OW mode, the 
percentage is higher than 100% (in lower function delays) while 
a typical range of orchestration overheads is between 10 and 
20% for larger function delays. This would be even worse in 
cases where the executions were not only warm ones. The NR-
NR mode presents the greatest benefits, having under 10% from 
as low as 10 functions in the sequence and even for small 
function delays of 100 and 200 milliseconds, with a minimum 
of 0.29% for 100 functions in the 1000 millisecond case.  

Figure 9: Estimated orchestration overheads in warm 
executions as percentage of the useful computational 
time of the workflow (n×Tfunctiondelay)  
All the data from the experiments have been made available12, 
along with the Jmeter clients. 

 6 Conclusions 
As a conclusion, orchestration delays, primarily with relation 
to the time needed for coordinating execution and passing 
outputs from one function to the next, can become a large 
overhead for the execution of large function workflows. At 
many investigated points, and for specific orchestration 
mechanisms, this overhead may even be higher, as a 
percentage, from the actual execution time of the functions, in 

12 Data and Load files are available at: 
https://github.com/pekoto4349/measurements 
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case of linking together small pieces of code. A number of take-
aways can be extracted from this work: 
-OW orchestration time is primarily due to the warm container
reuse time. In other cases (cold or prewarm executions) this
would be even higher. This delay is unavoidable since in this
mode we are not able to implement both orchestration and 
function logic in the executing container.
-The proposed orchestration through Node-RED enables the
combination of orchestration logic and function execution in
the same container. This aids in minimizing the needed 
containers, the setup of which is the largest part of the
orchestration delay.
-Orchestration to external functions (OW-NR) should only be
used in cases of large parallelization needs, such as a Fork Join
pattern. In all other cases, it assembles the worst features of
both approaches, performance wise. 
-Baseline times, although examined at simple function chains, 
can be used in simulations of more complex workflow 
structures for the modes that support them (NR-NR and OW-
NR), since they represent the time needed for completing a 
function hop. Consideration for other phenomena, e.g. number
of cold starts, should be incorporated in such an analysis. 
-Enabling easier orchestration, both functionally and 
performance-wise, can help increase the observed typical
number of functions (as reported by [2]) and lead to more
sophisticated FaaS workflows. Using combinatorial
orchestrator and execution environments can aid in
minimizing the significant orchestration delays of such
workflows. 

In order to enhance reproducibility, all relevant 
artefacts (docker images, delay flows, jmeter clients and final 
output data) have been made available as indicated in each 
section. For the future, the investigation of the orchestration 
overheads will be extended to take under consideration diverse 
traffic conditions. Moreover, embedding intelligence in the 
combined environment itself could help determine in which 
cases the orchestration should adapt to different calling modes. 
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