
Measuring Baseline Overheads in Different Orchestration
Mechanisms for Large FaaS Workflows

George Kousiouris
 Dept. of Informatics

 Harokopio University
Athens, Greece

 gkousiou@hua.gr

Chris Giannakos
Dept. of Informatics

 Harokopio University
Athens, Greece

chrisgiannakoss@hua.gr

Konstantinos Tserpes
Dept. of Informatics

 Harokopio University
Athens, Greece
 tserpes@hua.gr

 Teta Stamati
 Dept. of Informatics

 Harokopio University
Athens, Greece
 teta@hua.gr

ABSTRACT
Serverless environments have attracted significant attention in
recent years as a result of their agility in execution as well as
inherent scaling capabilities as a cloud-native execution model.
While extensive analysis has been performed in various critical
performance aspects of these environments, such as cold start
times, the aspect of workflow orchestration delays has been
neglected. Given that this paradigm has become more mature
in recent years and application complexity has started to rise
from a few functions to more complex application structures,
the issue of delays in orchestrating these functions may
become severe. In this work, one of the main open source FaaS
platforms, Openwhisk, is utilized in order to measure and
investigate its orchestration delays for the main sequence
operator of the platform. These are compared to delays
included in orchestration of functions through two alternative
means, including the execution of orchestrator logic functions
in supporting runtimes based on Node-RED. The delays
inserted by each different orchestration mode are measured
and modeled, while boundary points of selection between each
mode are presented, based on the number and expected delay
of the functions that constitute the workflow. It is indicative
that in certain cases, the orchestration overheads might range
from 0.29% to 235% compared to the beneficial computational
time needed for the workflow functions. The results can extend
simulation and estimation mechanisms with information on
the orchestration overheads.

CCS CONCEPTS

General and reference➝ Cross-computing tools and
techniques➝ Measurement •General and reference➝
Cross-computing tools and techniques➝
Performance•Computer Systems

Organization➝Architectures➝Distributed
Architectures➝Cloud computing

KEYWORDS
Serverless, FaaS, Openwhisk, Orchestration, Performance,
Overhead

ACM Reference format:

George Kousiouris, Chris Giannakos, Konstantinos Tserpes and Teta
Stamati, 2022, Measuring Baseline Overheads in Different
Orchestration Mechanisms for Large FaaS Workflows. In Companion of
the 2022 ACM/SPEC International Conference on Performance
Engineering (ICPE ’22), April 9–13, 2022, Bejing, China. ACM, New York,
NY, USA, 8 pages. https://doi.org/10.1145/3491204.3527467

1 Introduction
Serverless computing has emerged as a promising alternative
execution model within cloud computing, promising better
utilization of underlying resources, easier and inherent
scalability as well as agnostic management. One specialization
of the serverless paradigm, the Function as a Service [1]
approach, aims to apply the serverless scope also in the way
application logic is created, embedded and executed. The logic
needs to be split up in smaller chunks of code, namely
functions, that are in principle stateless. A series of functions
may collaborate in a workflow (together as well as with
external services) in order to implement the end to end logic
needed by the application layer.

At the moment, as indicated by related reviews [2], the size
of FaaS applications is rather small, indicating that
approximately 82% of them have only up to 5 functions in the
workflow. New tooling that is available for the domain, in
terms of inherent orchestration mechanisms of the various
platforms, as well as the hype around the domain may lead to
more complex application flows creation. Recent research
attempts have highlighted new and more versatile
orchestration means [3] based on additional layers of
orchestrators that can mitigate functional drawbacks of current
FaaS platforms, offering visual design and implementing
workflows of functions with support for more complex
workflow primitives and subflow groups.

One of these solutions is the PHYSICS Design
Environment1, utilizing the IoT originating Node-RED tool.

1 https://physics-faas.eu/

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. Copyrights for components of this work owned by others
than the author(s) must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from Permissions@acm.org.

ICPE '22 Companion, April 9–13, 2022, Bejing, China

© 2022 Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9159-7/22/04$15.00
https://doi.org/10.1145/3491204.3527467

HotCloudPerf 2022 ICPE ’22 Companion, April 9–13, 2022, Bejing, China

61

The latter is a visual, functional programming, event driven
framework for application development. Due to the existence
of a sophisticated runtime (based on node.js), its asynchronous
nature as well as abundance of ready-made functional nodes, a
Node-RED flow can be easily created and act as an orchestrator
of functions that are executed on a FaaS platform. The
functions can execute either inside the Node-RED runtime or
can be invoked through relevant clients of the FaaS platform.

The contribution of this paper is to investigate and measure
the performance overheads between primarily the Openwhisk
built-in sequence operator and the Node-RED based
orchestration mechanisms and compare the delays inserted by
each orchestration mode. The delays can be due to
initialization times of the orchestration logic or due to the
inter-function invocation delays needed for passing through
each step of the workflow. Then the orchestration overhead
can be compared to the actual useful computational time of the
workflow and one mode or the other can be selected based on
the anticipated size and computational time needed for the
workflow. The results may be useful in extending simulation
models for FaaS applications so that the latter take
orchestration overheads under consideration.

The rest of the paper proceeds as follows. In Section 2,
related work is examined with relation to the work presented
in this paper. Section 3 describes the orchestration mechanisms
taken under consideration, while Section 4 introduces the
measurement methodology and experiment setup. Section 5
presents the measurements and analysis of the results in order
to model the time delays. Finally, Section 6 concludes the
paper.

2 Related Work
A number of works [4,5] indicate the need for enhanced
tooling for function grouping, reuse and composition in
Function as a Service platforms. However, this also needs the
ability to interact between these groups through appropriate
orchestration mechanisms [6]. From the main open source FaaS
platforms, Openwhisk2 natively supports only a sequence
operator at the runtime level [7]. Relevant add-ons such as the
IBM Composer3 exist, including an extended set of
orchestration primitives, in the form of a code library [8]. For
other open source platforms such as OpenFaaS, external
plugins are also available (e.g. FaaS-flow4), that follow a similar
approach, supporting more complex workflow primitives in a
code-like manner. In this case the orchestrating code is by itself
executed as a function. TriggerFlow [10] is an add-on
mechanism that supports different workflow primitives, as well
as eventing mechanisms.

From a visual workflow creation point of view,
Kubeflow [9] includes a relevant language for pipeline
definition and an editor extension for visual definitions of

2 Apache Openwhisk, Available at: https://openwhisk.apache.org/
3 Apache Openwhisk Composer, Available at:
https://github.com/apache/openwhisk-composer.
4 Faas-flow orchestrator for OpenFaaS, Available at: https://github.com/s8sg/faas-
flow

workflows. The defined workflow resembles more to a static
definition of steps, without a respective runtime, orchestrating
the execution of one task after the other, while the inputs and
outputs are passed through external object storage services.
AWS Step functions supports visual programming style and
extended operators for function workflows (e.g. state
management ones). Google Cloud Functions5 are based on text
based yaml files for the definition of a workflow. The same
yaml approach applies for the AFCL approach presented in
[15]. In general yaml based approaches can become very
complex when the size or connections in the workflow scale,
although in this case the solution comes also with a rich set of
available constructs that can significantly speed up application
creation.

[14] has moved the execution of scientific workflows to a
FaaS model with Hyperflow and compares it to the traditional
IaaS approach from a cost point of view, not covering however
orchestration delays in particular. The paper proposes a
number of architecture alternatives for workflow orchestration,
with the Direct Executor variation (the main flavor used in its
experimentation) being very similar to one of the variations we
measure in this paper (the OW-NR mode described in Section
3). In [16], SWEEP acts as a workflow management system and
language, executed as a server, thus may present scaling
limitations if all workflows need to be regulated through a
central instance. In terms of workflow primitives, it supports
an increased number of them as well as the ability to handle
both function and container execution. The overheads
examined in this case relate to AWS API throttling or
invocation retry aspects in case of failures.

What is evident from the related work is that a number of
orchestrating options are currently available in FaaS platforms,
however the performance footprint of these has not been
extensively investigated. Orchestration overheads intersect two
out of the 3 performance challenges identified in [11], namely
the request overheads and the function lifecycle management
aspects. One exception investigating performance issues in
depth is Netherite [18], in which a distributed execution engine
is presented. Netherite applies speculation for minimizing
delays from state management, which aids in increasing the
orchestration throughput and workflow latency.

In [8], a performance analysis is conducted for fork-join
executions between Amazon Step Functions, Azure Durable
Functions and IBM Composer, in the form of overheads from
multiple concurrent executions. The most similar to our work
is [12], in which the pure orchestration needs are measured in
sequences of operations for the same providers as [8].
Interesting findings are reported with relation primarily to the
state transition delays affected by the function input size and
how this affects the total overhead. Other approaches
investigate more futuristic implementations deploying the
orchestrators at the Smart NIC level, for minimizing latency in
function orchestrations [13]. Beldi [17] is a library and runtime
system for supporting stateful serverless functions. It can be

5Google Cloud Functions Workflow Specification, Available at:
https://cloud.google.com/functions/docs/tutorials/workflows.

HotCloudPerf 2022 ICPE ’22 Companion, April 9–13, 2022, Bejing, China

62

combined with this work in an effort to include state
management operations in the orchestration overheads
investigation.

In the context of this work, the PHYSICS Design
environment, suggested by [3], utilizes the Node-RED
framework in order to support visual editing of functions as
well as workflows packaged and executed as functions on
target FaaS platforms (mainly Openwhisk). In this manner, any
workflow primitive that can be constructed through
appropriate message handling in the runtime can be
implemented and piggy back on the Node-RED workflow
specification. Invoked functions can be external ones or
internal ones included in the runtime. It also enables the
grouping and reuse of function flows (in the form of patterns)
that can be used for creation of workflow primitives and an
abundance of IoT-related nodes.The specific approach is very
adaptable to a variety of scenarios, including Edge/Cloud
collaborations for data collection. A complete analysis of the
reasons behind the selection of Node-RED as the main
orchestrator for the PHYSICS platform can be found in [19].

3 Orchestration and Execution Variations
The first observed mode as mentioned in the Introduction is
the sequence operator for OpenWhisk (OW) runtime functions.
This targets workflows that are defined as function sequences
directly in OpenWhisk, utilizing registered (to OpenWhisk)
functions as their main building block (Figure 1a).
Selection rationale: this mode was selected since it is the
simplest one, involving only native mechanisms

The second mode is a function sequence in Node-
RED (NR), executed as a docker action in OpenWhisk (Figure
1b). The main difference in this case is that the function
workflow is created in Node-RED and deployed within a
custom docker image (invoked as a function) that contains the
Node-RED runtime. Openwhisk supports black box images to
be executed as functions. In this case all the functions reside
and execute inside the same environment container.
Selection rationale: This mode was selected since the runtime
can act as an orchestrator as well as a function execution
environment.

This mode has a disadvantage from a parallelization
point of view in a general usage context. Its main advantage is
the fact that it includes a complete runtime, that has message
tracking abilities, and thus it is able to apply more complex
workflow primitives like Fork-Join patterns6. Furthermore,
function subflows can be grouped and reused, while IoT nodes
can extend data collection and collaboration with external
systems.

Given that we can expect a significant delay in the
start-up of the Node-RED environment, the purpose is to
investigate what (and if there) is the benefit of one mode
versus the other compared to the number and duration of the
functions that are part of the sequence. The motivation behind

6 Split Join Node-RED pattern, available at:
https://flows.nodered.org/flow/7a5acfc999b1ad47bb32b5d37419c777

this is the fact that inter-function communication (ifc) times in
the sequence will probably differ between the two cases of
execution, which may create a margin of exploitation of one
mode over the other.

This is reasonable to assume, given that in a native
OW sequence, the invocation from one function to another
needs to pass through the respective OW mechanism, the new
action invocation to be queued, and a container found for
execution (in all potential variations such as cold or warm). On
the other hand, in the Node-RED Action Image, the invocation
is passed between the functions inside the Node-RED runtime
without the need to find further containers (reused or new
ones). In the case of multiple users, the OW runtime may also
be forced to cold start more given that each function needs a
separate container. In the context of this work this parameter is
not investigated, however container reuse delays for the warm
executions are also expected.

A third option is also possible, that is having an
orchestration flow inside NR that invokes typical functions,
deployed in any manner in the Openwhisk environment. In
this case the NR flow acts as a generic orchestrator, while we
can apply parallelization if applicable (e.g. in the Fork Join
case). This mode of orchestration (Figure 1c) is expected to
have higher orchestration delays, since it needs to invoke the
OW interface. It also suffers from a double billing issue
(similarly to the IBM Composer, FaaS-flow and Hyperflow
approaches of Section 2) since the coordinating Action needs to
execute for the overall duration of the workflow execution. On
the other hand, it supports any type of workflow primitive.
Selection rationale: This mode was selected since it resembles
more the architecture of typical orchestrator alternatives
examined in the related work, in which orchestrator functions
are only used for coordination.

 A summary of the various approaches is included in Table
1.
Table 1: Summary of different orchestration modes

Mode Execut

ion

Enviro

nment

Orchestr

ation

Environ

ment

Advantages Disadvantages

OW-

OW

OW

node.js

image

OW

Sequence

Low cold start, any

combination of

execution images

Simple

sequences only

NR-

NR

Custo

m NR

action

image

NR

runtime

Arbitrary workflow

primitives, IoT

adaptation

High cold start,

execution in a

specific type of

image

OW-

NR

OW

node.js

image

NR

runtime

Arbitrary workflow

primitives, actual

parallelism inside

the flow, any

execution image,

IoT adaptation

Double billing

for the

orchestration

action, higher

cold start

delays, more

interactions

HotCloudPerf 2022 ICPE ’22 Companion, April 9–13, 2022, Bejing, China

63

Figure 1: Comparison of the architecture of the three
orchestration modes .

4 Experiment Description
4.1 Experiment Setup
Given that we want to measure the pure orchestration delays
between function invocations in the three modes, we need to
create a set of functions for which the execution delay is
known and set a priori (i.e. a sleep function). In this manner
one is able to measure the total execution time of the workflow
(Figure 2) and subtract from this the total delays of the function
executions (number of functions X inner sleep delay of each
function). The remaining time will be any initialization time as
well as the inter-function communication/orchestration delays
(ifc).

Figure 2: Measurement approach for the inter-function
communication/orchestration delays (ifc)

As mentioned in the Introduction, the aim is to
investigate the pure, baseline delays needed for transcending
from one function to the next. For this reason, we have strived

to reduce potential interferences from external factors that may
influence the total time of the execution. One of them is any
complications (e.g. cold starts) that may be caused by increased
traffic, higher to the number of warm containers available.
Therefore, only one client request was active at any given time.
All the experiments were performed in warm containers,
similarly to the approach in [12], in order to avoid cold start
delays. Furthermore, the client resided in the same node in
order to reduce any network latencies. The experiment was
executed on a local node (AMD Ryzen 3500, 6 GB RAM) ,
running Ubuntu 20.04.3 LTS, with Linux 5.13.0-28-generic
kernel and x86-64 architecture, Java version 11.0.13, Apache
Jmeter version 2.13.20180731, Docker version 20.10.7,
Openwhisk , Node-RED version v2.0.6 and Node.js version
v14.17.06

4.2 OW-OW mode
An artificial delay function has been created as a native
Javascript function (Snippet 1), accepting as a parameter the
milliseconds of delay to apply. This function is registered as a
nodejs function type in OpenWhisk (OW-OW case). The delay
is received as an input argument and is applied through a
setTimeout method. This in typical node.js environments may
not be accurate in terms of the final delay, since it needs to be
interpreted as the minimum delay to be asserted. However the
actual delay may be larger due to contention in the node.js
process. When the timer expires, the reactivation of the
function is pushed to the end of the FIFO event queue. So if the
event-loop has a large number of events, the reactivation may
delay further than the desired delay. However, in cases such as
our measurement, in which there were no other functions
contending inside the same node.js process, there was no
measured difference between the desired and the set value.
Observation: The specified delay implementation should be
applied only in non congested nodejs eventloops.
Snippet 1: Delay function for the node.js action
function main(params) {

 return new Promise(function(resolve, reject) {
 setTimeout(function() {
 resolve(params);
 }, params.delay);

 })
 }

Parametrically named sequences of varying numbers of
functions (e.g., 1-25 with a step of 5), were set up as
OpenWhisk function sequences, in order to be invoked by a
respective Jmeter client. Actions were exposed as web actions.
4.3 NR-NR mode
A similar function flow is created for Node-RED (Figure 3).
The core flow handles a control loop where delay and iteration
numbers are dynamically passed on as input variables during
the action invocation. This is needed to enhance experiment
automation, so that we can pass as arguments the number of
repetitions of the main delay loop, in order to simulate a flow
of n functions, each with the desired delay. The respective flow
should also be executable as an Openwhisk function, which

HotCloudPerf 2022 ICPE ’22 Companion, April 9–13, 2022, Bejing, China

64

means it needs to abide by the respective interface of the latter
(one POST /init method and one POST /run method). The
function node in the middle subflow extracts parameters from
the incoming message and passes them through the msg.delay
and msg.iterations fields. The whole process is iterated until
the number of needed delays are met.

Figure 3: Node-RED Workflow implementation for
dynamic delay and iterations (NR-NR mode)

A docker image with the Node-RED delay flow was
created and registered as an OpenWhisk Docker Action for the
NR-NR case. The image is available on dockerhub7. The delay
flow is also available as a standalone flow8.
4.4 OW-NR mode
For the hybrid case, the purple NR delay node of the previous
figure has been replaced by the Openwhisk Node-RED client
node9 that contacts the basic node.js delay action of the OW-
OW case. Thus in this case the orchestration is performed
through the Node-RED action flow but the actual execution is
performed by a native node.js Openwhisk function. The
respective image has also been made available on dockerhub10
and is reusable provided that the credentials for an existing
Openwhisk installation are renewed.Jmeter clients have been
created that invoke both actions (OpenWhisk sequence with
delay input parameter and Node-RED action with delay and
delay loops parameters). Loops to implement multiple
parameter values are applied in the Jmeter files to measure all
the needed combinations automatically.

5 Obtained Measurements and Analysis
5.1 Initial Data Collection
Initially, a set of measurements were performed for 1 to 25
functions, with a step of 5, and a set delay for 1000 milliseconds
for each function of the sequence. Each execution was
performed 40 times and the average of each case was extracted.
Total response times of the three modes appear in Figure 4. For
one warm function execution the execution time is
approximately the same for the two modes. However, the more
functions that are being included and executed (as a sequence)
the more the average tends to be lower for the NR-NR case.

7 https://hub.docker.com/r/pekoto/noderedaction
8https://flows.nodered.org/flow/f0795ad9f25ad2affcadb8deb305fdf3/in/VOf-
0UrN5e2j
9 https://flows.nodered.org/node/node-red-node-openwhisk
10 https://hub.docker.com/r/pekoto/owmode3

Given that the inner delay of each function in the
sequence is the same, the main source of differentiation is the
inter-function communication delay. The averaged per
function orchestration delay appears in Figure 5. For example
in the NR-NR mode case, on 15 Functions we get 15148 ms
average execution time. From this value we extract the static
delay of each function (15×1000 milliseconds) and the
remaining part is divided by the number of functions used in
the specific case (15 functions). This indicates the average time
spent between function calls in each mode, as well as any
initialization delays in the first call. The fact that Node-RED ifc
times per function appear higher in lower function numbers
and then start to get lower can be attributed to the fact that
any initialization times (not cold starts, since all the executions
are warm, but any delays in argument passing, reuse of warm
container delays etc.), are divided between the number of
functions. Thus, when function numbers are low, the effect of
this initial delay is higher and diminishes as the number of
functions grows, since it is averaged on them.

Figure 4: Total Response Times of the different modes
for varying number of functions in the sequence and a
static delay of 1000 milliseconds for each function delay
Finding 1: From Figure 5, it is evident that we can use the
average overhead per function time for the OW case, given
that this is independent of the number of functions used.
However, for the NR-NR and OW-NR cases, the initialization
time significantly affects the average produced, as the number
of functions grows.
Thus to have a more accurate approach, we need to estimate
the ifc time (Tifc) from the acquired measurements and split it
from any initialization time (Tinit).

Figure 5: Average orchestration delay per function
sequence size

1 5 10 15 20 25

OW-OW 1119 5582 11177 16740 22321 27882

NR-NR 1121 5136 10132 15162 20149 25153

OW-NR 1225 5723 11334 16964 22541 28147

0

5000

10000

15000

20000

25000

30000

Ti
m

e
 (

m
s)

Mode Comparison

Function-1 Function-5 Function-10 Function-15 Function-20 Function-25

OW-OW 119 116.4 117.7 116 116.1 115.3

NR-NR 121 27.2 13.2 10.8 8 7

OW-NR 225 144.6 133.4 130.9 127.1 125.9

0

50

100

150

200

250

Ti
m

e
 (

m
s)

IFC Graph

HotCloudPerf 2022 ICPE ’22 Companion, April 9–13, 2022, Bejing, China

65

5.2 Model Estimation of the parameters for Tinit and
Tifc

 The Pearson correlation coefficient for the dataset is 0.9105,
indicating a strong linear relationship. Thus we can use a
simple line to detect the dependency of the total flow delay
time from the initialization times, intermediate function delays
and inter function communication, defined as follows:
Ttotal=Tinit+n×(Tfunctiondelay+Tifc)
where:

● Tinit is any initial environment or other initialization
time happening once

● Tfunctiondelay = preset sleep delay of each function in
the sequence,

● n = number of functions (in sequence)
● Tifc = inter-function communication, the delay

needed to go from one function to the next. It is kept
as n and not (n-1) that are the number of links in an
n-sequence since we consider that in this way the Tifc

can model any repetitive actions needed in each step,
including the first step. These, for example, can be
warm container reuse times for the OW-OW and
OW-NR cases that are needed in each function
invocation. In the case of NR-NR it would include
only the time needed in the Node-RED runtime to
pass from one function to the next

From the experiments, the total delays Ttotal are known, the
delay of each function is set and known as well as the n used in
each case. Given that we have measurements for different
values of n we can apply a simple regression to estimate the
parameters Tinit and Tifc. The previous equation can be
transformed to:
Ttotal-n× Tfunctiondelay =Tinit+n× Tifc or Y=a×x+b
where x is the number of functions in the sequence and the
coefficients are the Tifc (a) and Tinit (b). The curve fit can be
optimized via a typical method such as the ordinary least
squares ols function11 of GNU Octave, giving the values of
128.36 for Tinit and 1.69 for the Tifc (in the millisecond range)
for the NR-NR case.

In a similar fashion, for the OW-OW mode, we have
a reverse effect, the Tinit is set at 2.11 and the Tifc at 118.84.
The latter was expected since the individual values are very
similar and close to the average value of the ifc graph and
indicates the fact that we need increased initialization in each
step.
Finding 2: In the OW-OW case, the similarity between the
initialization time of the model and the time needed for 1
function indicates that the majority of the delay refers to the
need to set up a (warm) container for the next function in the
sequence.
For the OW-NR case, we have a similarly large initialization
time to the NR-NR case for the orchestration logic in the area
of 114 milliseconds, while due to the need for external

11 https://octave.sourceforge.io/octave/function/ols.html

invocations to the OW environment for each action execution
we need an extra 121 milliseconds per function step.

The above times can be off-set by the estimated
difference in the cold case. For the NR-NR case the difference
between a cold and a warm start was measured at 7.373
seconds, and for the OW-OW case at 2.248 seconds. These
times can be added as penalties in the final function, appearing
in Table 2.
Table 2: Estimated Parameters for Tifc and Tinit

Mode Warm Function Sequence Execution

(ms)

Cold Penalty

(ms)

OW-

OW

Ttotal=2.11+n×(Tfunctiondelay+118.94) +2248

NR-NR Ttotal=128.36+n×(Tfunctiondelay +1.69) +7373

OW-NR Ttotal=114.08+n×(Tfunctiondelay + 121.70) +9621

5.3 Extrapolation of model estimation
From the aforementioned functions we can easily create
parameterized plots for different function sequences and inner
function delays, to observe how the estimated total execution
differs for different function numbers and delays (Figure 6).
Indicatively, in some cases (e.g., OW-OW with 100 ms inner
function delay) the orchestration delay per function is higher
than the actual computation needed inside the function (100
ms), leading to overheads being over 50% of the total time. In
the case of OW-NR, the behavior is in most cases dominated by
the large inter-function communication time due to the need to
trigger the external OW action for the execution. Since this is
very similar to the action triggering in the OW-OW case, the
graphs of the two modes significantly overlap for similar inner
function delays. The orchestration overheads, as estimated by
the functions in Table 2, are extracted and presented in Figure
7, by extracting the n×Tfunctiondelay from the function. In this
case the observed overhead does not depend on the inner delay
of each function, so we can better observe the pure total
orchestration overhead.
Finding 3: The borderline value of 40 functions for the NR-NR
mode in the cold start case is considerably high given the
current landscape of FaaS applications[2]. On the other hand,
in warm executions the NR-NR mode is always better.

0

20000

40000

60000

80000

100000

120000

0 20 40 60 80 100 120

T
(m

s)

n

Function Sequene Execution (Warm)

OW-OW-delay 100

OW-OW-delay 200

OW-OW-delay 500

OW-OW-delay 1000

NR-NR-Delay 100

NR-NR-delay 200

NR-NR-delay 500

NR-NR-delay 1000

OW-NR - delay 100

OW-NR - delay 200

OW-NR - delay 500

OW-NR - delay 1000

HotCloudPerf 2022 ICPE ’22 Companion, April 9–13, 2022, Bejing, China

66

Figure 6: Usage of the estimated function to predict total
time for different sequences of functions and inner
function delays without the cold start penalty
However this low function usage per application might also be
limited by the capabilities of the available design and
development environments of current FaaS platforms. For the
OW-NR case, the extrapolated boundary is around 60+
functions in the warm case.

Figure 7: Estimated Orchestration overheads in absolute
times after subtracting the n×Tfunctiondelay part from Ttotal

5.4 Model Validation
The created model was based on executions of 1000 millisecond
functions from 1-25 functions with a step of 5. In order to
validate whether it has the ability to be used for cases that have
not been measured, we created a validation set consisting of
extra executions for numbers of functions with inner delays of
1000 milliseconds ranging from 30-50 with a step of 5, as well
as functions with inner delays of 100 and 200 milliseconds for
the whole sequence size (1-50). The maximum value of 50
functions was selected since this is the maximum supported by
the Openwhisk Sequence Operator. Each execution was
performed for 40 times and the average of the response times
was compared to the predicted one from the models of Table 2.

The results of the Percentage error of the estimation
of the orchestration times per validation point and mode
appear in Figure 8. In this calculation, we have extracted the
known delays (n×Tfunctiondelay) so that the percentage of error is
calculated on the actual orchestration time, without the size of
the artificial delay affecting it. Accumulatively, OW-OW mode
has a Mean Absolute Percentage Error (MAPE) of 8.4%, NR-NR
of 19.88% while OW-NR an error of 6.2%.
Finding 4: A simple linear model can be used in this case, given
the absence of more complex parameters like interference. The
model tends to overestimate the orchestration delays, a factor
leading to safer executions (from not violating QoS constraints
point of view). This overestimation happens primarily for the
NR-NR mode which has the minimum absolute overheads.
Thus a small deviation in the model results in a large
percentage error.

 Figure 8: Percentage Error of the orchestration part
prediction in validation points for the model accuracy

Another way of representation, related also to the
function execution time, appears in Figure 9, by utilizing the
functions of Table 2. In this case, the orchestration overhead
(Ttotal-n×Tfunctiondelay) is presented as a percentage of the actual
useful function execution time (n×Tfunctiondelay).
Finding 5: In many cases, the overheads may reach up to 250%
of the useful computational time (in the case of OW-NR and
small function delays). In most cases of the OW-OW mode, the
percentage is higher than 100% (in lower function delays) while
a typical range of orchestration overheads is between 10 and
20% for larger function delays. This would be even worse in
cases where the executions were not only warm ones. The NR-
NR mode presents the greatest benefits, having under 10% from
as low as 10 functions in the sequence and even for small
function delays of 100 and 200 milliseconds, with a minimum
of 0.29% for 100 functions in the 1000 millisecond case.

Figure 9: Estimated orchestration overheads in warm
executions as percentage of the useful computational
time of the workflow (n×Tfunctiondelay)
All the data from the experiments have been made available12,
along with the Jmeter clients.

 6 Conclusions
As a conclusion, orchestration delays, primarily with relation
to the time needed for coordinating execution and passing
outputs from one function to the next, can become a large
overhead for the execution of large function workflows. At
many investigated points, and for specific orchestration
mechanisms, this overhead may even be higher, as a
percentage, from the actual execution time of the functions, in

12 Data and Load files are available at:
https://github.com/pekoto4349/measurements

0

5000

10000

15000

20000

25000

0 20 40 60 80 100 120

Ti
m

e
 (

m
s)

Number of Functions

Orchestration Overheads

OW-OW (warm)

OW-OW (cold)

NR-NR (warm)

NR-NR (cold)

OW-NR (warm)

OW-NR (cold)

-10

0

10

20

30

40

50

60

0 5 10 15 20 25 30

%

Validation Cases

Percentage Error Estimation of Pure Orchestration Times

OW-OW Error

NR-NR Error

OW-NR Error

0

50

100

150

200

250

1 10 20 30 40 50 60 70 80 90 100

%

Number of Functions

Orcherstration Overhead Percentages

OW-OW - delay 100

OW-OW - delay 200

OW-OW - delay 500

OW-OW - delay 1000

NR-NR - delay 100

NR-NR - delay 200

NR-NR - delay 500

NR-NR - delay 1000

OW-NR - delay 100

OW-NR - delay 200

OW-NR - delay 500

OW-NR - delay 1000

HotCloudPerf 2022 ICPE ’22 Companion, April 9–13, 2022, Bejing, China

67

case of linking together small pieces of code. A number of take-
aways can be extracted from this work:
-OW orchestration time is primarily due to the warm container
reuse time. In other cases (cold or prewarm executions) this
would be even higher. This delay is unavoidable since in this
mode we are not able to implement both orchestration and
function logic in the executing container.
-The proposed orchestration through Node-RED enables the
combination of orchestration logic and function execution in
the same container. This aids in minimizing the needed
containers, the setup of which is the largest part of the
orchestration delay.
-Orchestration to external functions (OW-NR) should only be
used in cases of large parallelization needs, such as a Fork Join
pattern. In all other cases, it assembles the worst features of
both approaches, performance wise.
-Baseline times, although examined at simple function chains,
can be used in simulations of more complex workflow
structures for the modes that support them (NR-NR and OW-
NR), since they represent the time needed for completing a
function hop. Consideration for other phenomena, e.g. number
of cold starts, should be incorporated in such an analysis.
-Enabling easier orchestration, both functionally and
performance-wise, can help increase the observed typical
number of functions (as reported by [2]) and lead to more
sophisticated FaaS workflows. Using combinatorial
orchestrator and execution environments can aid in
minimizing the significant orchestration delays of such
workflows.

In order to enhance reproducibility, all relevant
artefacts (docker images, delay flows, jmeter clients and final
output data) have been made available as indicated in each
section. For the future, the investigation of the orchestration
overheads will be extended to take under consideration diverse
traffic conditions. Moreover, embedding intelligence in the
combined environment itself could help determine in which
cases the orchestration should adapt to different calling modes.

ACKNOWLEDGMENTS
The research leading to the results presented in this paper has
received funding from the European Union's Project H2020
PHYSICS (GA 101017047).

REFERENCES
[1] T. Lynn, P. Rosati, A. Lejeune, and V. Emeakaroha, “A

preliminaryreview of enterprise serverless cloud computing (function-as-a-

service)platforms,” in2017 IEEE International Conference on Cloud
ComputingTechnology and Science (CloudCom), pp. 162–169, IEEE, 2017

[2] Eismann, S., Scheuner, J., Van Eyk, E., Schwinger, M., Grohmann, J., Herbst,
N., Abad, C. and Iosup, A., 2021. The State of Serverless Applications:
Collection, Characterization, and Community Consensus. IEEE
Transactions on Software Engineering.

 [3] Kousiouris, G. and Kyriazis, D., 2021. Functionalities, Challenges and
Enablers for a Generalized FaaS based Architecture as the Realizer of
Cloud/Edge Continuum Interplay. In CLOSER (pp. 199-206).

[4] C. Abad, I. T. Foster, N. Herbst, and A. Iosup, “Serverless computing
(dagstuhl seminar 21201),” inDagstuhl Reports, vol. 11, SchlossDagstuhl-
Leibniz-Zentrum f ̈ur Informatik, 2021.

[5] P. Leitner, E. Wittern, J. Spillner, and W. Hummer, “A mixed-
methodempirical study of function-as-a-service software development in
indus-trial practice,”Journal of Systems and Software, vol. 149, pp. 340–
359,2019.

[6] F. Amato and F. Moscato, “Exploiting cloud and workflow patterns forthe
analysis of composite cloud services,”Future Generation ComputerSystems,
vol. 67, pp. 255–265, 2017.

[7] I. Baldini, P. Castro, P. Cheng, S. Fink, V. Ishakian, N. Mitchell, V.
Muthusamy, R. Rabbah and P. Suter, “Cloud-native, event-based
programming for mobile applications,” in Proc. of the International
Conference on Mobile Software Engineering and Systems, pp. 287–288,2016.

[8] Barcelona-Pons, P. Garcıa-Lopez, ́A. Ruiz, A. Gomez-Gomez,G. Parıs,
and M. Sanchez-Artigas, “Faas orchestration of parallel workloads,”
in Proc. of the 5th International Workshop on Serverless Computing,
pp. 25–30, 2019..

[9] E. Bisong, “Kubeflow and kubeflow pipelines,” in Building Machine
Learning and Deep Learning Models on Google Cloud Platform,
pp. 671–685, Springer, 2019.

[10] A. Arjona, P. G. Lopez, J. Sampe, A. Slominski, and L. Villard, “Trig-gerflow:
Trigger-based orchestration of serverless workflows,”Future Generation
Computer Systems, 2021.

[11] Erwin van Eyk, Alexandru Iosup, Cristina L. Abad, Johannes Grohmann,
and Simon Eismann. 2018. A SPEC RG Cloud Group's Vision on the
Performance Challenges of FaaS Cloud Architectures. In Companion of the
2018 ACM/SPEC International Conference on Performance Engineering
(ICPE '18). Association for Computing Machinery, New York, NY, USA, 21–
24. DOI:https://doi.org/10.1145/3185768.3186308

[12] López, P.G., Sánchez-Artigas, M., París, G., Pons, D.B., Ollobarren, Á.R. and
Pinto, D.A., 2018, December. Comparison of faas orchestration systems. In
2018 IEEE/ACM International Conference on Utility and Cloud Computing
Companion (UCC Companion) (pp. 148-153). IEEE.

[13] Nilanjan Daw, Umesh Bellur, and Purushottam Kulkarni. 2021. Speedo: Fast
dispatch and orchestration of serverless workflows. Proceedings of the ACM
Symposium on Cloud Computing. Association for Computing Machinery,
New York, NY, USA, 585–599. DOI:https://doi.org/10.1145/3472883.3486982.

[14] Malawski, Maciej, et al. "Serverless execution of scientific workflows:
Experiments with hyperflow, aws lambda and google cloud functions."
Future Generation Computer Systems 110 (2020): 502-514.

[15] Ristov, Sasko, Stefan Pedratscher, and Thomas Fahringer. "AFCL: An
abstract function choreography language for serverless workflow
specification." Future Generation Computer Systems 114 (2021): 368-382..

[16] John, Aji, et al. "SWEEP: accelerating scientific research through scalable
serverless workflows." Proceedings of the 12th IEEE/ACM International
Conference on Utility and Cloud Computing Companion. 2019..

[17] Zhang, Haoran, et al. "Fault-tolerant and transactional stateful serverless
workflows." 14th USENIX Symposium on Operating Systems Design and
Implementation (OSDI20), 2020.

[18] Burckhardt, Sebastian, et al. "Serverless workflows with durable functions
and netherite." arXiv preprint arXiv:2103.00033 (2021

[19] Kousiouris, G., Ambroziak, S., Costantino, D., Tsarsitalidis, S., Boutas, E.,
Mamelli, A. and Stamati, T., 2022. Combining Node-RED and Openwhisk for
Pattern-based Development and Execution of Complex FaaS Workflows.
arXiv preprint arXiv:2202.09683.

HotCloudPerf 2022 ICPE ’22 Companion, April 9–13, 2022, Bejing, China

68

