
Beauty and the Beast:
A Case Study on Performance Prototyping of Data-Intensive

Containerized Cloud Applications
Floriment Klinaku
University of Stuttgart
Stuttgart, Germany

klinaku@iste.uni-stuttgart.de

Martina Rapp
Jörg Henss

FZI Forschungszentrum Informatik
Karlsruhe, Germany
{rapp,henss}@fzi.de

Stephan Rhode
Robert Bosch GmbH
Renningen, Germany

stephan.rhode@de.bosch.com

ABSTRACT
Data-intensive container-based cloud applications have become
popular with the increased use cases in the Internet of Things
domain. Challenges arise when engineering such applications to
meet quality requirements, both classical ones like performance
and emerging ones like resilience. There is a lack of reference use
cases, applications, and experiences when prototyping such ap-
plications that could benefit the research community. Moreover,
it is hard to generate realistic and reliable workloads that exer-
cise the resources according to a specification. Hence, designing
reference applications that would exhibit similar performance be-
havior in such environments is hard. In this paper, we present a
work in progress towards a reference use case and application for
data-intensive containerized cloud applications having an industrial
motivation. Moreover, to generate reliable CPU workloads we make
use of ProtoCom, a well-known library for the generation of re-
source demands, and report the performance under various quality
requirements in a Kubernetes cluster of moderate size. Finally, we
present the scalability of the current solution assuming a particular
autoscaling policy. Results of the calibration show high variability
of the ProtoCom library when executed in a cloud environment.
We observe a moderate association between the occupancy of node
and the relative variability of execution time.

CCS CONCEPTS
• Software and its engineering→ Software performance; Soft-
ware architectures; Publish-subscribe / event-based architectures; •
Computer systems organization → Cloud computing.

KEYWORDS
cloud, elasticity, performance prototype, modelling
ACM Reference Format:
Floriment Klinaku, Martina Rapp, Jörg Henss, and Stephan Rhode. 2022.
Beauty and the Beast: A Case Study on Performance Prototyping of Data-
Intensive Containerized Cloud Applications. In Companion of the 2022

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICPE ’22 Companion, April 9–13, 2022, Bejing, China
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9159-7/22/04. . . $15.00
https://doi.org/10.1145/3491204.3527482

ACM/SPEC International Conference on Performance Engineering (ICPE ’22
Companion), April 9–13, 2022, Bejing, China. ACM, New York, NY, USA,
8 pages. https://doi.org/10.1145/3491204.3527482

1 INTRODUCTION
Containers [20] have become the de-facto standard for packaging
and deploying microservice-based applications in the cloud. A par-
ticular class of such applications continuously processes streams
of data generated by a variety of connected data-sources. The per-
formance of such applications is business-critical. In addition to
performance, elasticity and resilience have become two required
quality attributes to cost-efficiently handle disruptive events like
unexpected failures or changes in the demand.

Scaling non-trivial microservice-based applications remains a
challenge for service providers due to the uncertain cloud envi-
ronment. Achieving elasticity and resilience through an upfront
engineering process requires suitable prediction models. There is,
however, a lack of reference use cases, applications and experi-
ences matching the characteristics of data-intensive cloud appli-
cations that would allow researchers to evaluate their approaches.
Two prominent reference applications are proposed to foster re-
search of microservice-based cloud applications: TeaStore [24] and
SockShop [4]. Both serve more traditional use cases of classical
human-centered request-reply applications. They lack, however, a
processing pipeline of continuous data and also do not use asyn-
chronous messaging communication which is very popular in such
use cases. In addition, when prototyping such systems, it is hard to
generate realistic workloads that utilize the resources according to
a given specification (e.g., the time, that operations should consume
the CPU).

To tackle the aforementioned problems we present a work in
progress towards a reference use case and application for enabling
research for data-intensive containerized cloud applications. To
generate more reliable CPU workloads and to make the application
more predictable in terms of performance, we make use of Proto-
Com [8], a library for calibrating and generating CPU demands
on various hardware. In addition we present two different scal-
ing strategies for the defined application and present scalability
experiments to obtain a first assessment of the capabilities of the
application. Moreover, we investigate on the high variability of
the load generation approach as our initial results showed high
deviations from the expected response times.

The focus of this work is twofold: first, in Section 3, we introduce
the reference use case and present performance requirements and

HotCloudPerf 2022 ICPE ’22 Companion, April 9–13, 2022, Bejing, China

53

https://orcid.org/0000-0002-4760-5889
https://orcid.org/0000-0002-2703-0440
https://orcid.org/0000-0002-4527-211X
https://orcid.org/0000-0002-3662-0426
https://doi.org/10.1145/3491204.3527482
https://doi.org/10.1145/3491204.3527482

the chosen implementation stack; second, in Section 4, we show
the variability of the resource demand generation with ProtoCom
in a cloud environment, initial scaling variants for the use case and
experiments that show the scalability aspect of our microservice-
based implementation. In addition, Section 2 presents related work
and finally, Section 5 concludes the paper and provides an outlook
on future work.

2 RELATEDWORK
Our related work can be divided into two different categories. On
the one hand, several benchmarks have been developed as a refer-
ence for cloud applications and their performance. On the other
handmicrobenchmarking has been applied tomeasure the impact of
virtualized environments and to quantify the performance isolation
available in those. While we cannot solve these inherent problems,
developers must be aware of those effects affecting performance
and scalability in virtualized and containerized applications.

In [18] Nikounia et al. introduce the noisy neighbour problem,
an effect that can be observed in shared infrastructures where the
activity on a neighboring coremay lead to performance degradation.
They report on performance degradation of up to 16x slowdown in
virtualized environments. This is caused by noisy neighbour VMs,
overcommitment and hypervisor noise.

In [14] Laaber et al. present their findings on using microbench-
marking to assess the performance impact in virtualized environ-
ments. The authors performed several experiments on systems
deployed in public cloud environments and report on slowdown
effects ranging from 0.003% to > 100%. They state that several repe-
titions on several VM instances are required to get robust results
for microbenchmarks and to detect potential slowdowns.

In [16] Lehrig et al. present experiments conducted with the
ProtoCom library in a virtualized cloud environment. They show
that ProtoCom is well suited to emulate CPU demands realistically
when using a calibration based approach.

In addition to many benchmark and test application like Spring
PetClinic [5] or ACME Air [1], several academic case-study systems
have been developed in the past for evaluating the performance
of cloud and containerised systems: the Tea Store case-study [24]
presents a system for studying the performance of microservice-
based systems and has been enhanced with resilience and elasticity
in [23]. A similar microservices based benchmark using container
technologies, the Sock Shop, is presented in [4]. The CloudStore
application [15] is a reference application for comparing different
cloud providers, cloud service architectures, and assess cloud de-
ployment options. The TrainTicket benchmark [25] in addition
focuses on the fault-analysis of microservice-based applications.
All four case-study systems have in common that mostly request-
response semantics is employed. Asynchronous data-centric com-
munication patterns as typical found in IoT systems are missing.

3 RUNNING EXAMPLE
Before going into the implementation details of the running ex-
ample in Section 3.3, we will explain the considered use case, its
purpose and architecture in Section 3.1, and discuss performance
challenges in Section 3.2.

Cloud

Data Processing

Database
Device

Communication

Data Provider

save raw data load raw data

trigger: new
measurement arrived

trigger: preview, raw data

send converted data (json)

trigger: export
data

User

send vehicle CAN data

User Interface
and API

Device

Figure 1: Architectural snippet of remote measuring appli-
cation in mobility cloud suite.

3.1 Reference Use Case
The herein considered use case – called remote measuring – is a
fraction of one service package from the Bosch mobility cloud [10].
The mobility cloud is a cloud-based integration platform for devel-
oping and updating vehicle software and services. The services are
grouped into three packages: over-the-air services (update, function
call, essentials, vehicle data), data services (data integration, naviga-
tion, broker), and core services (service integration, application run
time, application marketplace). Remote measuring is one service
from the over-the-air vehicle data package. We consider parts of
remote measuring in the implemented running example and its
model representation.

The app remote measuring is designed for vehicle data acqui-
sition campaigns. Such cloud-based campaigns are beneficial in
vehicle development, fleet observation (e.g. tracking of failure codes
in a delivery car fleet), predictive diagnostics, and optimization of
spare part logistics in aftermarket business. Imagine a vehicle ho-
mologation task [17], where several vehicles must collect data from
test rides. Cloud-based remote measuring allows test engineers to
configure and conduct a signal measurement setup through web
services. Such a setup contains the number and kind of signals,
their recording frequency and recording triggers. The test engineer
starts the measurement through a web front end. Data is cached in
the car and pushed to the cloud, where the data is stored in a data-
base. Then, the data is converted and presented as dashboard, or
exported via an API for external applications. This is more flexible
and convenient in contrast to conventional workflows, where each
vehicle was equipped with a signal recorder, a laptop, and a test
engineer who configured the campaign, stored the data and fed it
into a data center afterwards.

Figure 1 explains the architecture of the running example remote
measuring. Starting in the lower left corner, one or more devices
(vehicles) send data from their vehicle bus (CAN bus [11]) to the
device communication service. This service tracks the readiness
of the device, caches data, stores the raw data in a data base, and
triggers the next service data provider. Once, a new batch of data
arrived, the data provider service triggers the data processing ser-
vice, which conducts data pre-processing and data compression. For

HotCloudPerf 2022 ICPE ’22 Companion, April 9–13, 2022, Bejing, China

54

this, the data processing fetches the raw data from data base. This
part of the use case is considered and implemented in the running
example.

The user interface and API on the right in Figure 1 are not
implemented in the running example but shown here to understand
the use case from end to end. The data processing triggers an export
service, which provides the converted data through API and triggers
a data dashboard. The API can be used for customized data analysis
on customer side.

3.2 Requirements and Performance Challenges
The remote measuring use case provides several challenges for de-
velopment and operations in the mobility cloud. These challenges
affect elasticity and resilience properties of the application in prac-
tice.

In regard to elasticity, the first challenge arises from broad range
of configuration options in data acquisition campaigns. These cam-
paigns may differ largely in terms of number of recorded vehicle
signals, their record frequency, and the number of devices itself. In
vehicle homologation, the number of connected devices is rather
small, but the number of considered signals is large. Add to this,
the data recording frequency in homologation is large and such a
campaign is usually triggered in parallel within a few days. This
results into single events where large amount of data is pushed into
the cloud from the test vehicles.

In contrast, in fleet observation the number of devices is large,
but the number of signals and their recording frequency are small.
Due to large number of devices, the accumulated load is large as
well, but during fleet observation, we assume that devices connect
to the cloud in a rather random and asynchronous profile.

The goal in both usage scenarios is to provide the remote measur-
ing service with acceptable response time for the customer. Hence,
remote measuring requires sufficient elasticity to cope with differ-
ent usage scenarios.

Add to this, the elasticity property of remote measuring deter-
mines another service level objective: the cloud costs. While under
provisioning causes unacceptable high response times for the users,
over provisioning causes high costs, which reduce the revenue
of the remote measuring service. Therefore, we search for opti-
mal elasticity property of remote measuring in development and
operations.

With respect to resilience, the homologation scenario requires
credible data handling to avoid data loss during expensive and elab-
orate vehicle test rides. Compared with fleet observation, data loss
during homologation would cause repetitions of test rides, which
can destruct project plans and time to market goals in vehicle devel-
opment projects. In addition, outage of remote measuring during
homologation usage would destroy user trust in the application.
Due to this, methods to design and test resilience of the applications
are of high importance.

3.3 Performance Prototype/Demonstrator
The remote measuring use case from Figure 1 was re-implemented
as performance prototype based on the Spring Boot 1 framework.

1https://spring.io/projects/spring-boot

Table 1: Example calibration run output

Time (ms) Iterations Time/Iterations
1,00 537389 1,86085E-06
2,00 1172345 1,70598E-06
4,00 2539921 1,57485E-06
7,97 5062500 1,57511E-06
15,85 10060004 1,5753E-06
25,73 16319999 1,57641E-06
63,44 40159726 1,57978E-06
126,68 79983883 1,58383E-06
234,10 148379031 1,57771E-06
541,72 316609902 1,71101E-06
1026,21 630079016 1,6287E-06

The components device communication, data provider, data pro-
cessing, and database were deployed as containers on an eight node
Kubernetes (K8s) 2 cluster on bwCloud 3, a state funded academic
cloud. The components use the ProtoCom 4 library to emulate CPU
demands.

All components and the database were connected through a
RabbitMQ 5 message broker, which runs on a dedicated node on
K8s cluster. The database was deployed as MongoDB 6 container.
The functionality of the devices was resembled by Gatling 7 load
generator. Gatling was used to define load profiles for the system.
A load profile consists of the number and the ramp up time of the
connecting devices, and frequency and size of sent data. Gatling
was deployed as container on a dedicated node in K8s.

Several experiments were conducted with different load pro-
files. Each experiment was triggered as K8s job and the results
from Gatling were stored together with monitoring data from
Prometheus 8 for following analysis.

4 PERFORMANCE VARIABILITY OF
RESOURCE DEMAND GENERATION

As described previously, to emulate processing of messages in the
different services (e.g., the data processing service) each microser-
vice uses ProtoCom. ProtoCom requires a low contention calibra-
tion phase to determine the input for a particular algorithm (say
Fibbonaci number computations) to put load on the CPU for a given
time amount (e.g., consume the CPU for 0.2 CPU-seconds). The
results of the calibration are stored in a model as shown in Table 1
which contains the approximated input parameter associated with
their individual execution times. Every other resource demand is
generated by composing these demands. Since the calibration pro-
cess consumes time (around 20 minutes for HIGH accuracy) and
the test-bed cluster is homogeneous we initially thought of pre-
calibrating ProtoCom and sharing the calibration for all service
replicas. This would allow us to execute elasticity experiments and

2https://kubernetes.io/
3https://www.bw-cloud.org/
4https://sdqweb.ipd.kit.edu/wiki/ProtoCom
5https://www.rabbitmq.com/
6https://www.mongodb.com/
7https://gatling.io/
8https://prometheus.io

HotCloudPerf 2022 ICPE ’22 Companion, April 9–13, 2022, Bejing, China

55

50 200 1000

be
st
−e

ffo
rt−

ol
d

be
st
−e

ffo
rt

gu
ar

an
te

ed
be
−s

tre
ss

be
2−

st
re

ss
be
−s

tre
ss
−b

ur
gu

a−
st

re
ss

gu
a−

st
re

ss
−b

ur
be
−h

ig
hs

tre
ss

gu
a−

hi
gh

st
re

ss

be
st
−e

ffo
rt−

ol
d

be
st
−e

ffo
rt

gu
ar

an
te

ed
be
−s

tre
ss

be
2−

st
re

ss
be
−s

tre
ss
−b

ur
gu

a−
st

re
ss

gu
a−

st
re

ss
−b

ur
be
−h

ig
hs

tre
ss

gu
a−

hi
gh

st
re

ss

be
st
−e

ffo
rt−

ol
d

be
st
−e

ffo
rt

gu
ar

an
te

ed
be
−s

tre
ss

be
2−

st
re

ss
be
−s

tre
ss
−b

ur
gu

a−
st

re
ss

gu
a−

st
re

ss
−b

ur
be
−h

ig
hs

tre
ss

gu
a−

hi
gh

st
re

ss

800

1000

1200

1400

200

300

25

50

75

100

QoS Class

Ex
ec

ut
io

n
Ti

m
e

(m
se

c.
)

Figure 2: Overall variability ofmeasurements for all instances and executions for the demand parameter set to 50, 200 and 1000
milliseconds for various Kubernetes QoS classes, different load levels and in three cluster compilations: 𝐶𝐼 : {‘best-effort-old’}
(1 experiment), 𝐶𝐼 𝐼 : {‘best-effort’ and ‘guaranteed’} (2 experiments, after rebooting VMs), 𝐶𝐼 𝐼 𝐼 : {‘be-stress’ – ‘gua-highstress’} (7
experiments, after cloud maintenance).

Table 2: Kubernetes nodes and their occupancy in number
of Pods and average utilization in millicores

Name # Pods Avg. Millicores Characteristic App Pods
minion-01 17 207.15
minion-02 12 805.80 rabbit-broker
minion-03 12 152.10
minion-04 10 176.85 mongodb
minion-05 8 133.30
minion-06 7 84.50
minion-07 11 142.20 demonstrator pods

upon the spin-up of new containers, the calibration would not af-
fect the start-up time. A precondition for this is, that there is an
acceptable variability in CPU time across nodes. Hence, we de-
cide to benchmark the resource demand generation library, namely
ProtoCom, to determine how it performs in our cluster.

4.1 Environment and Experimentation Setup
The Kubernetes cluster consists of seven worker nodes of identical
flavor m1.large with 4vCPUs, 8GB RAM and 12GB storage. On
the worker nodes there are various numbers of container being
deployed where some are application-specific and some come from
the platform itself. Table 2 summarizes the number of pods per node
together with some characteristic application pods. The average
millicores determines the average CPU usage of the cluster when
no workload is running. During the benchmark execution the three
services of the application—namely, the Device Communication
service, the Data Processing service, and the Data Provider service—
are co-located on node minion-07.

We define as a compilation of the cluster the current state of
the cluster which changes either by actions taken by us (e.g., after
VM reboot) or by the cloud provider (e.g., maintenance work). We
execute the benchmark with two different container QoS classes
enabled: best-effort (no limit, no guaranteed share) and guaranteed
(limits are equal to guaranteed share). For each class we make five
executions where in each execution five measurement iterations fol-
low after an initial five warm-up iterations9. The execution happens
on all the seven nodes.

In addition to changing the QoS class for the benchmark con-
tainer, we change the background load running on a VM. We create
three classes of background load levels: LOW, MEDIUM, and HIGH. The
LOW case constitutes the state of the cluster where no additional load
is present besides the workload deployed as Figure 2 depicts. For the
MEDIUM and HIGH case, we inject load using Chaos Mesh10 where
for the MEDIUM case, we use the configuration with four workers
(matching the number of vCPUs) inducing 50% load on the CPU,
whereas for the HIGH case the same number of workers generating
80% load on the CPU.

To automate the benchmarking process of ProtoCom we make
use of the Java Microbenchmark Harness (JMH)11 that facilitates
building, running, and analysing (micro-)benchmarks in Java. We
containerised JMH and use Kubernetes OpenKruise12 to define a
BroadcastJob that will execute the benchmark on all the nodes in
the cluster. We execute five times the benchmark on all nodes. In
each run the benchmark initially calibrates the ProtoCom library
in a MEDIUM accuracy setting. There are three different levels of
accuracy one can set: LOW, MEDIUM, and HIGH. We chose MEDIUM as

9In initial experiments we discovered some warm-up effects affecting the proper
calibration of ProtoCom.
10https://chaos-mesh.org/
11https://openjdk.java.net/projects/code-tools/jmh/
12https://github.com/openkruise/kruise

HotCloudPerf 2022 ICPE ’22 Companion, April 9–13, 2022, Bejing, China

56

a compromise between accuracy and experimentation time that
showed sufficient stability. After the calibration, the benchmark
varies the resource demand parameter in three levels 50, 200 and
1000 milliseconds. The selection of the resource demands was mo-
tivated from the demands which we inject in the demonstrator
application.

4.2 Discussion of Performance Results
First, we compare the results for the two used Kubernetes QoS-
classes and the three parameter levels. Figure 2 summarizes the
overall results across three different cluster compilations for vari-
ous QoS classes and for different load levels: LOW (the first three
without extra load using Chaos Mesh),MEDIUM (the next five, addi-
tional stress load of 50%), and HIGH (the last two, additional stress
load of 80%). The first three configurations (reading from the left)
aremeasurements taken before themajor bwCloudmaintenance [3],
whereas the seven last are experiments after the maintenance. We
observe less variability after the maintenance than before, where
the performance is highly variable, and observations deviate up
to 40% in both directions. Although we cannot hypothesize the
root cause behind the improvement, one can speculate on several
possibilities. One possibility is that less workload runs on the cloud
after the maintenance, leading to performance improvements in our
experiments. Another influential factor is the placement of the VMs
and the possibility of sharing resources with less noisy neighbors,
making the performance less variable. The software overhaul might
have also improved the situation with better isolation and schedul-
ing of workloads. All these factors deserve further investigation;
however, results show how the performance variability of our load
generation mechanism changes in different cluster compilations.

The difference between the assigned container QoS classes is
not significant both statistically and practically. Only in the case
of high load (‘gua-highstress’ in Fig. 2) the Guaranteed QoS class
becomes influential and reduces the variability of measurements.

The rest of the paper analyzes closer the results prior to the
update of the cloud provider, specifically the ‘best-effort’ and ‘guar-
anteed’ cases from Fig. 2. Besides the expected slowdown effects,
we also measured several occurrences of speed-ups in our bench-
mark. The box plots show, that the first quartile is matching the
desired execution time. Thus 75% of resource requests are taking
more time to complete. Table 3 shows that for parameters 50 and
200 the 95th percentile and standard deviation is slightly lower
when comparing best-effort to guaranteed Kubernetes QoS-class.
For parameter value 1000 the opposite is true.

Table 3: Execution Time by Parameter and QoS-Class

demand (QoS) mean median 95th perc. SD
50 (best-effort) 52.58131 52.248 66.5653 8.965577
50 (guaranteed) 54.06818 54.102 65.8925 8.115489
200 (best-effort) 211.0581 206.769 254.0771 24.69515
200 (guaranteed) 214.5613 212.349 253.0308 23.41644
1000 (best-effort) 1042.363 1033.147 1155.02 63.28705
1000 (guaranteed) 1042.841 1032.238 1166.254 68.88045

best−effort−old best−effort guaranteed

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

30

40

50

60

70

80

30

40

50

60

70

80

30

40

50

60

70

80

VMs

Ex
ec

ut
io

n
Ti

m
e

(m
se

c.
)

(a) Demand 50
best−effort−old best−effort guaranteed

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

800

1000

1200

1400

800

1000

1200

1400

800

1000

1200

1400

VMs

Ex
ec

ut
io

n
Ti

m
e

(m
se

c.
)

(b) Demand 1000

Figure 3: Variability of measurements across instances for
the demandparameters 50, and 1000 for two differentKuber-
netes QoS classes: best-effort and guaranteed. The best-effort-
old is the execution of the benchmark in a different cluster
compilation prior to the reboot of VMs for the experiment.

Second, we compare the results of the benchmark across the
nodes in the cluster. We expect to observe differences in the slow-
downs due to different placement of VMs in cloud and different
level of occupancy of nodes. As expected, in difference to the QoS
class, the variability of the results seems to differ on different nodes.
Figure 3 depicts the distribution of data points of all iterations on
different nodes. The least loaded nodes—in terms of number of
pods deployed—experience less variability. For estimating the re-
producibility of the experiment we added an additional benchmark
run (best-effort-old) that was conducted in a different cluster compi-
lation before. Results show, though the state of the underlying cloud
should have changed, that the variance measured on the nodes is
similar.

To analyze the impact of individual node occupancy we calculate
the correlation between number of Pods on the node, the CPU
utilization in millicores and the sample coefficient of variation (CV)
which is the ratio of the standard deviation and the average. In
Kubernetes the utilization is measured in millicores that denotes
a thousands of one vCPU, i.e., a utilization of 207.15 millicores
corresponds to 5.18% for a 4 vCPU node.

The Pearson correlation coefficient (from Figure 4) suggests for
a moderate association between both node occupancy, measured
in number of pods or millicores CPU, and the relative variability

HotCloudPerf 2022 ICPE ’22 Companion, April 9–13, 2022, Bejing, China

57

R = 0.38, p = 0.014

0.0

0.1

0.2

200 400 600 800
Millicores

C
V

R = 0.47, p = 0.0017

0.0

0.1

0.2

7.5 10.0 12.5 15.0 17.5
Number of Pods on Node

C
V

Figure 4: The coefficient of variation plotted against the
node occupancy for two different measures: average Mil-
licore CPU (left) and the number of pods deployed on a node
(right).

measured through the CV. However, the plots from Figure 4 make
the correlation inconclusive and highlight that more data is needed.
To sum up, we show that the intuitive assumption that a higher
node occupancy leads to higher variance in execution time during
load generation holds. Moreover, even nodes with moderate aver-
age CPU utilization of less than 20% are affected by slowdowns and
varying speeds. Developers should take that into account when
designing performance tests and benchmarks and measure the
variability in processing speeds for multiple nodes. Our simple
occupancy metrics serve as an initial indicator for potential slow-
down variations, however, several other factors, like the burstiness
of CPU workloads or the I/O usage, could also affect the execution.
Furthermore, these slowdown effects also impact model-based per-
formance prediction methods, as varying execution time must be
taken into account. While one could try to model all influencing
factors on the nodes in detail, however, a better solution would be to
systematically quantify and model the uncertainty in CPU speeds.
Based on these information scaling policies and mechanisms can
be optimized.

The container QoS class is not the main influential factor in the
experiments before the cloud maintenance. However, in experi-
ments after the maintenance, we observe that the QoS class impacts
the performance variability. Figure 5 depicts how the variability
changes across nodes for the demand set to 1000 milliseconds for
two set of experiments. The ‘be-highstress’ (on the left) are the
results when using the best-effort QoS class for the benchmark con-
tainer, whereas, the ‘gua-highstress’ (on the right) is the case with
the guaranteed class. In both cases, as we mentioned previously,
we inject a background load that utilizes the CPU of the VMs (from
4 to 7) to 80% using an additional container to induce the load. On
the VMs from 1 to 3, we do not generate extra load, and the state
is similar to the LOW scenario. Table 4 depicts the new state of the
cluster.

By using the guaranteed QoS class, we manage to reduce the vari-
ability of the results for the nodes with high utilization. However,
we can observe that the variability increases for the nodes where
no extra workload is running (Figure 5, VMs 1-3). One possible
explanation for this is that the container gets throttled after using
the specified amount of resources. We collect the key metrics that
monitor the throttling behavior of a container, namely𝑛𝑟_𝑡ℎ𝑟𝑜𝑡𝑡𝑙𝑒𝑑 ,

be−highstress gua−highstress

1 2 3 4 5 6 7 1 2 3 4 5 6 7

800

900

1000

1100

1200

1300

VMs

Ex
ec

ut
io

n
Ti

m
e

(m
se

c.
)

Figure 5: Variability of measurements across instances for
the demand parameter 1000 for two different Kubernetes
QoS classes: best-effort and guaranteed in a high stress sit-
uation.

Table 4: Kubernetes nodes and their occupancy in number
of Pods and average utilization in millicores for the “high
stress” scenario

Name # Pods Avg. Millicores Characteristic App Pods
minion-01 18 126.20
minion-02 12 462.40 rabbit-broker
minion-03 11 67.80
minion-04 11 3228.40 mongodb
minion-05 9 3234.60
minion-06 8 3218.40
minion-07 9 3231.70 demonstrator pods

𝑛𝑟_𝑝𝑒𝑟𝑖𝑜𝑑𝑠 , and 𝑡ℎ𝑟𝑜𝑡𝑡𝑙𝑒𝑑_𝑡𝑖𝑚𝑒 . The number of times the bench-
mark container gets throttled in the best-effort case (Figure 5, ‘be-
highstress’) is 0, whereas the same container is throttled for about
28 seconds on average across runs in the guaranteed case (Figure 5,
‘gua-highstress’).

4.3 Scaling Policies and Mechanisms
Bondi [9] distinguishes four general types of scalability, namely
load, space, space-time and structural scalability. In this work we
focus only on load scalability which is the system’s ability “to func-
tion gracefully, i.e., without undue delay and without unproductive
resource consumption or resource contention at light, moderate, or
heavy loads while making good use of available resources” ([9]).
Mircoservice.io presents commonly used deployment patterns and
distinguishes between the cases of multiple service instances per
host and service instance per host, VM or container [19]. AWS
autoscaling supports a VM-based scaling approach by launching
VMs instead of containers [7]. Kubernetes supports scaling on a
container level by applying a horizontal pod autoscaling approach,
i.e. it assigns more resources by starting additional replicas of a pod
(i.e. a container) that is already running for the current workload

HotCloudPerf 2022 ICPE ’22 Companion, April 9–13, 2022, Bejing, China

58

Algorithm 1 Node-based Autoscaling of Services
Require: 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐴𝑣𝑔𝑈𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛, 0 ≤ 𝑢𝑝𝑝𝑒𝑟𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ≤ 1, 0 ≤

𝑙𝑜𝑤𝑒𝑟𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ≤ 1
Ensure: 𝑛𝑜𝑑𝑒𝑠 = 𝑟𝑒𝑝𝑙𝑖𝑐𝑎𝑠𝑃𝑒𝑟𝐷𝑒𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡
1: loop ⊲ Control loop
2: 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐴𝑣𝑔𝑈𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 = 𝑔𝑒𝑡𝑈 𝑡𝑖𝑙𝐹𝑟𝑜𝑚𝐾8𝑠 ()
3: if 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐴𝑣𝑔𝑈𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 > 𝑢𝑝𝑝𝑒𝑟𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 then
4: makeOneAdditionalNodeAvailable()
5: scaleOutAllDeploymentsByOne()
6: end if
7: if 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐴𝑣𝑔𝑈𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 < 𝑙𝑜𝑤𝑒𝑟𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 then
8: makeOneNodeUnavailable()
9: scaleInAllDeploymentsByOne()
10: end if
11: sleep()
12: end loop

[6] by calculating the number of replicas by:

replicasdesired=ceil
(
replicascurrent ·

metriccurrent
metricdesired

)
.

While this works for any available metric value, commonly an

average utilization metric is used. Pods are placed on existing nodes
by the k8s node-scheduler using a two-step filtering and scoring
approach13.

Based on the chosen patterns and technology, software architects
might end up with evaluating different kinds of policies. For the
demonstrator application, since it is containerized and deployable
in Kubernetes, it is possible to employ both service-based policies
and also node-based policies. Here we describe the two different
policies and the mechanisms to implement them briefly.

For the service-based autoscaling policy we rely on the Hori-
zontal Pod Autoscaler (HPA) [6] to define a separate scaling policy
for the three different services that constitute the demonstrator
application. When fully characterizing the services, various metrics
could be used in the configuration of the HPA.

For the node-based autoscaling policy, we design and imple-
ment a controller that replicates Kubernetes nodes and proportion-
ally scales the pods of the three services deployed on the cluster
similar to the cluster proportional autoscaler of Kubernetes [2]. A
scale out (in) decision occurs whenever the average utilization of
available nodes surpasses an upper threshold (falls behind a lower
threshold). The number of replicas for each service follows the num-
ber of available nodes. For example, if there are two nodes available
in the cluster there will be 2 replicas for each of the services. The
initial state constitutes one node whereas there may be up to four
nodes where the servises can be allocated. Other nodes are reserved
for different services and experimentation tools.

The two different policies lead to different cluster compilations
over time. In the next section we explore the scalability bound-
aries of the demonstrator when assuming a node-based autoscaling
policy. This allows us to design meaningful scenarios for the elas-
ticity experiments and later evaluate various autoscaling policies
including the described ones.

13https://kubernetes.io/docs/concepts/scheduling-eviction/kube-scheduler/

1000 1000

Initial Scaled

0 500 1000 1500 2000 2500 0 2500 5000 7500 10000
0

2500

5000

7500

0

2000

4000

6000

Devices

R
es

po
ns

e
Ti

m
e

(m
se

c.
)

Figure 6: The 95th percentile of response time of the initial
and scaled cluster compilation for synthetic generated load
assuming that the application scales using a node-based au-
toscaling policy.

4.4 Scalability Assessment as a Prerequisite of
Designing Elasticity Scenarios

Several proposals exist in literature to asses the scalability of ap-
plications, e.g., [12]. The main purpose of assessing the scalability
in our case is to estimate the processing limits of the application
and use this information for designing elasticity experiments. To
determine whether a configuration can handle a certain load (in
terms of devices) we observe the performance and the utilization
of the system. We follow a binary search procedure [22] to reach
faster the upper bound on the number of devices that a particular
configuration can handle without violating a given performance
service level objective (SLO). For the remote measuring use case, we
define the target SLO to be one second response time for the 95th
percentile during a constant load of active devices. Since we lack
data for workload characterization for the reference application,
we generate synthetic load using Gatling that stresses the appli-
cation in two configurations: the initial configuration where the
demonstrator is deployed on one node and the final configuration
where the demonstrator is deployed on four nodes.

As Figure 6 depicts, the demonstrator application is able to scale
with additional resources i.e., when such resources are provided by
means of VM replication and scaling proportionally the correspond-
ing pods. One data point in the plot shows the 95th percentile of
response time for requests that have been generated by the active
devices given on the x-axis. The red dashed line shows the SLO
boundary of 1000ms that should not be violated. The synthetic
workload influences response times through the number of concur-
rent users (devices), how fast they ramp-up, and the sleep value. The
combination of the time to ramp up (5 seconds), the frequency of
sending data (60 seconds) and the number of devices together with
the intrinsic randomness of the workload generation tool and setup
leads to different distributions of inter-arrival times for requests. As
the highlighted data point in the scaled part depicts that spawning
2000 devices in 5 seconds in one case leads to the violation of the
SLOs while the configuration is able to sustain higher number of
devices—and up to a maximum of 5000 in one observation—when
the devices are increased gradually.

Initial experiments allow us to estimate the performance bound-
aries of the applicationwhen assuming anode-based scaling policy
for the initial and the most scaled configuration that may occur.
However, when employing a service-based policy, although the

HotCloudPerf 2022 ICPE ’22 Companion, April 9–13, 2022, Bejing, China

59

initial configuration might be assumed similar, the most scaled con-
figuration is not easily derived upfront due to the dynamics behind
adaptations of single services and involved constraints. However,
the approximated processing capabilities are used for designing
scenarios for elasticity experiments in which both alternatives for
autoscaling policies could be evaluated.

5 CONCLUSIONS AND FUTUREWORK
Existing reference applications for experimenting and research
are not representative for data-intensive containerized cloud ap-
plications. They are serving more traditional use cases of human-
centered request-reply communication without a continuous data
processing pipeline and without using asynchronous messaging
for the communication.

In attempt to fill this gap, in this work we present a reference
use case coupled with the initial architecture design and with the
engineering challenges for elasticity and resilience. To make the ref-
erence application suitable for research of elasticity and resilience
mechanisms through increasing the predictability in performance,
we have experimentedwith the CPU load generation tool ProtoCom.
Variability of execution times differs for different cluster compila-
tions due to unknown but speculated factors, however, ProtoCom
reliably genereates CPU load in cloud environments. We observe
a noticeable improvement after a major cloud maintenance and
upgrade which illustrates the importance of repeating performance
experiments in different times. We observe a moderate association
between node occupancy and the relative variability. In addition,
we sketch how the application could be scaled through two different
autoscaling policies and investigate the scalability of the solution
assuming a node-based approach.

In the future we plan to investigate further the factors that im-
pact the high variability of the results. Moreover, we will perform
additional experiments using container quotas and CPU throttling.
Consolidating and publishing the reference application is another
item for future work. In parallel we have started to construct a
performance model of the application that will allow the evaluation
of architecture alternatives. Moreover, we created initial simulation
models to emulate the QoS-based shared CPU scheduling regime
used in Kubernetes and alike. In the long run, we want to optimize
and make the autoscaling and resilience of dynamic cloud appli-
cations more robust. On one side, by offering suitable modeling
languages [13] to support architects for design-time analysis, and,
on the other side by incorporating models of uncertain execution
environments [21] into simulation-based prediction techniques.

ACKNOWLEDGMENTS
This paper was partly funded by the Federal Ministry of Educa-
tion and Research under grant number 01IS18069A. For computa-
tional resources we acknowledge the bwCloud (https://www.bw-
cloud.org), funded by the Ministry of Science, Research and Arts
Baden-Württemberg (Ministerium für Wissenschaft, Forschung
und Kunst Baden-Württemberg).

REFERENCES
[1] ACME Air: Acme Air Sample and Benchmark . Online: https://github.com/

acmeair/acmeair. [Online; 2022-01-25].

[2] Cluster Proportional Autoscaler. Online: https://github.com/kubernetes-sigs/
cluster-proportional-autoscaler. [Online; 2022-01-25].

[3] Maintenance of all bwCloud regions starting 2022-03-01, subsequent reregistra-
tion necessary - FINISHED! |bw-cloud.org.

[4] Sockshop microservice demo application. Online: https://microservices-
demo.github.io.

[5] Spring PetClinic. Online: https://github.com/spring-project:spring-petclinic.
[Online; 2022-01-25].

[6] Kubernetes Horizontal pod autoscaling. https://kubernetes.io/docs/tasks/run-
application/horizontal-pod-autoscale/, 2021. [Online; 2021-12-09].

[7] Amazon EC2 Auto scaling. https://docs.aws.amazon.com/autoscaling/ec2/
userguide/what-is-amazon-ec2-auto-scaling.html, 2022. [Online; 2022-01-25].

[8] Steffen Becker, Tobias Dencker, and Jens Happe. Model-driven generation of
performance prototypes. In Samuel Kounev, Ian Gorton, and Kai Sachs, editors,
Performance Evaluation: Metrics, Models and Benchmarks, pages 79–98, Berlin,
Heidelberg, 2008. Springer Berlin Heidelberg.

[9] André B. Bondi. Characteristics of scalability and their impact on performance.
In Proceedings of the second international workshop on Software and performance -
WOSP '00. ACM Press, 2000.

[10] Bosch. Mobility Cloud. https://www.bosch-mobility-solutions.com/media/
global/products-and-services/mobility-services/plcs/mobility-cloud/21-08-
02_bosc_21028-06_mobilitycloud_onepager-rgb_en.pdf, 2021. [Online;
2021-12-16].

[11] Marco Di Natale, Haibo Zeng, Paolo Giusto, and Arkadeb Ghosal. Understand-
ing and Using the Controller Area Network Communication Protocol: Theory and
Practice. Springer Publishing Company, Incorporated, 2014.

[12] Sören Henning and Wilhelm Hasselbring. How to measure scalability of dis-
tributed stream processing engines? In ICPE ’21: ACM/SPEC International Confer-
ence on Performance Engineering, Virtual Event, France, April 19-21, 2021, Com-
panion Volume, pages 85–88. ACM, 2021.

[13] Floriment Klinaku, Mir Alireza Hakamian, and Steffen Becker. Architecture-
based evaluation of scaling policies for cloud applications. In IEEE International
Conference on Autonomic Computing and Self-Organizing Systems, ACSOS 2021,
Washington, DC, USA, September 27 - Oct. 1, 2021, pages 151–157. IEEE, 2021.

[14] Christoph Laaber, Joel Scheuner, and Philipp Leitner. Software microbenchmark-
ing in the cloud. how bad is it really? Empirical Softw. Engg., 24(4):2469–2508,
aug 2019.

[15] Sebastian Lehrig, Richard Sanders, Gunnar Brataas, Mariano Cecowski, Simon
Ivanšek, and Jure Polutnik. Cloudstore—towards scalability, elasticity, and ef-
ficiency benchmarking and analysis in cloud computing. Future Generation
Computer Systems, 78:115–126, 2018.

[16] Sebastian Lehrig and Thomas Zolynski. Performance prototyping with protocom
in a virtualised environment: A case study. Proceedings to Palladio Days, pages
17–18, 2011.

[17] Albert Lutz, Bernhard Schick, Henning Holzmann, Michael Kochem, Harald
Meyer-Tuve, Olav Lange, Yiqin Mao, and Guido Tosolin. Simulation methods
supporting homologation of electronic stability control in vehicle variants. Vehicle
System Dynamics, 55(10):1432–1497, 2017.

[18] Seyed Hossein Nikounia and Siamak Mohammadi. Hypervisor and neighbors’
noise: Performance degradation in virtualized environments. IEEE Transactions
on Services Computing, 11(5):757–767, 2015.

[19] Chris Richardson. microservices.io deployment patterns. https://microservices.
io/microservices/news/2015/03/15/deployment-patterns.html, 2021. [Online;
2022-01-25].

[20] Rami Rosen. Linux containers and the future cloud. Linux J, 240(4):86–95, 2014.
[21] Max Scheerer, Martina Rapp, and Ralf Reussner. Design-time validation of run-

time reconfiguration strategies: An environmental-driven approach. In 2020 IEEE
International Conference on Autonomic Computing and Self-Organizing Systems
(ACSOS), pages 75–81, 2020.

[22] Piyush Shivam, Varun Marupadi, Jeffrey S. Chase, Thileepan Subramaniam, and
Shivnath Babu. Cutting corners: Workbench automation for server benchmark-
ing. In Rebecca Isaacs and Yuanyuan Zhou, editors, 2008 USENIX Annual Techni-
cal Conference, Boston, MA, USA, June 22-27, 2008. Proceedings, pages 241–254.
USENIX Association, 2008.

[23] Sandro Speth, Sarah Stieß, and Steffen Becker. A Saga Pattern Microservice
Reference Architecture for an Elastic SLO Violation Analysis. In Companion
Proceedings of 19th IEEE International Conference on Software Architecture (ICSA-C
2022). IEEE, March 2022.

[24] Jóakim von Kistowski, Simon Eismann, Norbert Schmitt, André Bauer, Johannes
Grohmann, and Samuel Kounev. Teastore: A micro-service reference application
for benchmarking, modeling and resource management research. In 2018 IEEE
26th International Symposium on Modeling, Analysis, and Simulation of Computer
and Telecommunication Systems (MASCOTS), pages 223–236. IEEE, 2018.

[25] Xiang Zhou, Xin Peng, Tao Xie, Jun Sun, Chao Ji, Wenhai Li, and Dan Ding. Fault
analysis and debugging of microservice systems: Industrial survey, benchmark
system, and empirical study. IEEE Trans. Software Eng., 47(2):243–260, 2021.

HotCloudPerf 2022 ICPE ’22 Companion, April 9–13, 2022, Bejing, China

60

https://github.com/acmeair/acmeair
https://github.com/acmeair/acmeair
https://github.com/kubernetes-sigs/cluster-proportional-autoscaler
https://github.com/kubernetes-sigs/cluster-proportional-autoscaler
https://github.com/spring-project:spring-petclinic.
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://docs.aws.amazon.com/autoscaling/ec2/userguide/what-is-amazon-ec2-auto-scaling.html
https://docs.aws.amazon.com/autoscaling/ec2/userguide/what-is-amazon-ec2-auto-scaling.html
https://www.bosch-mobility-solutions.com/media/global/products-and-services/mobility-services/plcs/mobility-cloud/21-08-02_bosc_21028-06_mobilitycloud_onepager-rgb_en.pdf
https://www.bosch-mobility-solutions.com/media/global/products-and-services/mobility-services/plcs/mobility-cloud/21-08-02_bosc_21028-06_mobilitycloud_onepager-rgb_en.pdf
https://www.bosch-mobility-solutions.com/media/global/products-and-services/mobility-services/plcs/mobility-cloud/21-08-02_bosc_21028-06_mobilitycloud_onepager-rgb_en.pdf
https://microservices.io/microservices/news/2015/03/15/deployment-patterns.html
https://microservices.io/microservices/news/2015/03/15/deployment-patterns.html

	Abstract
	1 Introduction
	2 Related Work
	3 Running Example
	3.1 Reference Use Case
	3.2 Requirements and Performance Challenges
	3.3 Performance Prototype/Demonstrator

	4 Performance Variability of Resource Demand Generation
	4.1 Environment and Experimentation Setup
	4.2 Discussion of Performance Results
	4.3 Scaling Policies and Mechanisms
	4.4 Scalability Assessment as a Prerequisite of Designing Elasticity Scenarios

	5 Conclusions and Future Work
	References

