
FaaSET: A Jupyter Notebook to Streamline Every
Facet of Serverless Development

Robert Cordingly
University of Washington
Tacoma, Washington, USA

rcording@uw.edu

Wes Lloyd
University of Washington
Tacoma, Washington, USA

wlloyd@uw.edu

ABSTRACT
Function-as-a-Service platforms require developers to use many
different tools and services for function development, packaging,
deployment, debugging, testing, orchestration of experiments, and
analysis of results. Diverse toolchains are necessary due to the
differences in how each platform is designed, the technologies they
support, and the APIs they provide, leading to usability challenges
for developers.

To combine support for all of the tasks and tools into a unified
workspace, we created the FaaS Experiment Toolkit (FaaSET). At
the core of FaaSET is a Jupyter notebook development environment
that enables developers to write functions, deploy them across
multiple platforms, invoke and test them, automate experiments,
and perform data analysis all in a single environment.

CCS CONCEPTS
• Computer systems organization →
Cloud computing.

KEYWORDS
Jupyter, Function-as-a-Service, Serverless, Development, Profiling,
Tools
ACM Reference Format:
Robert Cordingly and Wes Lloyd. 2022. FaaSET: A Jupyter Notebook to
Streamline Every Facet of Serverless Development. In Companion of the
2022 ACM/SPEC International Conference on Performance Engineering (ICPE
’22 Companion), April 9–13, 2022, Bejing, China. ACM, New York, NY, USA,
4 pages. https://doi.org/10.1145/3491204.3527464

1 INTRODUCTION
To streamline the process of developing Function-as-a-Service (FaaS)
applications, invoking and testing functions, executing experiments,
training performance models, and processing results, we created
the Function-as-a-Service Experiment Toolkit (FaaSET) notebook
[13]. The FaaSET notebook supports many FaaS platforms includ-
ing AWS Lambda, Google Cloud Functions, IBM Cloud Functions,
Azure Functions, and OpenFaaS [1, 6, 7, 10]. Platform agnostic func-
tions are written inside a Jupyter notebook [8] as standard Python
functions and then are automatically packaged, deployed, and can
be invoked from inside the FaaSET notebook. FaaSET builds upon

This work is licensed under a Creative Commons Attribution
International 4.0 License.

ICPE ’22 Companion, April 9–13, 2022, Bejing, China
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9159-7/22/04.
https://doi.org/10.1145/3491204.3527464

a strong foundation of tools designed specifically for FaaS devel-
opment, deployment, and experimentation, such as the Serverless
Application Analytics Framework (SAAF), FaaS Runner, and more,
used in [3, 5, 11, 12].

Previously, function development required using various tools
or integrated development environments (IDEs) to write and de-
ploy functions. Deployment processes alone could require vastly
different workflows depending on the platform. After deploying
an application, custom tools and scripts are commonly used to run
experiments on FaaS platforms. Data analysis requires another set
of applications such as R, Excel, or Python notebooks to train mod-
els or aggregate results from experiments. This fragmentation of
tools creates workflows that are locked into specific platforms or
experiments, that are neither portable or extensible, and that are
potentially slower than optimized tools. FaaSET addresses these
challenges by providing a unified workspace that supports the full
lifecycle of FaaS function development and analysis.

This paper describes the following contributions:

(1) We present the Function as a Service Experiment Toolkit
(FaaSET), a Jupyter notebook and library of tools that aid in
developing, deploying, and experimenting with serverless
functions.

(2) We provide an example FaaSET notebook hosted on Google
Colaboratory to quickly introduce users to the features and
tools in FaaSET [13].

(3) We evaluate the performance implications of using differ-
ent client infrastructures to host the FaaSET notebook and
execute experiments on FaaS platforms.

2 RELATEDWORK
Many tools exist to streamline the development process of serverless
functions. For example, on AWS Lambda, simple functions can be
written and tested using the Cloud9 IDE directly from the AWS
website [2]. The Serverless Framework provides many tools to
aid in FaaS application development, deployment, and monitoring
[14]. Plugins for existing development environments, such as Visual
Studio Code, support integration with FaaS platforms such as Azure
Cloud Functions, AWS Lambda, and Google Cloud Functions [15].

While many of these tools focus on aiding development for
a specific platform, others, such as Lithops, support developing
functions acrossmany clouds to support big data analytic workloads
[9]. Although these tools offer features to solve specific problems,
FaaSET aims to be a platform-neutral toolkit supporting the entire
FaaS development lifecycle from deployment, to experimentation,
to data processing and analysis.

HotCloudPerf 2022 ICPE ’22 Companion, April 9–13, 2022, Bejing, China

49

https://doi.org/10.1145/3491204.3527464
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3491204.3527464

3 TOOLS
In this section we discuss the three pillars of the Function-as-a-
Service Experiment Toolkit: the FaaSET Notebook in Section 3.1,
the Serverless Application Analytics Framework in Section 3.2, and
FaaS Runner in Section 3.3. Finally we introduce an example FaaSET
Notebook hosted using Google Colaboratory in Section 3.4.

Execute Experiments

FaaS Runner

Serverless
Function

R
esponses

SAAF

Data

● Invoke Functions
● Reconfigures Functions
● Compiles Results
● Exports to Notebook

Profile

R
eq

ue
st

s

Develop, Deploy,
and Test Functions

λ

λ

λ

D
ep

lo
y

λ

λ

1 2

Compile and
Visualize Results

3

λ

Output

Te
st

λ

λ

FaaSET Notebook FaaSET Notebook

Input

G
en

er
at

e

FaaS Platform

Figure 1: The workflow enabled by the FaaSET notebook sup-
ports development, deployment, testing, experimentation,
and data analysis.

Figure 2: Juypter Notebook cells showing creating a basic
Hello World function, calling it to deploy on AWS, invoking
the function, and running an experiment across many mem-
ory settings.

3.1 FaaSET Notebook
The FaaSET notebook integrates into Jupyter notebooks and utilizes
many other tools to create a single workspace where developers

and researchers can easily develop, test, and run experiments using
FaaS platforms. Figure 2 illustrates this workflow.

At the core of the FaaSET notebook is support for FaaS function
development and deployment. By writing standard Python func-
tions and applying a single-line decorator, functions are automati-
cally deployed and executed on FaaS platforms. FaaSET supports
deploying Python functions to AWS Lambda, Google Cloud Func-
tions, IBM Cloud Functions, Azure Functions and code can be run
locally in the notebook. In addition, FaaSET can package functions
using x86, ARM64, and Docker containers on AWS Lambda.

import FaaSET

@FaaSET.cloud_function(platform="AWS",
config={"memory": 256})

def hello_world_saaf(request, context):
from SAAF import Inspector # SAAF
inspector = Inspector()
inspector.inspectCPUInfo()
inspector.addAttribute("message",

"Hello " + request['name'] + " from AWS!")
return inspector.finish()

hello_world_saaf{{'name': 'Bob'}, None} # Invoke FaaS

Figure 3: A HelloWorld Python function with SAAF’s Inspec-
tor class deployed to AWS Lambda using FaaSET.

Figure 3 shows what a function written inside the FaaSET note-
book would look like. This Hello World function is implemented
with the SAAF Inspector to collect information about the CPU. Af-
ter executing this code block, FaaSET will first check if the function
is up to date with the current source code. If the function does not
exist, or the code has been modified since the previous deployment,
FaaSET will automatically package and deploy the function to the
selected platform. The entire deployment process requires only
a few seconds on AWS Lambda and IBM Cloud Functions. After
deploying the function, executing the function in the notebook will
not run the code locally, but instead on the FaaS platform. This
provides a seamless experience that can be combined with other
Python features such as threading to orchestrate FaaS applications.
Finally, this behavior is configurable if it is preferred for function
code to execute locally instead of on the FaaS platform.

While the FaaSET notebook only supports the development of
Python functions, other tools in FaaSET can apply to functions writ-
ten in any language. Since FaaSET can deploy Docker containers,
any dependencies, runtimes, or other executables can be included,
and the Python function is used as the container entry point. If
functions are already deployed to a FaaS platform, they can be
"linked" to the notebook by writing an empty FaaSET function with
deployment disabled. This way, existing functions can be invoked
by the notebook, used in experiments, and included in the data
analysis.

HotCloudPerf 2022 ICPE ’22 Companion, April 9–13, 2022, Bejing, China

50

3.2 Serverless Application Analytics Framework
To aid in performance profiling of serverless applications, functions
in FaaSET can be deployed with the Serverless Application Ana-
lytics Framework (SAAF) [4]. SAAF collects metrics from multiple
sources inside the Linux operating system, including the /proc
filesystem, local files under /tmp, and environment variables cre-
ated by the FaaS platform. SAAF’s design allows all metrics to be
collected by simply including the framework in the deployment
package and adding a few lines of code to the beginning and end
of the function’s source code. Each commercial FaaS platform (e.g.,
AWS Lambda, IBMCloud Functions) exposes or hides differentmeta-
data about the underlying Linux environments that run functions.
SAAF is designed for FaaS platforms; it adds minimal overhead
to functions and works around different levels of infrastructure
obfuscation of each platform. FaaSET utilizes the publishing and
deployment tools used by SAAF to support multiple FaaS platforms.

3.3 FaaS Runner
To automate complex experiments on FaaS platforms, we created
the FaaS Runner tool. FaaS Runner provides a client-side applica-
tion used in conjunction with SAAF and the FaaSET notebook. FaaS
Runner automates FaaS experiments by using functions and exper-
iment files that define how FaaS functions should be executed and
how the results from SAAF should be processed. Experiment files
define an experiment’s configuration, including how functions are
invoked (e.g. synchronously or asynchronously), the degree of con-
currency (e.g. parallel with multiple threads or sequentially), how
payloads should be distributed, and how multi-function pipelines
should be orchestrated. In addition, FaaS Runner automatically ap-
plies changes to FaaS function configurations as prescribed in the
experiment file.

FaaS Runner can be executed using the FaaSET notebook or run
independently. Running experiments within the FaaSET notebook
will automatically generate the necessary function and experiment
files and import results into the notebook after the experiment
completes.

3.4 Example FaaSET Notebook
The FaaSET notebook, SAAF, and FaaS Runner are all open source
available to download on GitHub [13]. To make it easy to try out all
of our tools, we have developed an example notebook hosted using
Google Colaboratory. Using the notebook, it is only necessary to
enter AWS credentials and a Role ARN to test deploying functions,
running experiments, processing results, and other FaaSET features
without configuring the environment. Google Colaboratory is free
and provides a low barrier of entry for hosting Jupyter notebooks.
The link to our example FaaSET notebook can be found on the front
page of our GitHub [13].

4 METHODOLOGY
The FaaSET notebook can be hosted on many different platforms,
including Google Colaboratory, locally, or on an IaaS cloud platform
such as Amazon EC2. Two key considerations when picking a host
client to invoke functions for FaaS experiments are the client’s ca-
pability to invoke functions concurrently and the network latency
between requests. We evaluated the performance capabilities of

three different notebook hosts, including the infrastructure pro-
vided with the free tier of Google Colaboratory (2 vCPUs) (Cali-
fornia), a local Ubuntu Server 20.04 virtual machine with an Intel
i9-9990k Processor and 32 GB of RAM (10 vCPUs) (Seattle WA), and
a c5.metal EC2 instance (96 vCPUs) located in the same region and
subnet as our Lambda function (us-east-1f).

To rule out the performance variability of the function itself and
focus on the performance of the client invoking the functions, we
created the sleeper function shown in Figure 4. This function sleeps
for a given amount of time. We created an experiment that will
invoke the function a total of 5,000 times using 1,000 threads (5 times
per thread). The maximum available concurrency of the function
on AWS Lambda was also 1,000. SAAF reports the epoch start
and end time of our function invocations, enabling the number of
functions executing simultaneously to be determined. FaaS Runner
reports the latency of individual function invocations by calculating
the difference between the round trip time (time between when a
request is made and a response is received) and the total function
runtime returned by SAAF. This experiment utilized every facet
of FaaSET enabling us to observe different host clients’ maximum
concurrency and latency.

import FaaSET

@FaaSET.cloud_function(platform="AWS",
config={"memory": 256})

def sleeper(request, context):
from SAAF import Inspector
import time
inspector = Inspector()
inspector.inspectAll()
time.sleep(request['time'])
inspector.inspectAllDeltas()
return inspector.finish()

Define and execute experiment
sleep_experiment = {
"payloads": [{"time": 10}],
"memorySettings": [128],
"runs": 5000,
"threads": 1000,
"iterations": 1,

}
sleeper_results = run_experiment(function=sleeper,

experiment=sleep_experiment)

Figure 4: Function and experiment used to evaluate latency
and maximum concurrency of different clients.

5 RESULTS
Our experiment revealed that the infrastructure used to execute
experiments impacted the performance of running experiments.
Since our sleeper function was configured to execute for only 10
seconds, no client could achieve the maximum 1,000 concurrent
function invocations. The c5.metal instance achieved the highest
concurrency peaking near 450 function instances while averaging

HotCloudPerf 2022 ICPE ’22 Companion, April 9–13, 2022, Bejing, China

51

0 100 200 300 400 500
0

100

200

300

400

EC2 c5.metal Local (i9-9900k, 32 GBs RAM) Google Colab (Free)

Time after First Invocation (s)

Co
nc

ur
re

nt
 F

un
ct

io
n

In
vo

ca
tio

ns

Figure 5: Number of concurrently running function instances
using various clients. 5000 total invocations of 10 second
sleep function using 1000 threads.

250. The local Ubuntu Server achieved concurrency between 150 to
230 instances. Finally, Google Colaboratory only achieved concur-
rency of at most 31 function instances. Figure 5 shows the number
of function instances we were able to execute over 500 seconds.

One challenge to running large experiments using multiple
threads is the memory required to maintain open connections and
store data exchanged with the FaaS platform. We found that using
1,000 threads could use up to 11 GB of RAM on the c5.metal, enough
to saturate all of the available memory on Google Colaboratory
and crash the instance. To avoid this, we limited the maximum
number of threads to 200. Unfortunately, Google Colaboratory’s
limited memory and CPU power with the free tier does not make it
a viable option for running experiments that require a large number
of concurrent function invocations.

Finally, we evaluated the round-trip latency of each client to
our AWS Lambda function deployed in us-east-1f. Like the concur-
rency test, Google Colaboratory exhibited the worst performance
with latency between 1.2 to 1.6 seconds. The local virtual machine
showed 650 to 850 ms of latency, and the c5.metal instance had 340
to 350 ms. Figure 6 shows the latency observed throughout our ex-
periment. If running an experiment where latency is an important
metric, it is critical to have the host client as physically close to the
function instances as possible. For AWS, the only way to do that is
to use EC2 instances located in the same region and subnet as the
function.

6 CONCLUSIONS
The FaaSET notebook provides a unified workspace where develop-
ers and practitioners can develop FaaS applications, perform testing,
run experiments, process results, and analyze data without needing
to use any other tools or websites. FaaSET is flexible in that it can
be deployed to a variety of Juypter servers and configured to use
different FaaS platforms to meet the demand of experiments. For
developing, deploying, and testing functions and running simple
experiments, FaaSET can be hosted using free Jupyter services such
as Google Colaboratory. If an experiment requires high function
concurrency or low latency, FaaSET can be hosted on powerful
cloud virtual machines. Our evaluation found that Google Colab-
oratory as a free notebook host provided only limited scalability,
supporting only 1/10 themaximum concurrencywhile exhibiting 5x

0 100 200 300 400 500

500

1000

1500

EC2 c5.metal Local (i9-9900k, 32 GBs RAM) Google Colab (Free)

Time after First Invocation (s)

La
te

nc
y

(m
s)

Figure 6: Request latency using a variety of clients when
functions are invoked sequentially using 1 thread.

the latency of a c5.metal EC2 instance. FaaSET strives to be a pow-
erful tool to aid developers and practitioners to quickly and easily
develop serverless applications and run experiments to understand
how they perform on the cloud.

ACKNOWLEDGMENTS
This research is supported by the NSF Office of Advanced Cyber-
infrastructure (OAC-1849970), NIH grant R01GM126019, and the
AWS Cloud Credits for Research program.

REFERENCES
[1] AWS. 2021. AWS Lambda – Serverless Compute - Amazon Web Services. http:

//aws.amazon.com/lambda/.
[2] Cloud9. 2022. A cloud IDE for writing, running, and debugging code. https:

//aws.amazon.com/cloud9/
[3] Robert Cordingly, Wen Shu, and Wes J Lloyd. 2020. Predicting Performance and

Cost of Serverless Computing Functions with SAAF. In 6th IEEE International
Conference on Cloud and Big Data Computing (CBDCOM 2020).

[4] Robert Cordingly, Hanfei Yu, Varik Hoang, Zohreh Sadeghi, David Foster, David
Perez, Rashad Hatchett, and Wes Lloyd. 2020. The Serverless Application Ana-
lytics Framework: Enabling Design Trade-off Evaluation for Serverless Software.
In Proceedings of the 2020 Sixth International Workshop on Serverless Computing.
67–72.

[5] Robert Cordingly, Hanfei Yu, David Perez Varik Hoang, David Foster, Zohreh
Sadeghi, Rashad Hatchett, and Wes J Lloyd. 2020. Implications of Programming
Language Selection for Serverless Data Processing Pipelines. In 2020 6th IEEE
International Conference on Cloud and Big Data Computing (CBDCOM 2020).

[6] Google Cloud. 2021. Google Cloud Function: Event-Driven Serverless Compute
Platform. http://cloud.google.com/functions.

[7] IBM. 2021. IBM Cloud Functions. http://ibm.com/cloud/functions.
[8] Jupyter. 2022. https://jupyter.org
[9] Lithops. 2022. https://lithops-cloud.github.io
[10] Microsoft Azure. 2021. Azure Functions. http://azure.microsoft.com/en-us/

services/functions/s.
[11] Sterling Quinn, Robert Cordingly, and Wes Lloyd. 2021. Implications of Alterna-

tive Serverless Application Control Flow Methods. In Proceedings of the Seventh
International Workshop on Serverless Computing (WoSC7) 2021. 17–22.

[12] Sasko Ristov, Stefan Pedratscher, and Thomas Fahringer. 2021. xAFCL: Run Scal-
able Function Choreographies Across Multiple FaaS Systems. IEEE Transactions
on Services Computing (2021).

[13] SAAF. 2022. Serverless Application Analytics Framework. http://github.com/
wlloyduw/SAAF

[14] Serverless Framework. 2022. https://www.serverless.com
[15] VS Code Extensions - Azure Functions. 2022. https://marketplace.visualstudio.

com/items?itemName=ms-azuretools.vscode-azurefunctions

HotCloudPerf 2022 ICPE ’22 Companion, April 9–13, 2022, Bejing, China

52

http://aws.amazon.com/lambda/
http://aws.amazon.com/lambda/
https://aws.amazon.com/cloud9/
https://aws.amazon.com/cloud9/
http://cloud.google.com/functions
http://ibm.com/cloud/functions
https://jupyter.org
https://lithops-cloud.github.io
http://azure.microsoft.com/en-us/services/functions/s
http://azure.microsoft.com/en-us/services/functions/s
http://github.com/wlloyduw/SAAF
http://github.com/wlloyduw/SAAF
https://www.serverless.com
https://marketplace.visualstudio.com/items?itemName=ms-azuretools.vscode-azurefunctions
https://marketplace.visualstudio.com/items?itemName=ms-azuretools.vscode-azurefunctions

	Abstract
	1 Introduction
	2 Related Work
	3 Tools
	3.1 FaaSET Notebook
	3.2 Serverless Application Analytics Framework
	3.3 FaaS Runner
	3.4 Example FaaSET Notebook

	4 Methodology
	5 Results
	6 Conclusions
	References

