
Change Point Detection for MongoDB Time Series Performance
Regression

Mark Leznik

Ulm University

Germany

Md Shahriar Iqbal

University of South Carolina

USA

Igor Trubin

Capital One

USA

Arne Lochner

Ulm University

Germany

Pooyan Jamshidi

University of South Carolina

USA

André Bauer

University of Würzburg

Germany

ABSTRACT
Commits to the MongoDB software repository trigger a collection

of automatically run tests. Here, the identification of commits re-

sponsible for performance regressions is paramount. Previously, the

process relied on manual inspection of time series graphs to identify

significant changes, later replaced with a threshold-based detection

system. However, neither system was sufficient for finding changes

in performance in a timely manner. This work describes our recent

implementation of a change point detection system built upon time

series features, a voting system, the Perfomalist approach, and XG-

Boost. The algorithm produces a list of change points representing

significant changes from a given history of performance results.

We are able to automatically detect change points and achieve an

83% accuracy, all while reducing the human effort in the process.

CCS CONCEPTS
•General and reference→Measurement; •Computingmethod-
ologies → Machine learning; • Information systems → Data
management systems.

KEYWORDS
Anomaly detection, Change point detection, Performance regres-

sion

ACM Reference Format:
Mark Leznik,Md Shahriar Iqbal, Igor Trubin, Arne Lochner, Pooyan Jamshidi,

and André Bauer. 2022. Change Point Detection for MongoDB Time Se-

ries Performance Regression. In Companion of the 2022 ACM/SPEC In-
ternational Conference on Performance Engineering (ICPE ’22 Companion),
April 9–13, 2022, Bejing, China. ACM, New York, NY, USA, 4 pages. https:

//doi.org/10.1145/3491204.3527488

1 INTRODUCTION
The performance testing infrastructure at MongoDB is central to

detecting performance degradation and resolution of performance

regressions to ensure the quality of the released software. It is

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

ICPE ’22 Companion, April 9–13, 2022, Bejing, China
© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9159-7/22/04. . . $15.00

https://doi.org/10.1145/3491204.3527488

Time Series
Data

Performalist

Pr
oc

es
s T

im
e

Se
rie

s D
at

a

Detect Annotated
Points using Perfomalist

Annotated
Time Series

Data

XGBoost

Detected
Change
Points

Annotated Time Series
Data is Passed to XGBoost

Time Series
Extractor

Extract Time Series
Before and After
Change Points

Extract Features
from Each Time

Series

Apply
Voting

Feature
Extractor

Time Series
Features

Mean

01

Distance

01

+ ...
+

 Voting
Prediction

Figure 1: Overview of the proposed change point detection
technique.

essential to prompt isolation of performance bugs and locking

in performance improvements. However, due to inherent noises

and the sheer number of experiments needed to run to test each

benchmark in the testing platform, performance testing, e.g., de-

tection and/or confirmation of performance changes, remains a

challenging task [5]. Hence, an automated approach for detection

of performance regressions on time without the introduced costs

of repeated tests is highly desirable [4].

MongoDB has open-sourced a large data set of performance test

logs, allowing a deeper insight into the testing process and the

underlying failures. The current approach involves change point

detection using E-divisive means algorithm [9] with a subsequent

triage by an engineer. Unfortunately, change points that are too

close in the time series may go unnoticed with the existing ap-

proach [5]. Additionally, there is no way to verify the correctness of

the detected change points without manual investigation by an en-

gineer. The occurrence of system noise in the data, which is flagged

as a change point, leads to a higher workload for the support team

and increases the risk of missed actual failures.

To address these issues, we develop a hybrid change point de-

tection system as shown in Figure 1. Our approach uses an unsu-

pervised multivariate adaptive statistical filtering (MASF) based

Data Challenge Track ICPE ’22 Companion, April 9–13, 2022, Bejing, China

45

https://doi.org/10.1145/3491204.3527488
https://doi.org/10.1145/3491204.3527488
https://doi.org/10.1145/3491204.3527488

habitual change point detection algorithm, Perfomalist [1], in com-

bination with XGBoost [3] and a time series feature-based voting

classifier. The supervised classification system corrects the mistakes

made by the automated change point detection system, thereby in-

creasing the accuracy of the annotated change points and reducing

the human workload in this process.

The rest of this work is structured as follows: Section 2 presents

time series features and distance measures we use, as well as the Per-

fomalist change point detection and XGBoost. Section 3 describes

the statistical anaylsis of the MongoDB data. Section 4 presents

our approach, as well as the results of the change point detection.

Section 5 summarizes our results and depicts the future work ahead.

2 BACKGROUND
2.1 Time Series Features
We compare the time series before and after the possible change

point to detect a change point. The time series before the change

point starts with either the first measurement or the last confirmed

change point and ends with the previous measurement of the pos-

sible change point. The other time series includes the possible

change point itself and its subsequent measurement. We assume

that a change point can only be found between the second and the

last value of a measurement series.

To describe a possible change point, we examine how the behav-

ior of the time series changed because of that point. In other words:

We calculate the difference (Δ) of different time series features de-

scribing the time series before and after the possible change point.

The time series features used are listed in Table 1.

Table 1: List of time series features used in our study.

Feature Description

Mean The mean value of the time series

SD The standard deviation of the time series

Hurst The Hurst exponent [7] describes how similar the time

series is to some part of itself

Alpha Parameter for the level component in Holt’s linear trend

method [8] fitted to the time series.

Beta Parameter for the trend component in Holt’s linear trend

method fitted to the time series.

2.2 Time Series Distance
To determine how dissimilar the time series before the possible

change point is to the time series after the change point, we calculate

the time series distance between these two time series. If we apply

a geometric distance, we could, for instance, the dynamic time

wrapping as the time series vary in length. However, the results

would then be difficult to interpret. Therefore, we use the zoomed

ranking approach [6] applied to time series [2]. Mathematically, the

distance between two time series 𝑇𝑖 and 𝑇𝑗 is defined as:

𝑑 (𝑇𝑖 ,𝑇𝑗) :=
5∑︁

𝑚=1

|𝑓𝑇𝑖 ,𝑚 − 𝑓𝑇𝑗 ,𝑚 |
max

𝑘={1,...,𝑠 }/{𝑖 }
(𝑓𝑇𝑘 ,𝑚) − min

𝑘={1,...,𝑠 }/{𝑖 }
(𝑓𝑇𝑘 ,𝑚) , (1)

where 𝑇1, . . . ,𝑇𝑠 are all time series, 𝑠 is a positive integer, and

𝑓𝑇𝑖 ,1, . . . , 𝑓𝑇𝑖 ,𝑞 are the descriptive time series features of time series

𝑇𝑖 . The distance between two time series is in the interval [0,∞),
where 0 means that the time series are equal with respect to their de-

scriptive features. The larger the distance, the more heterogeneous

the two time series are.

2.3 Perfomalist
Perfomalist [1] is a web-based tool for detecting anomalies and

change points. The tool uses a method called SETDS - Statistical

Exception and Trend Detection System, a variation of the Statistical

Process Control method applied to time series data. The central idea

of the method is EV (Exception Value). EV indicates the severity

of anomalies and is a magnitude of exception. This is calculated as

the difference between the control limits and the actual anomalous

data points. The first occurrence of any change would appear as an

anomaly and then may become a normality (new norm). As a result,

severity analysis of all the anomalies collected over time provides

an opportunity to find phases in the data history with different

patterns. To detect change points between phases, all roots of the

following equation must be found:

(𝐸𝑉) (𝑡) = 0, (2)

where t is the time. Using this method, the Perfomalist returns all

the change points found in the input time series data.

3 STATISTICAL ANALYSIS
To better understand the change points, we examined the provided

dataset using statistical analysis. To this end, for each triaged point

(false or true positive), we calculated the time series features before

and after that point, as described in Section 2.1. Then, we calculated

the delta feature (Δ) as the difference between the feature before

and after a triaged point for each of these points and features. We

also calculated the time series distance for the time series before

and after a triaged point.

In the first analysis, we tested the normality for all these cal-

culated features with the Shapiro Wilk test: All features are not

normally distributed. To this end, we perform a median analysis

and show the results in Table 2. The table shows median values of

the features with their 1st to 3rd quartiles for change points (true

positive) and misclassified change points (false positive), respec-

tively. We used the Fisher’s exact test (in the case of fewer than

five points) or Chi-square tests to compare the medians between

the two classes: The median values are significantly different, so

there is an actual difference between the medians. For instance, the

ΔMean exhibits a median value of 0.83 for true change points and

0.37 for misclassified change points. Accordingly, this feature is

a good indicator of whether a particular point might be a change

point.

The second analysis investigates how the time series distance

for change points behaves across the different projects. The results

are presented in Table 3, where we apply the Wilcoxon rank-sum

and signed-rank test to check whether the difference is significant.

We also list the number of true and misclassified change points

for each project. It is worth noting that almost all projects have a

similar distance of about 2.4; however, the project sys-perf has a

Data Challenge Track ICPE ’22 Companion, April 9–13, 2022, Bejing, China

46

True Positive False Positive p-value

ΔMean 0.83 [0.69;0.91] 0.37 [0.19;0.60] 2.20E-16

ΔSD 0.05 [0.02;0.10] 0.14 [0.07;0.20] 2.20E-16

ΔHurst 0.19 [0.00;0.40] 0.38 [0.04;0.46] 8.69E-132

ΔAlpha 0.34 [0.11;0.50] 0.21 [0.09;0.46] 6.86E-79

ΔBeta 1.00 [0.96;1.00] 1.00 [1.00;1.00] 5.61E-01

Distance 2.53 [2.20;2.86] 2.42 [2.15;2.68] 2.17E-56

distance of 1.79 and 1.44, and thus, the change points in this project

may be harder to detect.

Table 3: Comparison of time series distances across different
MongoDB projects. We list the true positives and false posi-
tives as TP and FP, respectively.

Project

Median Distance

p-value

Number

TP FP TP FP

performance 2.83 2.41 9.34E-294 1362 2513

performance-4.2 - 1.91 - 0 13

performance-4.4 2.30 2.65 2.42E-04 12 914

performance-5.0 2.79 2.48 7.04E-45 674 598

sys-perf 2.47 2.36 2.51E-15 3204 2944

sys-perf-4.0 1.77 1.04 4.71E-05 20 36

sys-perf-4.2 2.44 2.42 7.17E-01 69 216

sys-perf-4.4 2.67 2.35 9.90E-23 291 905

sys-perf-5.0 1.79 1.44 4.98E-04 1358 202

Lastly, we are interested in how well the points can be separated

by splitting the data according to the median of the total population

of a particular time series feature see Table 4. To investigate whether

the distribution of the points is significant, we apply the Chi-square

test. Since we used the median value of the total population, the

number of points below and above the median is ’identical’. For

example, if we use only the ΔMean to classify triaged points into

true change points and misclassified change points, we can detect

5708 out of 6910 true change points.

4 DETECTION OF CHANGE POINTS
4.1 Voting based on Time Series Features

(Classification)
Based on the statistical analysis performed in Section 3, we build

a voting system for classifying change points (see Figure 1). More

specifically, for a potential change point, we calculated the time

series features before and after the possible change point and calcu-

lated the difference between the two sets of features, as described

in Section 2. Then, for each of these delta features, we perform a

binary decision (1 = change point; 0 = no change point), as shown in

Figure 2. To not rely on a single delta-features, we applied a voting

system. Each delta feature has a weight (derived from the statistical

analysis), and the weighted decisions are summed up. Then the

sum is normalized by the sum of the weights (∼3.46), and if the

Table 4: Comparison of time series features according to the
change points.

True Positive False Positive p-value

ΔMean >= 0.62 5708/7666 1958/7666

2.20E-16

ΔMean < 0.62 1282/7665 6383/7665

ΔSD >= 0.09 2016/7666 5650/7666

2.20E-16

ΔSD < 0.09 4974/7665 2691/7665

ΔHurst >= 0.31 2729/7666 4937/7666

3.88E-136

ΔHurst < 0.31 4261/7665 3404/7665

ΔAlpha >= 0.26 3963/7666 3703/7666

7.09E-52

ΔAlpha < 0.26 3027/7665 4638/7665

ΔBeta >= 1.00 3572/7666 4094/7666

1.34E-02

ΔBeta < 1.00 3418/7665 4247/7665

Distance >= 2.48 4012/7666 3654/7666

6.32E-63

Distance < 2.48 2978/7665 4687/7665

Table 5: Evaluation of the voting approach.

Accuracy Sensitivity Specificity

Without distance 0.6962 0.7721 0.6056

With distance 0.7797 0.8065 0.7476

normalized sum is greater than 0.5, the potential change point is a

real change point.

+ 4974 x
 7665

5708 x
7666

ny

ΔMean
≥ 0.62

1 0

ny

ΔSD
< 0.09

1 0

+ 4261 x
 7665

ny

ΔHurst
< 0.31

1 0

+ 3963 x
 7666

ny

ΔAlpha
≥ 0.26

1 0

+ 3572 x
 7666

ny

ΔBeta

≥ 1.00

1 0

+ 4012 x
 7666

ny

Distance
≥ 2.48

1 0

Figure 2: Voting system used for change point classification
using the time series features.

To investigate this voting system, we classify each triaged point

(false positive or false positive). We also investigate whether using

the time series distance increases or decreases the accuracy. The

results are given in Table 5. Without the distance, the voting system

has an accuracy of ∼70%, while using the distance, the accuracy is

∼78%.

4.2 Perfomalist (Detection)
In addition to the classification based on the voting system, we also

require the detection of change points (see Figure 1). To this end, we

Data Challenge Track

Table 2: Median analysis of the considered time series fea-
tures.

ICPE ’22 Companion, April 9–13, 2022, Bejing, China

47

applied Perfomalist to find change points within a time series. We

investigated only the time series that contained labeled points (false

negative, true positive, not triaged, or under submission) to have

ground truth. The results are shown in Table 6. Overall, Perfomalist

found 4691 of 6990 true change points (true positive) and 2110

misclassified change points (false positive) in these time series. In

addition, Perfomalist labeled 1490 not triaged points as change

points and found 9930 change points that were not annotated.

Table 6: Distribution of change points discovered by Perfo-
malist.

True Positive False Postive Not Triaged Not Annotated

4691 2110 1490 9930

Based on the true and false positive labeled change points in the

data set, we calculated the accuracy of the detection of Perfomalist.

The results are listed in Table 7. Perfomalist exhibits an accuracy

of ∼71%.

Table 7: Accuracy, Sensitivity and Specifity of the change
points identifed by Perfomalist.

Accuracy Sensitivity Specificity

0.7124 0.6898 0.7305

4.3 Perfomalist information with Voting in
XGBoost

To combine the classification of the voting system and the detection

by Perfomalist, we use XGBoost [3] as an intermediary between

these two approaches (see Figure 1). The idea is that XGBoost gets

the time series features, the decision of the voting system, and the

information from Perfomalist to detect and classify change points.

More specifically, XGBoost should learn whether the voting system

or Perfomalist classified a change point or made a mistake based

on the time series features.

To train XGBoost, we split the time series containing labeled

points into 90% training and 10% test. To avoid arbitrary splitting,

we split the data set ten times. For each split, the XGBoost model

receives as input the time series features (ΔMean, ΔSD, ΔHurst,
ΔAlpha, ΔBeta, and Distance), the decision of the voting system

and the detection results from Perfomalist and as label whether a

point is a change point or not.

The results of testing the XGBoost model are shown in Table 8.

The values given are the averages over the ten splits. Combining

the voting system with the information provided by Perfomalist

increases the accuracy to ∼83% and has a sensitivity and specificity

above ∼80%.

4.4 Threats to Validity
We perform all experiments only with the time series containing

labeled points. Therefore, we cannot generalize the results to the

entire data set. However, we are confident that our approach would

Table 8: XGBoost results in an increase of accuracy, sensitiv-
ity, and specificity in detecting and classifying change points.

Accuracy Sensitivity Specificity

Voting 0.7797 0.8065 0.7476

Pefomalist 0.7124 0.6898 0.7305

XGBoost 0.8290 0.7906 0.8609

Max. improvement 0.1166 0.1008 0.1304

provide similar accuracy for the rest of the data set. The methods

and time series features used were selected by trial-and-error. There

may be better features or methods available. Finally, the entire

approach is trained based on the labels of the data set, i.e., the

approach relies on the correctness of these data.

5 CONCLUSION
MongoDB’s automatic performance tests triggered after each com-

mit allow them to find performance regressions and maintain the

quality of their software. Although they apply a detection algorithm

to find potential change points, the labeling is done by experts. To

avoid or reduce humans in the loop, we propose an automatic ap-

proach to change point detection and classification in this paper.

The key idea is to combine time series features describing the time

series behavior before and after a potential change point, a voting

system based on statistically determined rules, and an anomaly

detection algorithm to address this task. Our results show that we

are able to automatically detect and classify change points in the

MongoDB dataset with 83% accuracy. Based on these results, we

are confident that our approach can reduce the human effort in this

process.

REFERENCES
[1] [n.d.]. Perfomalist. https://www.perfomalist.com/.

[2] André Bauer, Marwin Züfle, Simon Eismann, Johannes Grohmann, Nikolas Herbst,

and Samuel Kounev. 2021. Libra: A Benchmark for Time Series Forecasting Meth-

ods. In Proceedings of the 12th ACM/SPEC International Conference on Performance
Engineering (ICPE). ACM, New York, NY, USA.

[3] Tianqi Chen and Carlos Guestrin. 2016. Xgboost: A scalable tree boosting system.

InACM Special Interest Group on Knowledge Discovery in Data 2016. ACM, 785–794.

[4] David Daly. 2021. Creating a Virtuous Cycle in Performance Testing at Mon-

goDB. In Proceedings of the ACM/SPEC International Conference on Performance
Engineering. 33–41.

[5] David Daly, William Brown, Henrik Ingo, Jim O’Leary, and David Bradford. 2020.

The use of change point detection to identify software performance regressions

in a continuous integration system. In Proceedings of the ACM/SPEC International
Conference on Performance Engineering. 67–75.

[6] Patrícia Maforte Dos Santos, Teresa Bernarda Ludermir, and Ricardo Bastos Cav-

alcante Prudencio. 2004. Selection of Time Series Forecasting Models Based on

Performance Information. In Fourth International Conference on Hybrid Intelligent
Systems (HIS’04). IEEE, 366–371.

[7] John Haslett and Adrian E Raftery. 1989. Space-time modelling with long-memory

dependence: Assessing Ireland’s wind power resource. Journal of the Royal Statis-
tical Society: Series C (Applied Statistics) 38, 1 (1989), 1–21.

[8] Charles C Holt. 1957. Forecasting Seasonals and Trends by Exponentially Weighted
Moving Averages. Technical Report. Carnegie Institute of Technology.

[9] David S Matteson and Nicholas A James. 2014. A nonparametric approach for

multiple change point analysis of multivariate data. J. Amer. Statist. Assoc. 109,
505 (2014), 334–345.

Data Challenge Track ICPE ’22 Companion, April 9–13, 2022, Bejing, China

48

	Abstract
	1 Introduction
	2 Background
	2.1 Time Series Features
	2.2 Time Series Distance
	2.3 Perfomalist

	3 Statistical Analysis
	4 Detection of Change Points
	4.1 Voting based on Time Series Features (Classification)
	4.2 Perfomalist (Detection)
	4.3 Perfomalist information with Voting in XGBoost
	4.4 Threats to Validity

	5 Conclusion
	References

