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ABSTRACT
Testing software performance continuously can greatly benefit
from automated verification done on continuous integration (CI)
servers, but it generates a large number of performance test data
with noise. To identify the change points in test data, statistical
models have been developed in research. However, a considerable
amount of detected change points are marked as the changes ac-
tually never need to be fixed (false positive). This work aims at
giving a detailed understanding of the features of true positive
change points and an automatic approach in change point triage,
in order to alleviate project members’ burdens. To achieve this goal,
we begin by characterizing the change points using 31 features
from three dimensions, namely time series, execution result, and
file history. Then, we extract the proposed features for true posi-
tive and false positive change points, and train machine learning
models to triage these change points. The results demonstrate that
features can be efficiently employed to characterize change points.
Our model achieves an AUC of 0.985 on a median basis.
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1 INTRODUCTION
Performance testing in conjunction with continuous integration is a
growing trend in the software engineering community and industry
[6, 8, 10]. Performance testing is a time-consuming process that
must be repeated in order to obtain valid results [11]. Based on the
large amount of historical performance test data, many statistical
models have been developed for change point detection in the
literatures [5].
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The main challenge in using the change detection technique is
that there are a large number of change points that are ignored by de-
velopers. One major reason is the high rate of false positive change
points reported [5]. Since the benchmarks under test is unstable,
the test results do not accurately reflect the “true” performance [11].
The performance change assessment process invariably introduces
bias, resulting in spurious change points that do not correspond to
true ones. Additionally, even if the change point reveals to be true,
they can be ignored. There are several reasons for this, including
"trivial" changes that have no impact on the use, and real changes
requiring significant effort to fix with little perceived benefit [20].
If the change point detection approach identified the changes that
were not true, we refer to those as false positive change points (short
for FCPs). False positives will waste developers’ time by requiring
them to double-check the code. MongoDB perform performance
tests with Evergreen and detects change points automatically [6].
Among the detected change points, only 44% of the change points
are triaged as true. The software team must manually inspect these
change points to determine whether they actually reveal changes -
true positive change points (short for TCPs). As a result, triaging
the large number of change point detection technique outcomes is
a time-consuming and low-efficient process.

To make the change point detection approach more practical,
it would be beneficial to have an automated mechanism that can
determine whether or not a given change point is a false alarm. Nu-
merous studies have been conducted on classifying bug reports [26]
and actionable static warnings [25]. Nonetheless, in comparison to
bug reports, change points lack detailed textual descriptions, and in
comparison to static warnings, change points is identifiedwithmore
noise. To help the understanding of the change points, we experi-
mentally characterize TCPs using the 31 features and demonstrate
their feasibility of distinguishing TCPs from FCPs. Then, using the
proposed features, we develop machine learning models to triage
change points, with promising results.

2 CHARACTERIZING CHANGE POINTS
We begin by defining the entities and properties that will be studied.
To determine whether or not there has been any change in perfor-
mance, a series of performance tests with various configurations
is run. A time series 𝑡 ∈ 𝑇 is the performance tests that have been
configured uniquely using the project, variant, task, test, measure-
ment and args options. Assuming that𝑉𝑠𝑡 is a list of versions doing
the performance test in 𝑡 , 𝑉𝑠𝑡 = [𝑉1,𝑉2, ...,𝑉𝑛]. For one version 𝑉𝑖 ,
a set of source code files are changed, 𝐹𝑉𝑖 = {𝑓1, 𝑓2, ...𝑓𝑚}. Change
points is a subset of versions that are automatically identified when
statistical changes occur in 𝑡 ,𝐶𝑃𝑠𝑡 ⊆ 𝑉𝑠𝑡 . Beginning with a sample
of triaged change points, we derive a set of features for each change
point that may help distinguish false positives from true positives.
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The selection of features is motivated by previous research that
investigated the root causes of performance failures and the change
proneness of the code. We classified these features into three cat-
egories: features about the configuration of the performance test
(Time Series), features about the execution result of the version
(Execution Result) and features about the development history of
the changed files (File History).

Then, we apply statistical hypothesis testing intending to char-
acterize the TCPs and FCPs. Specially, we perform a non-parmetric
MannWhitney U test [3] with the null hypothesis being that there
is NO difference between the feature values of TCPs and FCPs. If a
significant difference is observed, we believe that the correspond-
ing features can be used to characterize a change point, and vice
versa. Additionally, Cliff’s Delta Effect Size is used to characterize
the magnitude of such a difference [7]. Table 1 shows the studied
features and quantitative analysis results. We emphasize the cell
with a significant difference, and use a darker color to indicate a
larger effect size. The following paragraphs analyze these findings
in terms of each feature category.

Table 1: Studied Features

Dim Feature P-value & Effect Size

project ***S
variant ***S
task ***N

Time test ***N
Series measurement ***S

mongod ***N
thread_level ***M

percent_change **N
z_score_change #N

Execution num_build_failures ***L
Result last_change_age ***S

last_status ***N
change_rate ***S
max\min\avg_value ***N ***S ***N

max\min\avg_cor_scores ***N ***M ***M
File max\min\avg_ver_cnts ***S ***N ***S
History max\min\avg_dev_cnts ***S ***N ***S

max\min\avg_alines ***S ***N ***N
max\min\avg_dlines ***N ***S ***N

*** p<0.01, ** p<0.01, * p<0.05, # p>=0.05
N: Negligible, S:Small, M:Medium, L: Large

Time Series Related Features: The data collected over time for
each test measurement, with each time series being uniquely iden-
tified by the combination of configuration options. In this sense, we
assume that a change point with different configuration should be
treated differently. These features are extracted directly from the in-
formation of the time series for each change point. For quantitative
analysis, the non-numerical features are transformed into categori-
cal data types and assigned code that corresponds to the category’s
actual value. The majority of features differ significantly between
TCPs and FCPs. Specially, the number of threads (thread_level) used

to run the performance test can contribute to distinguishing the
change points. In detail, the number of threads of TCPs is larger
than FCPs. This may imply that additional attention should be paid
to the performance tests runned with more threads. In contrast,
task, test andmongod seems do not have substantial difference. The
main causes of this phenomenon is an imbalance of data between
them.

Execution Result Related Features: The execution results for
change points should also be considered, and an ideal true positive
change point should have large potential changes. These features
are determined by the measurement of the change points. However,
the features that quantify the magnitude of the change point (such
as percent_change and z_score_change), which are frequently used
for change point detection, do not exhibit significant differences
between TCPs and FCPs, As a result, the result indicates that the
additional scenarios should be considered. Unsurprisingly, the num-
ber of the linked build failures (build_failures) is significantly larger
for TCPs than FCPs. Additionally, we design features to track the
changes made to previous versions of the same time series. We
further find that TCPs tend to be recently changed (last_change_age
is defined as number of versions from the last change), with higher
change rate (change_rate is defined as the percent of changed points
among the previous versions in the time series) and higher min-
imum reported value from the test among the previous versions
(min_value).

File History Related Features: Ideally, the development his-
tory of related entities is an important factor in determining perfor-
mance regression prone tests [1]. We employ features to describe
the evolution history of the changed files in a changed point. This
features are extracted by analyzing the information on git versions.
Obviously, most version involve changes in multiple files. A cor-
relation score is defined refers to the confidence of an association
rule between a time series and a source file. To be more precise, the
correlation score for a time series 𝑡 and source file 𝑓 is defined as:

𝑐𝑜𝑟_𝑠𝑐𝑜𝑟𝑒 (𝑓 , 𝑡) =
|𝑉𝑠𝑡,𝑓 ∩𝐶𝑃𝑠𝑡 |
|𝑉𝑠𝑡,𝑓 ∩𝑉𝑠𝑡 |

where 𝑉𝑠𝑡,𝑓 is the subset of 𝑉𝑠𝑡 , in which 𝑓 has been changed.
For each file in one changed point, we extract four features: added

and deleted lines within this file in this version (alines and dlines),
and calculate the number of versions where this file changed and
the cumulative number of distinct developers who contributed to
this file up to this version in one time series (ver_cnts and dev_cnts).
Each feature refers to the weighted sum (weighted by correlation
scores) of the feature of the changed files. For example, the weighted
summation of the version counts of changed files in time series
𝑡 is calculated as follows, assuming that function 𝑣𝑒𝑟_𝑐𝑛𝑡 (𝑓 , 𝑡,𝑉𝑖 )
computes the number of versions where 𝑓 has been changed up to
𝑉𝑖 in 𝑡 .

𝑣𝑒𝑟_𝑐𝑛𝑡𝑠 =
∑
𝑓 ∈𝐹𝑉𝑖

𝑣𝑒𝑟_𝑐𝑛𝑡 (𝑓 , 𝑡,𝑉𝑖 ) ∗ 𝑐𝑜𝑟_𝑠𝑐𝑜𝑟𝑒 (𝑓 , 𝑡)

The results indicate that these investigated features can be uti-
lized for characterizing TCPs. Specifically, features related to the
cor_scores play a larger contribution in TCPs characterization. It
reveals that if the changed files has higher correlation to the time
series, the change tends to be a real one. Also, TCPs tends to be
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with short history, less developers, and less added and deleted lines.
This may implies that a changed should be confirmed if it related
to a clear/simple code change.

3 TRIAGING CHANGE POINTS
This section will investigate to what extent the features proposed
in Table 1 can be used to triage the change points. We use the
features listed above to build machine learning models that pre-
dict whether a change point is true positive or false positive The
following questions will be addressed.

•RQ1: Are the proposed features good at triaging change points?
•RQ2: What is the contribution of each category or each individ-

ual of features in triaging change points?

3.1 Answering RQ1
To address RQ1, we compare the prediction performance of 4 widely
used classification algorithms: i.e., Logistic Regression (LR) [16],
Decision Tree (DT) [15], Support Vector Machine (SVM) [4], and
Random Forest (RF) [18]. Cross-validated grid-search over a param-
eter grid is used to optimize the estimator parameters used to apply
these methods [19]. For evaluation, we conduct 10-fold cross vali-
dation and repeat it 10 times, collecting a total of 100 evaluations
for each model. We evaluate the prediction performance using two
widely used metrics:

• Area Under the Curve (AUC): refers to the area under the
receiver operating characteristic curve, which measures the
overall discriminationability of the model.

• PofG: borrowed from defect prediction studies [24] for effort-
aware evaluation. PofG@K is defined as the percentage of
true positive change points identified through examination
of the model’s topK percent change points.

Using AUC as a measure of the overall effectiveness, Fig 1 shows
that all the four classifiers are considered applicable [21]. Even the
worst one, DT-based model, achieved minimum AUC values of 0.79.
Specially, RF-based model outperforms the others, with the AUC
values ranging from 0.97 to 0.99 (with median of 0.985).

Fig 2 shows the average value for PofG@K (K is set between 0.1
and 0.6 with an interval 0.05 ) in evaluations. The average PofG@15
of RF-based model is 0.5, and the average PofG@35 reached 0.8. The
result indicated that by inspecting a mere of 15% change points
predicted by our model, 50% of the total true positive change points
can be retrieved on average, and by inspecting a mere of 35% change
points predicted by our model, about 80% of the total true positive
change points can be retrieved. Although, DT-based model perform
better than RF-based model with PofG@K when K ranges from 0.2
to 0.35, but its AUC is much lower (range from 0.79 to 0.95 with
median of 0.84).

In all, machine learning models can be used to triage the change
points based on our proposed features. In particular, the results
indicate that RF-based model are good at triagement.

3.2 Answering RQ2
To answer RQ2, we use the same experimental setup for RQ1 and
considers the best performing model from RQ1 (i.e, RF-based model)
as the model under investigation in RQ2. This section builds the
prediction model with a subset of the features and introduces the

Figure 1: AUC under difference machine learning models

Figure 2: PofG@K under difference machine learning mod-
els

statistical tests performed on the feature importances and describes
the results.

Feature categories: We investigate whether different feature
categories may be important collectively for good prediction per-
formance. We conduct experiments include a single category of
features first, and then exclude each category of features separately.
For each experiment, we calculate the 𝐴𝑈𝐶 of the triagement and
compare it to the𝐴𝑈𝐶 of the original classifier with the full feature
set. The more the 𝐴𝑈𝐶 values decrease, the more important the
group of features are. Statistical tests are used to determine the
significance and magnitude of the performance change.

Table 2: Importance of Feature Category

Feature

Include Exclude

AUC
P-value &

AUC
P-value &

Effect Size Effect Size

Time Series 0.88 ***L 0.985 *N
Execution Result 0.949 ***L 0.968 ***L
File History 0.928 ***L 0.963 ***L

Table 2 shows the median AUC of models built include and
exclude each category as well as the significance and magnitude of
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the difference. The result demonstrates that in most case, the model
suffers a sharply drop in AUC which is significantly lower than the
performance using the whole set of features. The only exception
is that the performance remain unchanged when removing the
time series related features. This indicates that features related
to the change and process are significantly more important for
good predictions than the features related to the time series, when
considering their collective importance.

Individual Feature: To investigates the importance of each
individual feature, we adopt the Mean Decrease Impurity (MDI)
[17]. Use the same experimental setup for RQ1, we can compute
100 importance scores for each feature. We then perform the non-
parametric version of the Scott-Knott Effect Size Difference (ESD)
test [22] on the importance scores to assign ranks for them.

The left part Table 3 shows the importance scores for 15 most
important features. We can find that the cumulative importance of
the top 15 features reached 80%. Specially, 4 features are individually
important for good predictions (cumulative importance of them is
larger than 50%). The number of build failures is the most important
feature with a median importance of 0.38, which is consistent with
the result of characterization. The second important features are the
type of task and test of the time series, with a median importance
of 0.042 and 0.041, respectively. The third most important features
are related to the max number of deleted lines (median of 0.0397).
These result suggest that there is a collective importance of different
individual features from different categories for machine learning
models with high prediction performance.

We also conduct the experiment to study the performance of
using a subset of important features. The right part of Table 3 shows
the prediction results by using the top n important features, and
whether the results are significantly different from using the full
feature set. The result shows that 𝐴𝑈𝐶 could reach 0.8981 with the
most important feature, i.e. build_failures. Although, task and test
are important but including them has reduced the prediction per-
formance. It happened because they can not be used to distinguish
𝑇𝐶𝑃𝑠 and 𝐹𝐶𝑃𝑠 significantly as discussed in Section 2. When we
use more than the top 7 features,𝐴𝑈𝐶 is statically the same as using
the full feature set (where p-value is larger than 0.001). Specially,
when we use more then top 10 features,𝐴𝑈𝐶 reached 0.988 which is
higher than using all features. It implies that less important features
may have adverse side effects in prediction models.

4 THREATS TO VALIDITY
Internal threats stem from the acquisition of available data. Some
performance test configurations are only applicable to a few ver-
sions, resulting in fewer execution records for time series that affect
the quality of the datasets negatively. External validity is primarily
threatened by the machine learning models and metrics used in our
experiment. However, since we focus on the evaluation of features
rather than machine learning techniques, the results of our study
do hold for all RQs and the threat is relatively small.

5 RELATEDWORK
Testing software continuously can greatly benefit from automated
verification performed on continuous integration (CI) servers. Per-
formance perspective is recently studied during this continuous

Table 3: Importance of Features

Feature Importance
Cumulative

AUC
P-value &

Importance Effect Size

build_failures 0.3835 0.3835 0.8981 *** L
task 0.0418 0.4254 0.8290 *** L
test 0.0414 0.4668 0.8798 *** L
max_dlines 0.0397 0.5065 0.9745 *** L
avg_alines 0.0366 0.5431 0.9777 *** L
variant 0.0325 0.5756 0.9811 *** L
max_alines 0.0323 0.6078 0.9847 ** M
avg_cor_scores 0.0297 0.6375 0.9845 * M
avg_dlines 0.0294 0.6670 0.9857 # S
thread_level 0.0274 0.6944 0.9883 # N
min_alines 0.0268 0.7211 0.9878 # N
avg_ver_cnts 0.0263 0.7474 0.9868 # N
project 0.0239 0.7714 0.9870 # N
min_cor_scores 0.0235 0.7948 0.9875 # N
avg_dev_cnts 0.0212 0.8161 0.9886 # N

development process [6, 8, 10]. Performance observations depend
on the running of performance test which involved high overhead
and variability [11, 12]. Identifying performance changes in the
test results is a well-known challenge in performance engineering.
Previous work has focused on applying change point detection
algorithms on performance observations. To deal with the vari-
ability, researchers applied repetitive measurement [2, 11, 13] and
statistical approaches [6, 9, 14]. Despite the performance test re-
sults, researchers also studied the performance change from the
other perspectives. For example, statically-computed source code
features [1, 11], history related features [1]. To make the change
point detection approach more practical, it would be beneficial to
automatically triage true positive changes points from the large
amounts of detected change points. There have been various exist-
ing researches focused on classifying reports with kinds of features.
Bug reports have been classified with rich textual descriptions [26]
and even the visual features[23]. Static warnings have been classi-
fied with features related to code stucutures, file stucutures, and
process [25]. But little is done for triaging change points.

6 CONCLUSIONS AND FUTUREWORK
The goal of this work is to identify the differences between TCPs
and FCPs and recommend candidate true positive change points for
developers to reduce their burden. Quantitative analysis shows that
TCPs and FCPs have distinct features. Then we use these features
to build a machine learning model to triage change points. As a
result, these features can suggest TCPs to developers. In the future,
we can extract more features by combining the relationship of the
code to enhance our current approach.
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