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ABSTRACT
Performance regression testing is a foundation of modern DevOps
processes and pipelines. Thus, the detection of change points, i.e.,
updates or commits that cause a significant change in the perfor-
mance of the software, is of special importance. Typically, validating
potential change points relies on humans, which is a considerable
bottleneck and costs time and effort. This work proposes a solution
to classify and detect change points automatically. On the perfor-
mance test data set provided by MongoDB, our approach classifies
potential change points with an AUC of 95.8% and accuracy of
94.3%, whereas the detection and classification of change points
based on previous and the current commits exhibits an AUC of
92.0% and accuracy of 84.3%. In both cases, our approach can save
time-consuming and costly human work.
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•General and reference→Measurement;Metrics; •Comput-
ing methodologies → Machine learning; • Software and its
engineering → Software performance.
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1 INTRODUCTION
With the emerging DevOps principle, performance regression test-
ing has become an essential process in software development to
keep track of the performance as one of the quality attributes of the
software product. Automating performance regression testing is
necessary to cope with the high frequency of commits and releases.
The detection of change points, i.e., updates or commits that cause
a significant change in the performance of the software, is of par-
ticular importance. If the detected performance change is negative,
the rollout of the version might be stopped.

MongoDB is known as a pioneer in the area of performance
regression testing and change point detection [4, 6]. However, their
proposed approaches still rely on human power to validate (triage)
the results of the change points algorithm. This creates a new
bottleneck in the testing pipeline and further costs. Our solution
process is divided into three steps to approach this problem: First,
we have to develop a model that can classify detected points in
false and true positives. This results in RQ1: How to describe a
change point for machine learning models?. Second, we evaluate
the performance of different models on pre-labeled data from the
MongoDB data set [5] to answer RQ2:Which model is suitable for
the automated triage of pre-labeled performance change points? As a
final step, we need to apply our resulting model to unlabeled data
to tackle RQ3: How can the model be applied on unlabeled data?

We propose a novel approach for the automated detection and
triage of change points to address the research questions. The key
idea is to describe the commits before as well as after a potential
change point with time series characteristics and use them as fea-
tures to classify this point. Moreover, we evaluate the performance
of different machine learning models for the automated triage of
change points. The results show that a random forest model can
classify pre-labeled data from MongoDB with an AUC (area un-
der the curve) of 95.8% and accuracy of 94.3%. Then, we derive a
window size heuristic to apply the model to unlabeled data. On
this unlabeled data, our approach finds 698,766 additional change
points and exhibits an AUC of 92.0% and accuracy of 84.3%. Both
the approach and the results are available at GitHub1. To sum up,

1GitHub: https://github.com/DescartesResearch/ICPE_DATA_CHALLENGE22
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our approach can be used to classify already found potential change
points or detect and classify change points directly results of per-
formance regression tests. In both cases, our approach can save
time-consuming and costly human work.

The remainder of our paper is structured as follows: In Section 2,
we introduce the applied time series characteristics and machine
learningmethods and summarize preliminary work ofMongoDB. In
Section 3, we describe and evaluate the methodology for classifying
potential change points. Section 4 presents and evaluates the change
point detection algorithm. In Section 5, we discuss threats to validity,
while Section 6 concludes the paper.

2 BACKGROUND
2.1 Time Series Characteristics
In general, the observations forming a time series are assumed to
be recorded in consecutive and equidistant time steps (e.g., days). In
the case of MongoDB’s performance data, this assumption does not
hold because the performance data are time-discrete measurements:
A performance test is only triggered after a commit, and the re-
sulting measurement was therefore recorded at irregular intervals.
Consequently, this collection of performance measurements forms
an unevenly distributed time series. In the following, we refer to
the univariate, unevenly distributed time series just as time series.

Since time series can vary in length and are therefore difficult
to compare, we transform a time series from the time domain to a
feature domain. This transformation has the advantage that each
time series has the same number of features regardless of its length.
An appropriate combination of time series features (also referred to
as time series characteristics) is required to train machine learning
models with high accuracy to detect change points. To this end,
we applied a genetic search algorithm to find such a subset out
of 20 considered time series characteristics [1, 8, 10]. The genetic
search algorithm was configured with a population size of 200,
stopped after 71 generations, and used the classification accuracy
as the fitness function. In total, 10,752 time series characteristics
combinations were tested. The resulting eight characteristics are
described as follows:
Crossing points: The number a time series crosses the median line.
Spectral entropy: This characteristic is the Shannon entropy of the
spectral density of the time series.
Max shift: The largest mean shift between two consecutive sliding
windows of a time series.
Norm mean and norm sd: The mean and standard deviation of the
min-max-normalized values of a time series.
Serial Correlation: This characteristic describes the correlation of
the time series with itself to an earlier time.
Stability and lumpiness: For calculating these characteristics, the
time series is broken down into non-overlapping sub-time series.
For each of these sub-time series, the means and variances are
calculated. The stability is the variance of the means of the sub-
time series, and the lumpiness is the variance of the variances of
the sub-time series.

2.2 Random Forest
A random forest [2, 7] consists of multiple decision trees, where the
prediction is the average (regression) or majority (classification) of

each tree’s output. The method trains several decision trees on the
bootstrapped training samples, but for each split, only a random
sample of the features is considered in each tree. The decision trees
within the ensemble focus not only on dominant features but also
on features that would not be selected for the top split.

2.3 Support Vector Machines
SVMs [9] are typically used for classification and pattern recogni-
tion. For example, in binary classification, the basic idea of SVM is
to find a linear separator that partitions the data into two classes.
The separation line is fit so that the margin between the line and the
borderline cases is maximized. In other words, the training samples
are represented by their feature vectors in high-dimensional space,
and the SVM is trained to find a line where all samples from one
class are on one side and all other samples are on the other side.

2.4 Extreme Gradient Boosting
XGBoost [3] is an ensemble of decision trees based on gradient
boosting. Here, the trees are grown sequentially in the boosting
approach. Each tree is grown on a modified version of the original
data set while using the previously grown trees’ information. Each
tree learns from its predecessors and updates the residual errors.
That is, each subsequent tree is fit to the current residuals instead
of the target. The newly grown tree is then added to the fitted
function to update the residuals. This procedure is repeated until
the accuracy is no longer improved.

2.5 Related Work
Daly et al. [6] describe their experience of employing change point
detection to performance measurements to identify commits that
introduce performance changes. The initial approach comprised
humans looking at graphs and manually picking change points.
This expensive, error-prone, hardly scalable methodology was su-
perseded by a threshold-based algorithm. However, choosing a
threshold capable of detecting change points while ignoring per-
formance variations due to noise proved to be infeasible. A large
number of false positives resulted in only 1% of automatic noti-
fications being relevant. Applying E-Divisive Means, a statistical
analysis approach for change point classification, showed much
better results, with a 67% percentage of useful automatic reports.

In a follow-up, Daly [4] elaborates on the changes of the testing
infrastructure, where the change point detection is embedded, and
their impact on workflows and development efficiency. A key take-
away here is that increases in testing frequency and extensiveness
require intelligent automation; otherwise, humans cannot compre-
hend the results on time. In return, more significant amounts of
timely feedback positively affect developer productivity and ulti-
mately result in better software.

3 CLASSIFICATION OF CHANGE POINTS
3.1 Preparing the Data Set for the Classification
The main idea of our approach is to use machine learning to predict
whether a given point is a change point or not. Each point repre-
sents a commit and its reported performance measurements - in
the case of the MongoDB data set aggregated measures like the
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90𝑡ℎ percentile. In a first step, we retrieve from the data set 7,795
time series comprising 15,331 triaged (labeled as true positive or
false positive) points by MongoDB. Then, for each triaged point,
we extract two sub-time series from the time series containing that
point: Pre and After. The idea of determining Pre and After is de-
picted in Figure 1. Pre starts at the previous confirmed change point
𝑝− (labeled as true positive) and ends before the potential change
point 𝑝 . After starts with 𝑝 and ends before the next confirmed
change point 𝑝+. Mathematically, let 𝐼 𝑗 be the index of point 𝑗 ,
then Pre = [𝐼𝑝− + 1; 𝐼𝑝 − 1] and After = [𝐼𝑝 ; 𝐼𝑝+ − 1]. If there is no
confirmed change point before or after 𝑞, the start is set to the first
point or the last point of the time series, respectively.
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Figure 1: Example extraction of sub-time series.

3.2 Training the Classification Algorithms
As described in Section 2, we transform both Pre and After from
the time domain to the feature domain, since machine learning
methods require a fixed input size. That is, each sub-time series
is now described by a set of eight features (see Section 2.1). Each
time series characteristic is calculated separately on Pre and After,
except for norm mean and norm sd. For these two characteristics,
the min-max-normalization takes place on the merged Pre and After
sub-time series of a potential change point.

The characteristics of Pre and After are the features2 and the
target are the labels of the triaged points (true positive or false
positive). To train and test the methods described in Section 2, we
split this data into 80% train and 20% test set. Furthermore, the train
set is further divided to use 10% for validation. To avoid arbitrary
partitions, we split the data 100 times randomly. All methods were
optimized and trained with the R caret package.

3.3 Machine Learning Approaches Comparison
To determine which machine learning method performs best for the
change point classification (RQ2), we compare three state-of-the-art
methods against each other. Each method was trained and tested
on the 100 splits as described in Section 3.2. The results are shown
in Table 1. Each cell shows the mean value and the 95% confidence

2We also tried the difference and the change of these characteristics but considering
the characteristics of Pre and After yielded the best results.

interval. The best values are highlighted in bold. Random forest
exhibits the best values for AUC (area under the curve), accuracy,
sensitivity, and specificity, all over 94%. Therefore, we chose this
method for our approach and further experiments.

Measure Random Forest SVM XGBoost

AUC [%] 98.50 [98.46;98.54] 94.54 [94.46;94.62] 94.60 [94.52;94.68]
Accuracy [%] 94.34 [94.25;94.43] 89.03 [88.92;89.14] 88.38 [88.25;88.51]
Sensitivity [%] 94.40 [94.27;94.53] 87.36 [87.17;87.55] 86.77 [86.57;86.96]
Specificity [%] 94.29 [94.17;94.42] 90.44 [90.30;90.58] 89.74 [89.58;89.90]

Table 1: Comparison of the machine learning approaches.

We applied the trained random forest model to the commits in
the data set labeled as not triaged. That is, we calculated Pre and
After for each of these points and fed this information into the
model. Our model classified 40% of these commits as true change
points. The list of these classified change points is available online3.

3.4 Investigation of Window Size
So far, our approach can only classify potential change points if
information about all change points within a time series is avail-
able. To find a change point as soon as possible, this approach is
not feasible. Therefore, we investigate in this section how many
commits are needed to classify a potential change point. Similar to
Section 3.1, we generate Pre and After for a potential change point,
but this time After has a limited window size 𝑤 . In order not to
corrupt the results in the following experiment, i.e., having multiple
true change points in a window, After ends after the minimum of
(𝐼𝑝 +𝑤) or (𝐼𝑝+ − 1), where 𝐼𝑝 is the index of the potential change
point and 𝐼𝑝+ the index of the next confirmed change point.

The value𝑤 ranges from 0 to 10, where 0 means that we consider
only the potential change point as After. The results are depicted in
Figure 2, where each point represents the average over the 100 splits
and shows the 95% confidence interval. The dashed line illustrates
the AUC value for the adaptive splitting as described in Section 3.1.
The AUC improves with increasing window size up to 9, after which
it begins to deteriorate. Remarkably, window size 0 has an AUC of
96.5%. Consequently, we can determine with high accuracy whether
a commit is a change point regardless of subsequent commits.

0 1 2 3 4 5 6 7 8 9 10
96.5

97.0

97.5

98.0

98.5
Adaptive window size

Window Size

A
U
C
[%
]

Figure 2: Comparison of different window sizes

3Classified commits: https://github.com/DescartesResearch/ICPE_DATA_
CHALLENGE22/blob/main/Output/classified_points.csv
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4 DETECTION OF CHANGE POINTS
4.1 Detection Algorithm
Based on the insights gained in the previous section, we introduce a
change point detection algorithm that decides whether a commit is
a change point based on previous commits and the current commit.
The basic idea is that our approach is applied every time a perfor-
mance measurement of a commit is available and classifies this
commit either as a change point or not. Therefore, the algorithm
maintains a list of change points that it has previously found. The
change point detection workflow is shown in Algorithm 1. The
algorithm extracts from the previous commits the Pre sub-time
series (see Section 3.1). If the algorithm had previously detected a
change point, Pre starts from this point; otherwise, Pre contains all
previous commits. For After, only the current commit is considered.
Then, the time series features (see Section 2.1) for Pre and After are
calculated and passed to the classification model trained on win-
dows size 0 (see Section 3.4). Finally, the algorithm returns whether
the current commit is a change point or not.

Algorithm 1: Change point detection workflow.
Input: Previous commits ts, current commit c, found change points

cp, classification model model
Result: Classification of current commit

1 s = 0;
2 if cp ≠ ∅ then
3 s = cp.top(); // get index of last change point

4 Pre = ts[s to end]; // only commits since index s

5 After = c; // After is only current commit

6 features = calculateCharacteristics(Pre,After); // see Sec. 3.2

7 b = classify(features, model);
8 if b then // classified as change point

9 cp.push(length(ts)+1); // add index of current measurement

10 return b

4.2 Evaluation
To evaluate our detection approach, we apply the algorithm for each
commit in each time series in the data set to detect whether this
point is a change point or not. In total, we investigated 21,913,750
points in 795,171 time series. Here, we found 775,541 change points.
Comparing these with the labeled points by MongoDB, we found
5,304 change points that are labeled as change points (true positive),
729 as false positives, and 270,189 as not triaged or under inves-
tigation. That means that our detection approach has an AUC of
92.0% and accuracy of 84.3% on the labeled points. The decrease in
these two measures can be explained by the fact that, unlike the
classification task in Section 3, the algorithm does not have infor-
mation about which points are change points, leading to different
Pre sub-time series when a change point is not found or is found
incorrectly. The remaining 698,766 change points were not found
by the detection algorithm of MongoDB. The list of detected change
points can be found online4.

4Detected change points: https://github.com/DescartesResearch/ICPE_DATA_
CHALLENGE22/blob/main/Output/detected_change_points.csv

5 DISCUSSION AND THREATS TO VALIDITY
As our approach was trained and tested on the data set provided
by MongoDB, the approach is tailored to this data. Thus the results
may not be generalizable. However, the approach can easily be
adapted to other data, i.e., training the classification algorithm on
these data. To classify and detect whether a commit is a change
point, we rely on the labeling previously done by MongoDB. As
the labeling was done by a human expert, it may be prone to error.
Consequently, our approach may propagate this error. However,
unlike MongoDB’s current approach, our approach detects change
points immediately after reporting the result of the commit, without
requiring a human expert to intervene. Moreover, the found 769,508
change points that are labeled as not triaged or were not found by
the detection algorithm of MongoDB. Still, due to the high accuracy
of our approach, we are confident that these are real change points.

6 CONCLUSION
In this work, we present a novel machine learning-based approach
to detect change points in performance regression tests automati-
cally. To train the model, we describe the commits before and after a
potential change point with time series characteristics (RQ1). Then,
we compare three different machine learning methods, where ran-
dom forest yields the best results (RQ2). To apply the classification
on unlabeled data, we investigate different window sizes and de-
velop an algorithm that iterates over the commits to detect change
points (RQ3). The classification on the pre-labeled data exhibits an
AUC of 98.5%, while the detection algorithm exhibits an AUC of
92.0%. Our approach can classify potential change points already
found or detect and classify change points directly from perfor-
mance regression tests. In both cases, our approach can save or
reduce time-consuming and costly human work.
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