
Optimizing the Performance of Fog Computing Environments
Using AI and Co-Simulation

Shreshth Tuli
Imperial College London

London, UK
s.tuli20@imperial.ac.uk

Giuliano Casale
Imperial College London

London, UK
g.casale@imperial.ac.uk

ABSTRACT
This tutorial presents a performance engineering approach for opti-
mizing the Quality of Service (QoS) of Edge/Fog/Cloud Computing
environments using AI and Coupled-Simulation being developed as
part of the Co-Simulation based Container Orchestration (COSCO)
framework. It introduces fundamental AI and co-simulation con-
cepts, their importance in QoS optimization and performance engi-
neering challenges in the context of Fog computing. It also discusses
how AI models, specifically, deep neural networks (DNNs), can be
used in tandem with simulated estimates to take optimal resource
management decisions. Additionally, we discuss a few use cases
of training DNNs as surrogates to estimate key QoS metrics and
utilize such models to build policies for dynamic scheduling in a dis-
tributed fog environment. The tutorial demonstrates these concepts
using the COSCO framework. Metric monitoring and simulation
primitives in COSCO demonstrates the efficacy of an AI and simu-
lation based scheduler on a fog/cloud platform. Finally, we provide
AI baselines for resource management problems that arise in the
area of fog management.

CCS CONCEPTS
•Computer systems organization→ Embedded and cyber-physical
systems; • Computing methodologies→ Artificial intelligence.
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1 INTRODUCTION
In recent years, the landscape of computing technologies has seen
a gradual yet remarkable shift from hand-encoded algorithms to
Artificial Intelligence (AI) driven autonomous systems for Quality
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of Service (QoS) aware reliable resource management [3]. Further,
research communities are now relying on coupled simulation en-
gines (also referred to as co-simulators in literature) that act as
digital-twins of the computing infrastructure, i.e, approximate mod-
els that facilitate testing several resource management decisions
before executing them on physical deployments. The last few years
have seen that the research and development has been focused on
leveraging platforms such as Internet of Things (IoT), edge, fog
and cloud for enhanced service delivery. The state-of-the-art prior
work focuses on augmenting existing systems and using AI and
co-simulators for a wide range of domains including efficient re-
source provisioning, application deployment, task placement and
service management. This calls for the development of special-
ized modeling, testing and resource management techniques that
can effectively harness AI and co-simulation technologies to reach
optimum QoS in fog environments.

In this tutorial, we demonstrate tools and frameworks that aim
to facilitate research for the development and deployment of AI
and co-simulation based applications on fog environments with
structured communication and platform-independent execution of
applications. A recent such tool is the Co-Simulation based Con-
tainer Orchestration (COSCO) framework [20].1 Such tools connect
all edge, fog and cloud nodes in a physical setup using lightweight
communication APIs, such as HTTP REST, and allow AI-based re-
source management modules to not only utilize the system and
workload resource utilization characteristics, but also simulated
characteristics at a future state of the system. The interleaved execu-
tion of AI models and coupled simulation has been utilized by prior
work for long-term performance optimization [6, 18], quick adapta-
tion in volatile system settings [1] and fault-aware scheduling for
resilient service delivery [8, 16, 19]. The objective of this tutorial is
to demonstrate the various challenges posed by the integration of
AI in fog environments and how they are addressed by the various
contributions in recent work [17, 18, 20].

This tutorial initially introduces the fog architecture, the con-
tinuum of edge and cloud resources it presents, and the challenges
posed in the context of performance engineering. The focus then
shifts to the modeling of such distributed computing domains in
the COSCO framework, with specific emphasis on the various in-
puts and outputs presented to an optimization engine, which in
this context is an AI model. We discuss the various data sources,
such as resource utilization characteristics, which can be used to
train an AI agent using a co-simulator to act as a surrogate of
the QoS metrics of future states of the fog systems. Leveraging
the trained model, the tutorial demonstrates how we can optimize

1The code for the COSCO framework is publicly available under BSD-3 license https:
//github.com/imperial-qore/COSCO.
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service delivery by making QoS aware resource management deci-
sions such as scheduling of incoming tasks. To do this, we deploy
popular fog benchmarking applications [10] and demonstrate the
performance improvements compared to heuristic based methods
using the monitoring tools in COSCO. A part of the tutorial, in-
cluding demonstrations of QoS aware scheduling, are available
as YouTube videos: https://www.youtube.com/playlist?list=
PLN_nzHzuaOBQijEwy2Fy8c09-dWYVe4XO.

2 OVERVIEW OF FOG RESOURCE
MANAGEMENT

Computing paradigms have changed from mainframes and client-
server models to cloud and edge computing models. The fundamen-
tal driver for this shift has been the advent of offering compute as
a service [10]. Cloud computing service providers offer utility for
scalable and reliable computing leveraging technologies such as
virtualization. Lightweight virtualization techniques such as con-
tainers, microservices and serverless computing further enhance
the service quality of cloud and edge platforms. We are now in
the era of IoT and big-data applications have given rise to the
emergence of hybrid compute platforms, such as fog computing,
that harness the resources of both edge and cloud layers. This has
given rise the increasing complexity of contemporary compute en-
vironments that managing their resources cannot entirely rely on
heuristics for optimum performance [20]. Thus, the community has
now moved towards AI-centric approaches for optimal resource
management [3].

Fog computing is an emerging paradigm in distributed systems,
which encompasses all intermediate devices between the IoT layer
and the cloud layer. It can drastically reduce latency of compute,
network and storage services by placing them closer to end users,
which is commonly called the edge of the network. This leads to a
multitude of benefits such as reduced latencies, lower costs, more
reliability and scalability. Considering the presence of billions of
edge nodes in close proximity to the users, with only thousands
of cloud nodes accessible to all, it becomes very expensive to run
everything at the edge. To make deployments feasible, edge devices
are often close to the user, but have limited processing capacities.
On the other hand, cloud devices are far away, but can handle much
heavier workloads. This gives rise to this research field on how to
carefully balance task placement to be within the latency demands
of users but also minimize deployment and execution costs [17].

However, the problem of resource management and specifically
task placement is challenging. One of the challenges we face in
such settings is to deliver low latencies for time-critical applica-
tions. For instance, many application domains, such as healthcare,
manufacturing and smart-cities demand ultra low response times
specifically for tasks that are sensitive to Service Level Agreements
(SLAs). Other applications, in an effort to drive toward a more sus-
tainable model, involve energy scavenging methods and renewable
resources [20]. Using such energy sources leads to the requirement
of supreme energy efficiency in task execution.

The challenge, however, of reaching low response times and
energy consumption is exacerbated by modern-day applications,
wherein the workloads are highly dynamic and host machines
having non-stationary resource capabilities. Prior work that uses

heuristics, reinforcement learning or other such methods, solves
these problems to a limited extent by sometimes not being quick
enough to adapt to volatile settings, being slow to converge or
just that they cant keep up with the extreme user demands. Data
driven methods, such as AI and deep learning aim to solve all these
challenges to provide optimal QoS in fog environments.

3 TECHNOLOGICAL DRIVERS
3.1 Neural Networks as Surrogate Models
The fundamental core of most modern AI based resource manage-
ment solutions is based on the idea of deep learning, which uses
deep neural networks. A neural network, akin to a cognitive brain,
is composed of neurons. Each neuron takes two or more inputs,
performs some elementary operations on those, such as a simple
dot product and produces a single output. When we stack multiple
such neurons for the same set of inputs, we can generate multiple
outputs and this is called a layer of neurons. When we stack such
layers together, we call these as deep neural networks. The main
advantages of a deep neural network is that, given enough data, it
can be tuned to approximate any given function to arbitrary level
of precision. When models approximate any given function, we
call them surrogates. The functions they approximate could be of
diverse kinds, including estimating the QoS parameters of a fog sys-
tem, such as energy consumption, average response time, fraction
of violations of the SLAs or say the operational costs of a hybrid
edge-cloud setup.

Surrogate modelling has been popular prior work and different
types of surrogate models have been used in the past. These in-
clude Support Vector Machines (SVMs), Gaussian Processes and
polynomial models. However, the main advantage that neural net-
works provide is that they can be trained to accurately match a
given dataset even with systems that dynamically change with
time, or when there are several data sources leading to a high-
dimensional data. These feature are canonical to heterogeneous fog
environments; hence, in recent years, neural networks have gained
popularity over the other types of models to act as surrogates of
parameters of fog systems.

3.2 Coupled-Simulation
As described above, neural networks have properties that make
them a good fit for surrogate modelling. However, simply using
gradient-based optimization is not sufficient as data driven neural
models can sometimes saturate. This is when feeding more data to
the neural model does not improve the performance. To address
this, we need out-of-distribution data, viz, data from settings that
the neural network has not seen before [2]. A promising method
to generate out-of-distribution data is to utilize a simulator. Such
a simulator, akin to a digital-twin, allows us to run simulations
in the background to facilitate decision making and injecting ad-
ditional information regarding the system behaviour within the
surrogate optimization methods. This is commonly referred to as
co-simulation in literature [20]. A co-simulator could be used to
virtually execute a sequence of decisions and observe how they
affect the environment and the objective QoS scores. Through this,
an optimum decision of a sequence of decisions may be obtained
to explore out-of-distribution configurations. This enables neural
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models to generalize to settings previously unseen during training
and alleviate the problem of data saturation.

4 CASE STUDIES
The above two technological drivers have been integrated by the
COSCO framework. This framework has been extended and applied
to diverse resource management problems in fog computing. We
now describe some case-studies arising from these technologies.

4.1 Bag-Of-Task Scheduling
Bag-of-task is a workload model wherein the individual tasks can
be processed independently and there are no precedence orders
between any two tasks in the system. Many neural network based
surrogate modelling methods have been proposed in the past that
leverage gradient-free optimization strategies such as evolution-
ary search and swarm optimization [11]. In discrete-time control
settings [20], the idea of GOBI* integrates a neural network as a
surrogate model with a co-simulator that provides a single-step
look-ahead of QoS estimates. This concept stems from the Gra-
dient based Optimization using Backpropagation to Input (GOBI)
approach. In this approach, we train a neural network model, say
𝑓 (𝑥, 𝜃 ), where 𝜃 are the parameters of the network and 𝑥 is the
state of the system. We characterize the state of a fog system using
the collection of resource utilization metrics (of tasks and hosts)
and the scheduling decision. The neural network 𝑓 predicts the
QoS metrics 𝑦 at the end of the next time interval. This can be
trained using multiple runs using a dataset of (𝑥,𝑦) pairs generated
using a random scheduler to capture diverse system states and
scheduling decisions 𝑥 and the QoS score 𝑦. Then, 𝜃 parameters
can be obtained such that the deviation between 𝑦 = 𝑓 (𝑥, 𝜃 ) and 𝑦
is minimized. Now that 𝑓 acts as a differentiable surrogate of the
QoS scores, we can use gradient optimization strategies such as
stochastic-gradient-descent to update the scheduling decision as

𝑥𝑛 ← 𝑥𝑛−1 − ∇𝑥 𝑓 (𝑥, 𝜃 ), (1)

where 𝑛 denotes the iteration count. Running the above till conver-
gence gives us a local-optimum schedule 𝑥 . Advances such as root-
mean-square propagation, momentum and warm restarts can be
used to avoid getting stuck in local optima [7, 9, 12]. GOBI* extends
this idea by also giving a QoS estimate from a co-simulator for the
decision 𝑥 . This helps us inject the system behaviour characteristics,
to which such neural models are oblivious towards. Additionally,
the co-simulated estimates facilitate solving the exposure bias and
data saturation problems [13].

However, an issue with the GOBI and GOBI* models is that they
utilize deterministic surrogate models. However, in pragmatic set-
tings, the systems and workloads are seldom deterministic [17]. Fur-
ther, most workloads follow high stochasticity in their behaviours.
To model this, the GOBI and GOBI* models have been extended
to utilize neural networks that generate stochastic outputs. One
such example is the GOSH approach. GOSH uses Natural Parameter
Networks (NPNs) that use weights as distributions themselves, and
enable the use of a fairly general distribution of weights from one
of the exponential class of distributions. Higher-order optimization
strategies in tandem with stochastic surrogate models have shown
improvements with respect to their deterministic counterparts [17].

4.2 Workflow Scheduling
Workflow applications, unlike bag-of-task models, impose prece-
dence constraints over the tasks in the form of directed-acyclic-
graphs (DAGs). similar to bag-of-task scheduling, the workflow
scheduling problem aims to efficiently map the tasks onto the avail-
able resources to optimize the QoS metrics. Many works have been
proposed that solve the workflow scheduling problem using AI
models as surrogates [4, 21]. However, the state-of-the-art work-
flow scheduler, MCDS [18], aims to address the limitation of the
GOBI/GOBI* approaches of only using single-step QoS predictions.
For multi-stage applications, such as scientific workflows, such a
myopic optimization models do not effectively capture the effects
on QoS in case of chain of tasks [18]. To address this, MCDS exe-
cutes additional simulation steps for a more informed decision. Such
policies are also referred to as long-horizon policies in literature [5].
MCDS adapts Monte-Carlo tree search approach to train a surrogate
for multi-step look-ahead estimates. Specifically, MCDS builds a
tree of system states and possible actions. At each timestep, for the
current system state, it selects a possible action using a balance of
exploration and exploitation objectives using the Upper-Confidence
Bound strategy [15]. It then expands the selected target state, runs
several multi-step co-simulations and feeds the QoS scores back to
the neural model. In the case of long-running workflow applica-
tions, we conjecture that such a long-term optimization model is
helpful. This is corroborated by experiments that demonstrate that
MCDS outperforms myopic optimization strategies that leverage
single-step surrogates with evolutionary search strategies [18].

4.3 Fault-Tolerance Using Migrations
In fog computing environments, resource management also entails
ensuring the system is able to avoid system or network level faults.
In particular, modern application demands of low latency task ex-
ecution and resource constraints of the edge devices exacerbate
the problem of effective resource management. The increasing vol-
umes of the data requiring immediate processing and the resource
constraints at the edge are pushing the compute resources to their
limits, giving rise to a high chance of resource contention and node
downtimes. This leads to resource unavailability and violation of
the SLAs that can possibly lead to significant financial losses. Fur-
ther, the problem of developing a robust fault-tolerance framework
requires us to proactively predict faults before they occur and diag-
nose the root-cause issues to be able to run appropriate remediation
steps. For such systems to be within the strict specifications of mod-
ern industrial demands, they need to be able to resolve diverse kinds
of system or network related faults. This may entail establishing
the type of fault at the time of its prediction for a more informed
recovery decision. Furthermore, to avoid overlooking any fault
that may cause significant adverse effects later and to avoid the
overhead of false-positive predictions, such prediction models need
to be extremely accurate. To combat this, several fault-tolerance
approaches have been proposed in the past [8]. Recent methods,
such as PreGAN [19], utilize both neural networks as well as co-
simulations to ensure fault-tolerance. Its neural network predicts
preemptive migration decisions to migrate tasks from hosts that
are predicted to have contentions in a future intervals and to avoid
contentions. Such a neural model is trained using co-simulated
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QoS estimates. This enables the preemptive migration decisions
to be informed on the environment characteristics and workload
behaviours. Such informed decisions enable PreGAN to outperform
prior methods in terms of fault-prediction accuracy and QoS [19].
COSCO allows preemptive migrations to facilitate research in the
direction of fault-tolerance.

4.4 Service Resilience in Edge Federations
Due to the inherent stochastic nature of workloads and fog envi-
ronments, no fault-prediction method is perfect. Faults may still
arise when prediction are not entirely accurate and there are false
negatives. In such cases, it is possible that nodes break-down due
to contentions. As fog systems typically follow a broker-worker
architecture, worker failures are easier to address by having redun-
dant workers or re-initializing the failed tasks on other workers.
However, if a broker node fails, it renders useless all worker nodes
handled by that broker as now the incoming workloads to that
brokers cannot be assigned to any of those workers. This makes the
broker resilience problem important to minimize service downtime
and improve QoS. Recently, several works have been proposed to
address this [8]. To test this, COSCO provides primitives to change
the topology of a fog federation, wherein, nodes can be shifted
from the broker to the worker layer and vice versa. A recently pro-
posed method validated in COSCO, namely CAROL [16], leverages
graph-neural-networks in tandem with co-simulations to predict
changes in the fog topology in case of broker breakdowns, in order
to optimize QoS in an online fashion.

5 DEMONSTRATIONS
The final part of the tutorial provided a hands-on experience using
demos to demonstrate how the COSCO framework and its primi-
tives can be utilized for research in fog computing.

COSCO Framework. COSCO2 is a Python based framework
that allows orchestration of docker containers in both simulated and
real distributed computing environments. COSCO uses the assump-
tion of the systemmodel that the execution runs for a bounded time
with the timeline divided into discrete intervals of fixed length. All
the workload creation, and decision making and execution of task
allocations and migrations are run at the start of an interval. Thus,
all modules in COSCO are discrete time controllers. The framework
provides an exhaustive wiki3 a pre-configured Gitpod container4 to
quickly deploy and test schedulers, provisioners and fault-tolerance
models. COSCO supports popular workload applications (BitBrain
workload traces [14] and DeFog benchmarks [10]) with support for
multiple Raspberry-Pi based edge and/or Microsoft Azure based
public cloud VMs to run various tests.

Recordings of the tutorial demonstrations can be accessed at
https://youtu.be/osjpaNmkm_w.

6 CONCLUSIONS
COSCO provides an interface to blend simulation driven feedback
with AI based resource management solutions. This enables us to

2COSCO Framework: https://github.com/imperial-qore/COSCO.
3COSCO Wiki: https://github.com/imperial-qore/COSCO/wiki.
4COSCOGitpod Container: https://gitpod.io/#https://github.com/imperial-
qore/COSCO/.

leverage neural networks as surrogate models to perform online
optimization of QoS in heterogeneous and distributed fog envi-
ronments. Further, co-simulated estimates aim us in ameliorating
the limitations of pure AI based solutions by injecting system and
workload behavioral information within black-box models such as
neural networks. The COSCO framework offers a platform for per-
formance engineering and extensions to other domains of dynamic
resource management of computational systems.
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