Poster and Demonstrations Tracks

ICPE ’22 Companion, April 9-13, 2022, Bejing, China

HLS_Profiler: Non-Intrusive Profiling tool for HLS based
Applications

Nupur Sumeet
nupur.sumeet@tcs.com
Tata Consultancy Services Research
Mumbai, Maharashtra, India

ABSTRACT

The High-Level Synthesis (HLS) tools aid in simplified and faster
design development without familiarity with Hardware Descrip-
tion Language (HDL) and Register Transfer Logic (RTL) design
flow that can be implemented on an FPGA (Field Programmable
Gate Array). However, it is not straight forward to trace and link
source code to synthesized hardware design. On the other hand,
the traditional RTL-based design development flow provides the
fine-grained performance profile through waveforms. With the
same level of visibility in HLS designs, the designers can identify
the performance-bottlenecks and obtain the target performance by
iteratively fine-tuning the source code. Although, the HLS develop-
ment tools provide the low-level waveforms, interpreting them in
terms of source code variables is a challenging and tedious task. Ad-
dressing this gap, we propose to demonstrate an automated profiler
tool, HLS_Profiler, that provides a performance profile of source
code in a cycle-accurate manner.

CCS CONCEPTS

« Hardware — Software tools for EDA; Board- and system-
level test; « General and reference — Evaluation.

KEYWORDS

Hardware profiling, HLS Designs, Performance Profile, Performance
Analysis

ACM Reference Format:

Nupur Sumeet, Deeksha, and Manoj Nambiar. 2022. HLS_Profiler: Non-
Intrusive Profiling tool for HLS based Applications. In Companion of the
2022 ACM/SPEC International Conference on Performance Engineering (ICPE
"22 Companion), April 9-13, 2022, Bejing, China. ACM, New York, NY, USA,
2 pages. https://doi.org/10.1145/3491204.3527496

1 PROBLEM MOTIVATION AND SOLUTION

A recent approach for hardware design development for FPGAs
is through High Level Synthesis (HLS) tools [1, 4]. With HLS, the
design development productivity improves as it supports high-
level languages (C/C++) and harwdare-specific details such as HDL
description, RTL datapath, operation scheduling etc. are abstracted
away from the developer. The HLS development flow includes

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ICPE 22 Companion, April 9-13,2022, Bejing, China

© 2022 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9159-7/22/04.

https://doi.org/10.1145/3491204.3527496

Deeksha
deeksha.14@tcs.com
Tata Consultancy Services Research
Mumbai, Maharashtra, India

19

Manoj Nambiar
m.nambiar@tcs.com
Tata Consultancy Services Research
Mumbai, Maharashtra, India

15 Developmen H[:'-‘LF“ESh =
HLS Com pilerl 2 g 5?
3 =
-‘g T *I waveforms %‘é':;
g
B recenmh Co-simulation o

Figure 1: Representative Profiling flow for HLS-based FPGA
design.

HLS compiler for generating HDL description of source code and
include co-simulation for cycle-accurate functional analysis. The
special directives (e.g. #pragma in Xilinx HLS tools[4]) available in
HLS tools help in design space exploration to improve the design
micro-architecture and FPGA hardware matching, but their efficient
use depends on the programming abilities and experience of the
developer.

As is the case in software design, the performance profile of
hardware design can help identify the performance bottlenecks and
aid the developer in fine-tuning the design performance. Vivado
HLS [4] and Intel HLS [1] are popular HLS tools used in industry.
These HLS tools provide the overall latency of the source code
along with the cycle-count at the loop or sub-function level but the
cycle accounting for every line of source code is not available.

Addressing this gap, we developed HLS_Profiler framework [3],
an automated and non-intrusive performance profiling tool that
provides a cycle-by-cycle association to every line of source code
for the entire application execution time. For this, the HLS_Profiler
uses the static analysis and dynamic trace available from the HLS
compilers along with associative rules to maintain correctness in
the profiling. The HLS_Profiler generated profiling data is indicative
of fraction of time spent on a certain section or line of code. The
representative diagram of HLS_Profiler is shown in Fig. 1.

1.1 Performance Tuning using HLS_Profiler:
User View

Developer can tune the performance of the design using HLS_Profiler
following simple steps as listed below:

1. Inputs: Source code, Test Bench, Synthesis Frequency and
Top Function Name.

2. Run the HLS_Profiler script.

3. Performance profile of the source code is available in a text
file.

4. Identify, optimize bottleneck and update source code with
appropriate pragma directive.

5. Repeat Steps 2-4 till performance target is met.

https://doi.org/10.1145/3491204.3527496
https://doi.org/10.1145/3491204.3527496

Poster and Demonstrations Tracks

ICPE ’22 Companion, April 9-13, 2022, Bejing, China

Table 1: HLS_Profiler Outputl: Summary reports for w/o and with pragma versions of GEMM Kkernel.

w/o Pragma with Pragma

TYPE = double, row_size = col_size = 64, N = row_size*col_size Lin ‘Z;It)len;: Overlapping Ln (% overlap) Lin ‘flt;emn: Overlapping Ln (% overlap)
1: void GEMM (TYPE m1[N], TYPE m2[N], TYPE prod[N]) {
2: outer: for (int i=0; i<row_size; i++) { 1 041 | 3(88.9), 4(88.9) 1 19.2 | 3(58.6). 8(100), 9(82.8), 11(89.6)
3: middle: for (int j=0; j<col_size; j++) { 1 1.83 | 2(20), 4(17.5), 6(80) , 7(40) , 8(40) 1 101 | 2(100), 8(100), 9(70.6), 11(100)
4: int i_col = i*col_size; 2 0.35 2(100), 3(87.5) - - -
5: TYPE sum = 0; - - - - -
6: inner: for (int k=0; k<row_size; k++) { 1 7.58 3(20) , 7(40) , 8(80), 9(40) , 11(10) - - -
7: int k_col = k * col_size; 1 1.98 3(25) , 6(100) , 8(100), 9(75) - - -
8: TYPE mult = m1[i_col + k] * m2[k_col +j]; 8 49.44 | 3(3.1), 6(25), 7(12.5) , 9(21.9) 6 229 | 2(87.9), 3(51.5), 9(84.9), 11(90.9)
9 sum += mult; 6 37.74 | 6(16.6), 7(12.5) , 8(29.2), 11(4.2) 5 236 | 2(77.4), 3(38.7), 8(90.3), 11(90.3)
10: }
11: prod[i_col + j] = sum; 1 0.66 | 6(100), 9(100) 2 243 | 2(78.8), 3(51.5), 8(90.9), 9(84.8)
12: } L - Line-wise latency. inner Ioop is unrolled using pragma. Ln #5 is missed since it has initialization
13: } statement. With Pragma, Ln # 4, 6, 7 are optimized out by HLS compiler. Initialization and optimized
14: } section of the source code are not recoverable by HLS_profiler and are limitations of the framework. [3]

The HLS_Profiler framework takes the C source code, C test bench,
synthesis frequency and top function name as user inputs. These
inputs are processed by the HLS_Profiler script to generate the
Source code Performance Profile. The framework collates the HLS
compiler generated static and dynamic information to provide the
performance profile for all the design execution clock cycles.

2 HLS_PROFILER DEMONSTRATION

The HLS tools used for this demo are Vitis HLS 2020.2.

The first step of this demo comprises of analysing the perfor-
mance profile of design and identifying the performance bottleneck.
For this purpose, we will use the Generic Matrix to Matrix Mul-
tiplication (GEMM) kernel from Machsuite benchmarks[2]. The
GEMM source code, shown in Table 1, contains three nested for
loops that iterate over # of rows and columns of input matrices (m1
and m2) to generate prod matrix. The HLS_profiler tool generates
a summary report that contains line-wise latency (L), % of time
spent on every line of source code and % overlap with other lines.
The summary report indicates the performance bottleneck in the
source code. For instance, Ln #8 takes 49.44% of the total time spent
on executing GEMM kernel and is the performance bottleneck. The
line-wise latency denotes the # of clock cycles to execute a partic-
ular source code line. Furthermore, the overlapping lines denote
lines executing in parallel and the extent of parallelism is captured
as overlapping %. For instance, if operation on Ln b takes 100 cycles
and operation on Ln a shares p of those 100 cycles, the overlap-
ping % of Ln a with Ln b is p%. This information aids developer
understand the operation scheduling of target design.

As the next step, we will demonstrate performance bottleneck
elimination by means of HLS pragma. To achieve the same in GEMM
kernel, the suitable pragmas are pipelining, unrolling and array
partitioning [5]. Multiple loop iterations can run simultaneously
because of pipelining+unrolling. Array partitioning fragments the
memory block so that all elements of the array are accessible simul-
taneously. We will again run the HLS_profiler on pragma-enabled
GEMM kernel and generate the summary report. The summary
report indicates that the % time spent on Ln #8 has reduced and its
overlapping % for all lines has increased. Additionally, Ln # 3, 6 and
7 are optimized out by HLS compiler and line-wise latency for Ln #

20

8 and 9 has reduced. These pragma-triggered design changes help
eliminate the performance bottleneck and reduce design latency.

Following this, we will showcase the detailed cycle-wise profiling
report for GEMM. The cycle-wise profile links the source code with
the hardware specific temporal information. This profile can be
used to trace the program execution, active variables and their value
on a per cycle basis. Table 2 shows the performance profile for few
cycles of GEMM kernel for i=0, j=0 and k=0, 1 iterations. It is worth
noting that the increment for variables i, j, and k are compute in a
pre-emptive manner. However, the incremented value is used only
at the start of next iteration. The performance profile also indicates
DSP processing as bottleneck operation.

Table 2: HLS_Profiler Output2: Performance Profile for w/o
pragma version of GEMM kernel.

Cycle# [Ln# [Source Variable with value
15 2 i=0
16 2,3,4 i++ (compute), i_col=0, j=0
17 3,6,7,8 | j++ (compute), sum=0, k=0, k_col=0
18 6,8 k++ (compute), m1=0.85 , m2=0.67
19-23 8 5-stage DSP Multiplier
24 8,9 mult=0.57
25-28 9 5-stage DSP Adder
29 6,7,8,9 | k=1 (k++ assign), sum=0.57
30 6,8 k++ (compute), k_col=4, m1=0.93 , m2=0.05
31-35 8 5-stage DSP Multiplier
36 8,9 mult=0.046
37-40 9 5-stage DSP Adder

Profile continues till 809 cycles.

REFERENCES

[1] INTEL. 2019. INTEL® High Level Synthesis Compile. https://www.intel.in/content/
www/in/en/software/programmable/quartus-prime/hls-compiler.html

Brandon Reagen, Robert Adolf, Yakun Sophia Shao, Gu-Yeon Wei, and David
Brooks. 2014. MachSuite: Benchmarks for Accelerator Design and Customized
Architectures. In Intl. Sym.on Workload Characterization. 110-119.

Nupur Sumeet, Deeksha Deeksha, and Manoj Nambiar. 2022. HLS_Profiler: Non-
Intrusive Profiling Tool for HLS Based Applications. In ACM/SPEC Intl. Conf. on
Performance Engineering (Beijing, China) (ICPE "22). Association for Computing
Machinery, New York, NY, USA, 187-198. https://doi.org/10.1145/3489525.3511684
Xilinx. 2019. Vivado Design Suite - HLx Editions. https://www.xilinx.com/products/
design-tools/vivado.html

Xilinx. 2021. Vitis High-Level Synthesis: User Guide. https://www.xilinx.com/
support/documentation/sw_manuals/xilinx2020_2/ug1399-vitis-hls.pdf

https://www.intel.in/content/www/in/en/software/programmable/quartus-prime/hls-compiler.html
https://www.intel.in/content/www/in/en/software/programmable/quartus-prime/hls-compiler.html
https://doi.org/10.1145/3489525.3511684
https://www.xilinx.com/products/design-tools/vivado.html
https://www.xilinx.com/products/design-tools/vivado.html
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2020_2/ug1399-vitis-hls.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2020_2/ug1399-vitis-hls.pdf

	Abstract
	1 Problem Motivation and Solution
	1.1 Performance Tuning using HLS_Profiler: User View

	2 HLS_Profiler Demonstration
	References

