
Performance Evaluation of GraphCore IPU-M2000 Accelerator for
Text Detection Application

Nupur Sumeet
nupur.sumeet@tcs.com

Tata Consultancy Services Research
Mumbai, Maharashtra, India

Karan Rawat
rawat.karan@tcs.com

Tata Consultancy Services Research
Mumbai, Maharashtra, India

Manoj Nambiar
m.nambiar@tcs.com

Tata Consultancy Services Research
Mumbai, Maharashtra, India

ABSTRACT
The large compute load and memory footprint of modern deep
neural networks motivates the use of accelerators for high through-
put deployments in application spanning multiple domains. In this
paper, we evaluate throughput capabilities of a comparatively new
hardware from Graphcore, IPU-M2000 that supports massive par-
allelism and in-memory compute. For a text detection model, we
measured the throughput and power variations with batch size. We
also evaluate compressed versions of this model and analyze perfor-
mance variation with model precision. Additionally, we compare
IPU (Intelligence Processing Unit) results with state-of-the-art GPU
and FPGA deployments of a compute intensive text region detec-
tion application. Our experiments suggest, IPU supports superior
throughput, 27×, 1.89×, and 1.56× as compared to CPU, FPGA DPU
and A100 GPU, respectively for text detection application.

CCS CONCEPTS
• Hardware→ Emerging architectures; • Computer systems
organization → Single instruction, multiple data; • Comput-
ing methodologies→ Neural networks; • Applied computing
→ Optical character recognition.

KEYWORDS
New Technologies, Performance Evaluation, High-throughput de-
ployment, Text detection
ACM Reference Format:
Nupur Sumeet, Karan Rawat, and Manoj Nambiar. 2022. Performance Evalu-
ation of GraphCore IPU-M2000 Accelerator for Text Detection Application.
In Companion of the 2022 ACM/SPEC International Conference on Perfor-
mance Engineering (ICPE ’22 Companion), April 9–13, 2022, Bejing, China.
ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/3491204.3527469

1 INTRODUCTION
The increasing computational load and memory footprint of mod-
ern deep neural networks translates to large inference times. On
the contrary, high throughput requirement has become a univer-
sal ask from applications of all domains, vision, recommendation,
speech processing etc. The contrasting constraint of high compute

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICPE ’22 Companion, April 9–13, 2022, Bejing, China
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9159-7/22/04. . . $15.00
https://doi.org/10.1145/3491204.3527469

and memory with fast-acting systems renders creates a need for
model optimization techniques and efficient hardware alternatives
for high throughput deployments. In a CPU-alone implementation,
a document processing pipeline[21] with CRAFT-based[1, 2] text
region detection amounts for 90% of processing time and is the bot-
tleneck task. Central Processing Unit (CPU) systems equipped with
accelerators such as Tensor Processing Unit (TPU), Graphics Pro-
cessing Unit (GPU) and Field Programmable Gate Array (FPGA) are
conventionally preferred hardware choices for such performance
sensitive and computationally intensive workloads.

Due to recent advances in hardware architectures, new hard-
ware platforms have entered the play field that perform better
as compared to conventional accelerators. The Graphcore IPU
processors[9, 26], is a custom hardware platforms targeted to ac-
celerate machine learning workloads through micro-architecture
changes like in-memory processing. Due to tightly coupled mem-
ory, IPU cores pay no penalty when their control flows diverge or
when the addresses of their memory accesses diverge and realise
uncorrelated memory accesses without memory access overhead.
Cores access data from their respective local memory at a fixed
cost that is independent of access patterns. This makes IPUs more
efficient than GPUs at executing applications with irregular or ran-
dom data access patterns and/or applications that are control-flow
dominated, provided that working sets fit in IPU memory.

In this paper, we evaluate the performance of Graphcore IPU-
M2000machine for a vision application.We present a rooflinemodel
that provide insights on required compute and memory capabilities
from a hardware platform to achieve a certain throughput for the
target application. Our roofline model compares GPU, FPGA DPUs
(Deep learning Processing Units)[24] with Graphcore IPUs and
establish the suitability of later for text detection model. We present
results on throughput variation with respect to batch size, compute
precision as well as power trends for compute-intensive workload.
Additionally, we compare and contrast the IPU results with state-
of-the art conventional accelerators like GPU and FPGA.

The rest of the paper is organized as follows. Section 2 contains
architecture and system-level details of IPU-M2000. The text detec-
tion application and its ML model (CRAFT) with its compressed
versions are discussed in section 3. The roofline model for com-
pressed CRAFT model is presented in section 4. Section 5 presents
results on variation of throughput and power with # of IPUs, batch
size and comparison with other hardware. This is followed by con-
clusion in section 6.

2 GRAPHCORE IPU-M2000 MACHINE
Graphcore IPU-M2000 helps in making the training and inference
of large models more scalable and efficient. TheIPU-M2000 contains

PECS 2022 ICPE ’22 Companion, April 9–13, 2022, Bejing, China

145

https://doi.org/10.1145/3491204.3527469
https://doi.org/10.1145/3491204.3527469

Figure 1: The system level architecture of IPU-M2000 ma-
chine.

4 GC200 IPU processors, together housing 5,888 processor cores
with 35k independent parallel threads giving a total compute of
1PFLOP/s (peta Floating-Point OPerations per second) for FP16
precision and 250TFLOP/s for FP32. As cache memory, there exists
900MB ultra-high-speed SRAM in-processor memory for each IPU
that is distributed alongside each processor core for lowest energy
access per bit. The system level architecture of IPU-M2000 machine
is shown in Fig. 1. A server host machine running Linux O/S is
used as an interface to the Graphcore IPU-M2000 system. This host
is connected to the Graphcore system by a 100Gbps Ethernet link.
The 4 IPUs within the IPU-M2000 system are interconnected by a
2.8Tbps IPU-Fabric.

IPU systems are supported by Poplar SDK (Software Develop-
ment Kit)[18], which provides a complete platform for AI deploy-
ment and evaluation. All standard ML libraries like Pytorch, Tensor-
flow, ONNX, Keras etc. are supported and integrated in the devel-
opment environment. An analysis tool (PopVision) provides cycle
by cycle accounting and analysis of the workload. The input model
is accepted by Poplar framework and passed to Graph Compiler
which simplifies the IPU programming by handling the scheduling
and work partitioning of the target workload. Graph compile do-
main allows single application to be programmed across multiple
IPUs and yields data and model parallel executions simultaneously.

3 TEST APPLICATION: TEXT DETECTION
DeepReader[21] is document processing application which facil-
itates information extraction from document images. To extract
textual entities in scene text or colored images present in the docu-
ment, DeepReader use the CRAFT[1] model for text segmentation.

3.1 Text Detection Model: CRAFT
The CRAFT (Character Region Awareness For Text detection) frame-
work is based on convolutional neural network (CNN) producing
the character region score and affinity score. The region score is
used to localize individual characters and denotes the probability
of a pixel lying in the center of a text character. The affinity score is
used to group each character into a single instance and represents
probability of the space between adjacent characters. Based on the
two scores, bounding boxes are created over text regions of the im-
age as part of post-processing step. Figure 2 shows the text detection

pipeline. CRAFT network contains convolution (3×3, 1×1), batch
normalization, ReLU, maxpool(2×2), upsampling and concatenation
operations. The CRAFT model processes and transforms the fea-
tures shown in Fig. 3. CRAFT is based on VGG-16-bn[19] backbone
with skip connections in the decoding part. The pre-trained CRAFT
model is available in open-source and has accuracy metrics- 96.04%
(Recall) and 95.79% (Precision) on scanned receipt dataset IC19[10],
as reported on the robust reading competition[4] leader-board. The
model has high flexibility on detecting complicated cases, such as
long, curved, and/or arbitrarily shaped texts.

Table 1: Compressed CRAFT model architecture.

Down-Scaled LTH PrunedConv Stage Cn C8 C18 C12 C6
Conv1 n 8 18 12 6
Conv2 2n 16 24 24 20
Conv3 4n 32 40 36 34
Conv4 8n 64 50 48 44
Conv5 8n 128 50 48 44
Conv6 16n 256 70 60 56
UpConv1 8n 64 50 48 44
UpConv2 4n 32 40 36 24
UpConv3 2n 16 24 24 20
UpConv4 n 8 18 12 6
Conv7 n/2 4 9 6 3
Total Filters 93n/2 844 735 666 585

Table 2: Accuracy of native and compressed CRAFT models
on IC15 dataset.

CRAFT C32 C18 C16 C12 C8 C6 C4
Precision 89.7% 85.7% 88.6% 84.2% 86.4% 83.5% 84.3% 80.7%
Recall 83.2% 80.4% 80.6% 79.1% 80.2% 78.9% 78.6% 75.5%

3.2 Compressed CRAFT Models
CRAFT has high computational and memory load which directly
translates to large inference time and consequently limits its us-
ability in real-life scenarios. For inference speed-up, we adopted
knowledge distillation[3] based model compression technique. The
compression specific details are beyond the scope of this paper. We
have seven compressed models for CRAFT that are compressed by
14-180×. The accuracy for these models remain within ≈5% of the
native model. The accuracy for compressed models is shown in
Table 2. The method of model compression and detailed discussions
on resultant accuracy trade-offs is beyond the scope of this paper.

The compressedmodels are categorized as down-scaled and LTH-
pruned based on the method used to obtain these architectures. The
down-scaled versions are obtained by proportionally reducing # of
filters by factors 2, 4, 8 and so on, in the network. The generalized
down-scaled student architectures is presented in column 2 Table
1 where n takes value 32, 16, 8, 4, 2 and 1. For instance, student
architecture with n=8 is shown in column 3 in Table 1. For C8,
Conv1 contains 2 layers with 8 channels followed by 2 layers of
16 channels. The model architecture for LTH pruned models is
obtained by iteratively applying LTH[7] with different pruning %
on native CRAFT model. The LTH pruned model architectures (C18,
C12 and C6) are shown in Table 1.

PECS 2022 ICPE ’22 Companion, April 9–13, 2022, Bejing, China

146

Figure 2: CRAFT-based Text Detection pipeline[1].

Figure 3: Representative diagram of Feature transformations due to CRAFT[1].

Figure 4: Processing element and HBM for (a) V100 GPU, and (b) FPGA DPU. GPC- GPU Processing Clusters, TPC- Texture
Processing Clusters, SM- Streaming Microprocessors, PE- Processing Elements.

3.3 Training and testing
The compressed model training is done on NVIDIA A100 GPU with
a batch size of 10 usingADAMOptimizer[13] and L2 regularization[5]
for 150-500 epochs. The models are tested on IC15 dataset that con-
sists of 500 testing images with texts in English and RGB format
with a resolution of 1280×768. The text instances are labeled at
the word level and ground truth consists of quadrilateral boxes in
8-point coordinate system for every word.

4 ROOFLINE MODEL FOR COMPRESSED
CRAFT (C6)

For a DL model, the maximum compute and memory bandwidth
capabilities required to meet a certain fps is regarded as the roofline
modeling. We present the roofline model for C6 model in this sec-
tion. For this, we estimate the computation and memory load of

every layer in C6 model (see Table 3). The layer-wise GFLOps (Giga
FLoating-point Operations) is estimated using flops counter[20].
The memory footprint is calculated by estimating the size of the
output at every layer. For instance, the first layer (Layer #1) is con-
volution followed by batch normalization and ReLU activation. It
has 1.42GFLOps computation load and has an output feature size
of 1280×768×6 that amounts to a footprint of 22.5MB. We observe
that initial and few final layers of the model have high computa-
tion load. The memory footprint reciprocate the same behaviour
with upsampling and concatenation layers also generating large
requirements on memory. This is because of the large feature size
at these layers. The concatenation operation joins features on the
depth dimension and considered as memory manipulation.

We choose a throughput of n fps, to calculate the layer-wise re-
quired compute andmemory bandwidth capabilities. This requires a

PECS 2022 ICPE ’22 Companion, April 9–13, 2022, Bejing, China

147

Table 3: Layer-wise required compute and memory capabilities for 500fps throughput for Compressed CRAFT (C6 model).

of Comp. Load Req. Comp. Cap. O/P Mem. Req. Mem. Cap.Layer# Layer Name filters (in GFLOps) (in GFLOP/s) footprint (in MB) (in GB/s)
1 Conv_BN_ReLU 6 1.42 708 22.5 10.99
2 Conv_BN_ReLU_MaxPool 6 2.67 1336 5.62 2.75
3 Conv_BN_ReLU 20 4.37 2184 18.75 9.16
4 Conv_BN_ReLU_MaxPool 20 6.82 3412 4.69 2.29
5 Conv_BN_ReLU 34 2.78 1388 7.97 3.89
6 Conv_BN_ReLU 34 4.41 2204 7.97 3.89
7 Conv_BN_ReLU_MaxPool 34 4.42 2212 1.99 0.97
8 Conv_BN_ReLU 44 1.51 756 2.58 1.26
9 Conv_BN_ReLU 44 2.07 1036 2.58 1.26
10 Conv_BN_ReLU_MaxPool 44 2.08 1040 0.64 0.31
11 Conv_BN_ReLU 44 0.52 260 0.64 0.31
12 Conv_BN_ReLU_MaxPool 44 0.52 260 0.64 0.31
13 Conv 56 0.66 328 0.82 0.40
14 Conv 56 0.10 48 0.82 0.40
- Concat 100 - - 1.46 0.71
15 Conv_BN_ReLU 44 0.14 68 0.64 0.31
16 Conv_BN_ReLU 34 0.38 192 0.49 0.24
- Upsample - 0.05 22.5 1.9 0.97
- Concat 78 - - 4.57 2.24
17 Conv_BN_ReLU 34 0.29 148 1.9 0.97
18 Conv_BN_ReLU 20 0.69 346 1.17 0.57
- Upsample - 0.133 66.5 4.69 2.29
- Concat 54 - - 12.66 6.18
19 Conv_BN_ReLU 20 0.52 260 4.69 2.29
20 Conv_BN_ReLU 6 0.52 262 1.41 0.69
- Upsample - 0.13 67.5 5.62 2.75
- Concat 26 - - 24.37 11.90
21 Conv_BN_ReLU 6 0.34 168 5.62 2.75
22 Conv_BN_ReLU 6 0.70 352 5.62 2.75
23 Conv_ReLU 32 0.66 328 30 14.65
24 Conv_ReLU 32 17.48 8744 30 14.65
25 Conv_ReLU 16 8.74 4372 15 7.32
26 Conv_ReLU 16 0.54 272 15 7.32
27 Conv 2 0.06 32 1.87 0.91

Comp. Load- Computation load, Req. Comp. Cap.- Required Compute Capability, Req. Mem. Cap.- Required Memory Capability.

n times the computation load andmemory footprint to be completed
in one second.We obtain the required compute andmemory capabil-
ities by multiplying layer-wise computation and memory footprint
by required fps. Table 3 contains compute and memory capabilities
for a 500fps throughput. Using the layer-wise computational and
memory requirements we note that layer 24 has the maximum
compute and memory bandwidth requirements of 32.8 TFLOP/s
(Tera FLoating-point OPerations/Second) and 14.65 GB/sec, respec-
tively. In case all layers function in a pipelined-manner to deliver
an overall throughput of 500 fps, the total requirements are sum of
individual layers requirements. Consequently, the total compute re-
quirement is 32.8 TFLOP/s and the memory bandwidth requirement
is 120.6 GB/s.

We now discuss some architectural options for C6 model. The
model architecture suggests that the layers can be processed in a
cascade manner and the data dependency between layers neces-
sitates that the computation of previous layer completes before
successive layer processing can start. This applies to all layers and
operations of the C6 model. A fully-pipelined design can support
cascade-type of data dependency and would yield a throughput of
1fps/clock cycle. FPGAs are known to support deep pipelines owing
to its datapath-based compute paradigm. However, implementing
such a design in fully-pipelined manner would impose impractical
compute and memory capability requirement on the FPGA. Alveo
U280 is a datacentre FPGA and contains 9k+ DSPs (Digital Signal
Processors), 45MB on-chip SRAM, 8GB HBM (High-Bandwidth
Memory) with capacity to house 3 DPUs designed to accelerate

ML workloads (see Fig. 4. The combined compute capability of
all DPUs is 17.2TOP/s[24] for INT8 compute. The on-chip SRAM
(45MB) has the lowest access time but is insufficient to store inter-
mediate outputs of layers (247.1MB). DPUs use HBM to store the
intermediate data but the transfer latency between HBM and FPGA
is quite high (≈ 55 cycles)[22]. These requirements on compute
and memory limit the overall throughput that can be extracted
from a fully-pipelined design. Other viable architectural option is
to perform the computation layer-wise i.e. while extracting full
parallelism within a layer. For such an option, the compute and
memory capability requirement is governed by their respective
bottleneck layers. For instance, the bottleneck layer for C6 model is
Layer #24 with 8.7TFLOP/s and 14.65GB/s as capability constraints.
GPUs are a fair choice to support highly parallel designs. In case
of a V100 GPU, streaming microprocessors(SM), contain double-
precision, single-precision, int and tensor processing cores. The
SMs contain dedicated and shared hierarchical cache system (L0, L1
and L2) for instruction and data. V100 GPU micro-architecture is
shown in Fig. 4 and can support 15.7TFLOP/s (FP32) with register
file and L1 cache of 256KB and 6.1MB, respectively. The memory
requirement for storing intermediate outputs is not met and high
performance penalty is incurred due to data round-trips through
HBM. A IPU-M2000 has 1 PFLOP/s in FP16 (250 TFLOP/s in FP32)
compute and 900MB in-processor memory with 47.5TB/s memory
bandwidth. The IPU satisfies the compute and memory require-
ments estimated by our roofline model and should support a 500 fps
throughput while implementing compressed CRAFT in layer-wise

PECS 2022 ICPE ’22 Companion, April 9–13, 2022, Bejing, China

148

manner. However, the achieved throughput might differ based on
the based on the data dependency of model, IPU architecture and
operation scheduling by IPU compiler.

5 RESULTS AND DISCUSSIONS
5.1 Experimental Setup
We evaluated IPU for variation in throughput, power and accuracy
capabilities with compute precision, # of IPUs and batch size. We
used PopART (Poplar Advanced Run Time)[8] version 2.4 to compile
models for IPU. The replicationFactor flag is used to vary the #
of IPUs. For FPGAs, the batch size can be mentioned in terms of
number of threads. For CPU and GPU, the batch is passed 4-D tensor
where the 4𝑡ℎ dimension represents the batch size and <channel,
height, width> are the other three dimensions.

5.1.1 Throughput Readings. To calculate throughput, we use the
time commands and recorded time taken to run a batch of images.
The result obtained by taking ratio of size of batch to batch process-
ing time is regarded as throughput. The processing time includes
the image and result transfers between host and device.

5.1.2 Power Readings. Power is recorded using gcmonitor, an in-
built Graphcore tool with GCDA_MONITOR set to 1. The power
reading for GPUs is taken using nvida-smi API. The ILO (Integrated
Lights Out)[6] interface is used to record power for FPGA and CPU.
The power number indicates the board power and reports the max
total power which includes variable dynamic power and fixed static
power. In all these devices, the power recorded when no workload
is running is regarded as static power. The dynamic power is calcu-
lated by subtracting the static power from the total power reading
recorded when workload is running on device.

5.1.3 Accuracy Readings. The predicted text boxes, obtained by
creating polygons over predicted textual regions, are characterized
as correctly predicted by calculating its overlap (IoU threshold = 0.4)
with boxes from ground truth. From the predicted and ground truth
text boxes, we estimate accuracy (precision and recall) of model.

5.2 Hardware Platforms Specifications
For comparative studies with Graphcore IPU, we have used Intel
Xeon Gold CPU (base frequency- 2.3GHz, 16.5MB cache)[11], In-
tel Xeon CPU E5-2690 (base frequency- 2.9GHz, 20MB cache)[12],
GPUs - NVIDIA V100[14] and A100[15], and Alveo U280 FPGA[23]
for performance testing of the compressed CRAFT models. The
A100 and V100 are high end GPUs with 7936 and 5120 CUDA
cores, respectively. Additionally, A100 GPU has special hardware
to accelerate sparse computations. We use VITIS AI development
flow[25] for our experiments to evaluate neural networks on FPGA
DPUs[24]. The Alveo U280 DPU contains three cores and a total of
14 processing engines and can process as many images in parallel
at 300 MHz. We measure power and present throughput efficiency
for Intel Xeon CPU E5-2690 system.

5.3 Throughput Speed-up for Compressed
Models

The IPU-M2000 machine is not able to run native CRAFT model
due to its memory footprint (81MB) and returns out-of-memory

error. We did not have a concrete reason for this behaviour and
investigation is still in progress. However, the compressed CRAFT
models runs on IPU-M2000 without errors. We present throughput
for compressed CRAFT models in Table 4. All models record a
throughput higher than 200fps. The highest throughput is obtained
for most compressed models, C6 and C4, since their compute and
memory load is smaller than other models. The ratio of footprints
of native and compressed CRAFT is indicated as compression ratio.
Model C8 is only 60× compressed but realises a higher throughput
as compared to 80× compressed C18 model. This is because the
in and out channels for C8 model are multiple of 8 whereas such
structure is not seen in C18 models. This observation indicates that
models with # of in/out channels as powers of 2 map better on IPU.
The FP16 implementation yields higher throughput (upto 390fps) as
compared to FP32 compute. We also observe that for FP32 compute,
the IPU offers marginal improvement over A100 DGX[16] but the
gains over DGX is higher (upto 1.33×) in case of FP16 compute.
Table 4: Throughput and speed-up over A100 DGX for com-
pressed CRAFT models on 4 IPU configuration.

FP32 FP16
Thrpt Gain over Thrpt Gain overModel Comp
(in fps) A100 DGX (in fps) A100 DGX

C32 14x 205.34 1.01× 290.28 1.33×
C16 52x 231.48 1.03× 308.64 1.30×
C8 60x 260.42 1.02× 333.56 1.18×
C18 80x 252.53 1.08× 313.48 1.18×
C12 110x 265.25 1.06× 327.87 1.20×
C6 142x 271.33 1.06× 375.80 1.27×
C4 180x 308.64 1.06× 390.17 1.12×
Comp- Compression ratio, A100 DGX contains 8 A100 GPUs,
Thrpt- Throughput

5.3.1 Resolving Network Bottleneck. Graphcore has an option to
run the performance test with synthetic images. The synthetic im-
ages are generated on the IPUs instead of the conventional way of
transfer from host to device. By doing this, the network bandwidth
does not get engaged. The throughput achieved with synthetic im-
ages was >10× higher than test of IC15 images (results reported in
Table 4). The network bandwidth roofline can be estimated using
the transfer size and supported bandwidth (100Gbps-full duplex)
of the host-IPU-M2000 interface. The input image and output fea-
tures amount to 11.25MB and 1.875MB, respectively. Between these
transfers, the input transfer is the bottleneck. The network can
support 1060fps with full utilization of 100Gbps bandwidth. For C6
model, the throughput measured on synthetic dataset is 3984fps.
This indicated that network bandwidth is limiting the maximum
achievable throughput on real test dataset. As shown in Fig. 1, the
IPU connects to host system through 100Gbps Ethernet interface.
The achievable throughput for C4 (390fps) translates to a realized
network bandwidth of 34.3Gbps for an input size of 11.25MB. We
can see that there is scope for higher throughput gain by improving
realizable network bandwidth. Additionally, for this use case it will
be impossible to achieve a throughput of 3984 fps achieved in the
synthetic benchmark because of network bottleneck, rendering the
Graphcore IPU M2000 system underutilized.

We addressed this, by reducing the memory transfers pertaining
to test images. We typecast the test image from FP32 to INT8 when
transferring image to device and typecast back to compute precision

PECS 2022 ICPE ’22 Companion, April 9–13, 2022, Bejing, China

149

Figure 5: Throughput gain by typecasting test images for
compressed CRAFT models.

Figure 6: Throughput vs. compute precision for compressed
CRAFT (C6 model) on IC15 dataset.

(FP32 or FP16) before the compute begins. The transfer size for input
reduced from 11.25MB to 2.81MB because of typecasting. By doing
this, wewere able to siphonmore throughput from IPUs as shown in
Fig. 5. The maximum throughput is achieved for C4 model as 913fps
after this optimization that is 2.3× higher as compared to image
transfer with FP32 precision. Similar trend is observed in other
models in both, FP32 and FP16, precision. This can be attributed to
reduction in transfer time after typecast. This experiment helps us
validate that the throguhput bottleneck in this case is the network
transfer of images from the host. However, we observe that the
accuracy drop is significant with recall falling from 78.6% to 23.7%.

5.4 Throughput vs. Precision Trade-off
The precision of computation denotes the number of bits and
datatype used in calculations. Nowadays, CPU and commercial
hardware accelerators support multiple precision. Lower precision
compute offers higher computational power (in terms of GOP/S)
which translates to performance improvements. For instance, V100
GPU supports FP32 and FP16 computations but the latter has 2×
the computational power[14].

The Graphcore IPU supports two precisions for compute, FP32
and FP16. The default precision is FP32 and FP16 can be realised
by adding .half() in model invocation. The throughput variation
with compute precision in IPU for 1, 2 and 4 IPUs is shown in
Fig. 6. We observe that for FP16 the IPUs support a higher (upto
1.3×) throughput as compared to FP32 precision. Additionally, the
throughput obtained with 2 IPUs is 1.14× w.r.t throughput with 1

Figure 7: Throughput vs. Batchsize comparison of hardware
platforms for compressedCRAFT (C6model) on IC15 dataset.

IPU. The ratio between throughput between 4 IPUs and 1 IPU is
1.55. This indicates that the throughput scaling is not linear with
of IPUs i.e. increasing the amount of compute resources does
not lead to proportional increase in throughput. This investigation
for the underlying reason for this behaviour is in progress. How-
ever, a probable reason can be saturation of memory bandwidth
owing to the nature of the test model which requires outputs from
convolution network during upsampling.

5.4.1 Accuracy vs. Precision Trade-off. Reducing the precision af-
fects the prediction accuracy since the number of bits used in compu-
tation reduces. The accuracy measured on IPU-M2000 for C6 model
remains similar to actual accuracy for C6 model. This is desirable
since a substantial drop in accuracy in exchange for throughput
gain is not acceptable. An accuracy drop of ≈1-1.5% is seen for
precision FP32 and FP16 as shown in Table 5.

Table 5: Test accuracy for C6 model on IC15 dataset.

Hardware Compute Precision Precision Recall
GPU FP32 84.3% 78.3%

Graphcore FP32 83.11% 77.32%
FP16 83.08% 77.19%

5.4.2 Throughput Comparison with other hardware. We compute
throughput for C6 model on A100, V100 and FPGA in FP32, FP16
and INT8 compute precisions. The model is compiled in FP16 and
INT8 using TensorRT[17] (maps computation to tensor cores) that
quantizing models on GPU. In addition to TensorRT, Apex library
is used to compile models for A100. The Apex library introduces
2:4 sparsity into models. 2:4 sparse models are supported on A100
GPU owing to its special hardware. The best batch size for A100,
V100 and FPGA DPU are 65, 80 and 12, respectively.

Among other hardware, the maximum throughput achieved by
C6 model is on A100 GPU with INT8 precision in Apex and Ten-
sorRT compile. We observe that IPU implementation outperforms
other hardware in FP32 and FP16 precision. The 4 IPU implemen-
tation in FP16 gives the highest throughput of 375fps that is ≈3×
higher that highest throughput supported by other hardware.

5.5 Throughput vs. Batch size Trade-off
We present the variation of throughput with batch size for C6 FP32
model on IC15 dataset in Fig. 7. The throughput variation for all
IPUs indicates a sharp increase for small batch sizes that attain a

PECS 2022 ICPE ’22 Companion, April 9–13, 2022, Bejing, China

150

peak and levels off later for batch sizes ⟩50. The throughput attains
a peak at batch size 16 for 1 and 4 IPU implementation, whereas 2
IPU peak is at batch size 32. The 4IPU configuration peaks at batch
size 64 at FP16 precision.

5.5.1 Comparison with other hardware platforms. Among hard-
ware other than IPUs, we observe that DPU have higher throughput
as compared to GPUs for batch size upto 12 images (see Fig. 7) . For
batch size upto 20 images, A100 and V100 have similar throughput
beyond which A100 offers higher throughput than V100. How-
ever, the IPU implementations offer higher throughput gains as
compared to all other hardware. The throughput gain over other
hardware is prominent for small batch sizes as compared to large
batches. Additionally, 4 IPU with FP16 precision has the highest
throughput for all batch size with peak throughput at batch size
of 64. IPU capability to support high performance on small batch
sizes makes them useful for low latency and real-time applications.

5.6 Profiling impressions from PopVision tool
Weanalyse the performance profile of the C6model using PopVision
tool available for Graphcore hardwares. The C6 models contains 76
layers including convolution (3×3 and 1×1), maxpool (2×2), batch
normalization and ReLU. Additionally, there are some mathemati-
cal operations such as concatenation and upsampling (2×2). The
profiling information, in terms of clock cycles, is not available for
mathematical operations.

The total clock cycles for C6 model is 5.4 million and its breakup
among model layers is shown in Table 6. The operation taking
68.5% of cycles is streamcopy which includes test image transfer
time over network. This indicates that only ≈30% of cycles are
spent on compute. If we extrapolate this to 100% compute cyles of 4
IPUs, the estimated throughput is 3614fps which is very close to the
throughput achieved with synthetic test image time minus network
transfer (discussed in sec. 5.3.1). Thus, the host-IPU communication
is acting as a bottleneck and optimizing for network bandwidth can
help improve throughput further. After streamcopy, convolution
and batch normalization are the compute bottleneck operations.
This indicates that memory is limiting the throughput and not
compute.

Table 6: PopVision profiling data for C6 model.

Layer Name # of layers % of cycles spent
Convolution 27 15.1%
Maxpool 5 3.3%
BN 20 11.2%
ReLU 24 1.9%
streamcopy amounts for 68.5% of the cycles

5.7 Dynamic Power Consumption Observation
The dynamic power consumption observations are presented in Fig.
8. The 4IPU implementations consume more power as compared
to 2 and 1 IPU deployments. The FP16 compute consumes less
power as compared to FP32 designs for small batch sizes but the
gap reduces for batch sizes beyond 128. This indicates that lower
precision offers power as well as throughput advantages over higher
compute precision.

5.7.1 Comparison with other hardware. The CPU (Intel Xeon E5-
2690), A100 GPU and FPGA DPU consume higher power as com-
pared to 1 and 2 IPU configurations for all batch sizes. For small
batch sizes, the power consumption of A100 and CPU coincides
with 4 IPU configuration but the former uses more power for higher
batch sizes.

Figure 8: Dynamic power variation with batch size and # of
IPUs.

Figure 9: Throughput Efficiency comparison other devices.

5.8 Throughput Efficiency Variations
The throughput efficiency is measured as throughput per unit watt
and a higher value denotes better deployment option. We present
the throughput efficiency variation with # of IPUs in Fig. 9. We
observe, 4 IPU configuration has maximum throughput efficiency of
0.61fps/W. This can be attributed to IPU micro-architecture where
memory and compute units are closeby thereby saving power on
data transfers between the two. For batch sizes >16, the 2 and 4 IPU
configurations offer similar throughput efficiency.

5.8.1 Comparison with other hardware. We use devices A100 GPU
and FPGA DPU for comparison and their throughput efficiency is
presented in Fig. 9. The A100 achieves a maximum throughput effi-
ciency of 0.24fps/W whereas the same for FPGA DPU is 0.25fps/W.
IPU (1 and 2 IPUs) configurations have higher throughput efficiency
as compared to GPU and FPGA devices. We also compare the IPU (4
IPU configuration) throughput efficiency with system, A100-DGX
and Xeon CPU E5-2690 (see Fig. 10). The CPU system exhibits
higher throughput efficiency at small batch sizes as compared to
large batch sizes. The same trend is seen in A100-DGX. However,
the throughput efficiency of A100-DGX is 11-27× than CPU. In
case of A100-DGX, the throughput efficiency for large batch sizes

PECS 2022 ICPE ’22 Companion, April 9–13, 2022, Bejing, China

151

Figure 10: Throughput Efficiency comparison with other sys-
tems.
reduces because of increase in # of GPU units utilized and con-
sequent increase in static power. For instance, 4 GPUs are used
for batch size 8 and 8 GPUs for batch size ≥32. As compared to
IPU configurations, the throughput efficiency for A100 and FPGA
devices as well as CPU and DGX system is lower. This indicates
energy-efficient processing capability of IPUs.

6 CONCLUSION
Graphcore IPU-M2000 is a new hardware available with in-memory
processing capabilities to accelerate machine learning workloads.
We use a compressed version of text region detectionmodel (CRAFT)
to evaluate its performance. Upon comparison with state-of-the-
art hardware platforms, we realise IPU can support much higher
throughput especially the FP16 implementations. Additionally, we
analyse the profile of the target application and observe that the
network transfer from interfacing host to Graphcore IPU-M2000
system as the bottleneck. We intend to look for ways to improve
network utilization and use a pipelined architecture to maximize
the inferencing throughput of the system. Our experiments on
power comparison suggest IPU implementation are power-efficient
as compared to GPU, FPGA and CPU. On comparison across sys-
tems (CPU and A100-DGX), we find that the Graphcore system
delivers maximum throughput across all batch sizes. Additionally,
it delivers maximum throughput efficiency which makes a good
case for Graphcore to be adopted in data centers and by cloud
service providers as ML accelerator.

ACKNOWLEDGMENTS
We would like to acknowledge Graphcore Team: Helen and Sud-
hakar for sharing access and technical details of IPU_POD16. We
also thank Rekha from TCS Research for facilitating the IPU access.

REFERENCES
[1] Youngmin Baek, Bado Lee, Dongyoon Han, Sangdoo Yun, and Hwalsuk Lee. 2019.

Character Region Awareness for Text Detection. 2019 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR) (2019), 9357–9366.

[2] Youngmin Baek, Seung Shin, Jeonghun Baek, Sungrae Park, Junyeop Lee, Dae-
hyun Nam, and Hwalsuk Lee. 2020. Character Region Attention For Text Spotting.
ArXiv abs/2007.09629 (2020).

[3] Cristian Bucila, Rich Caruana, and Alexandru Niculescu-Mizil. 2006. Model
Compression. In Proceedings of the 12th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining (Philadelphia, PA, USA) (KDD ’06).
Association for Computing Machinery, New York, NY, USA, 535–541. https:
//doi.org/10.1145/1150402.1150464

[4] Robust Reading Competition:. 2021. Scanned Receipts OCR and Information
Extraction. Retrieved December 28, 2021 from https://rrc.cvc.uab.es/?ch=13&
com=evaluation&task=1

[5] Corinna Cortes, M. Mohri, and Afshin Rostamizadeh. 2009. L2 Regularization for
Learning Kernels. In UAI.

[6] HP Enterprise. 2016. HPE iLO 4 User Guide. Retrieved December 28, 2021 from
https://www.ni.com/pdf/manuals/377263a.pdf

[7] Jonathan Frankle and Michael Carbin. 2019. The Lottery Ticket Hypothesis:
Finding Sparse, Trainable Neural Networks. arXiv: Learning (2019).

[8] Graphcore. 2021. PopART User Guide.
[9] Graphcore. 2021. V-IPU User Guide. Retrieved December 28, 2021 from https://

docs.graphcore.ai/projects/vipu-user/en/latest/concepts_and_architecture.html
[10] Zheng Huang, Kai Chen, Jianhua He, Xiang Bai, Dimosthenis Karatzas, Shijian Lu,

and C. V. Jawahar. 2019. ICDAR2019 Competition on Scanned Receipt OCR and
Information Extraction. In 2019 International Conference on Document Analysis
and Recognition (ICDAR). 1516–1520. https://doi.org/10.1109/ICDAR.2019.00244

[11] Intel. 2019. Intel®Xeon®Gold 5118 Processor. Retrieved December 28, 2021
from https://ark.intel.com/content/www/us/en/ark/products/120473/intel-xeon-
gold-5118-processor-16-5m-cache-2-30-ghz.html

[12] Intel. 2019. Intel®Xeon®Processor E5-2690. Retrieved December 28, 2021
from https://ark.intel.com/content/www/us/en/ark/products/64596/intel-xeon-
processor-e52690-20m-cache-2-90-ghz-8-00-gts-intel-qpi.html

[13] Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Opti-
mization. CoRR abs/1412.6980 (2015).

[14] nVIDIA. 2017. nVIDIA Tesla V100 GPU Architecture. Retrieved December
28, 2021 from https://images.nvidia.com/content/volta-architecture/pdf/volta-
architecture-whitepaper.pdf

[15] nVIDIA. 2020. NVIDIAA100 Tensor Core GPUArchitecture. RetrievedDecember
28, 2021 from https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/
nvidia-ampere-architecture-whitepaper.pdf

[16] nVIDIA. 2021. DGX A100 System User Guide. Retrieved December 28, 2021
from https://docs.nvidia.com/dgx/pdf/dgxa100-user-guide.pdf

[17] nVIDIA. 2021. nVIDIA TensorRT Developer Guide. Retrieved December 28, 2021
from https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html

[18] Cambrian AI Research. 2021. Graphcore’S AI Software Stach is now
Customer-Driven. Retrieved 28-12-21 from https://www.graphcore.ai/hubfs/
Cambrian%20AI%20white%20paper_Graphcores%20AI%20software%20stack%
20is%20now%20customer%20driven.pdf

[19] K. Simonyan and Andrew Zisserman. 2015. Very Deep Convolutional Networks
for Large-Scale Image Recognition. CoRR abs/1409.1556 (2015).

[20] Vladislav Sovrasov. 2021. Flops Counter. Retrieved December 28, 2021 from
https://github.com/sovrasov/flops-counter.pytorch

[21] D. Vishwanath, R. Rahul, Gunjan Sehgal, Swati, Arindam Chowdhury, Monika
Sharma, L. Vig, Gautam M. Shroff, and A. Srinivasan. 2018. Deep Reader: Infor-
mation extraction from Document images via relation extraction and Natural
Language. ArXiv abs/1812.04377 (2018).

[22] Zeke Wang, Hongjing Huang, Jie Zhang, and Gustavo Alonso. 2020. Shuhai:
Benchmarking High Bandwidth Memory On FPGAS. In 2020 IEEE 28th Annual
International Symposium on Field-Programmable Custom Computing Machines
(FCCM). 111–119. https://doi.org/10.1109/FCCM48280.2020.00024

[23] Xilinx. 2021. Alveo U280 Data Center Accelerator Card Data Sheet. Retrieved
December 28, 2021 from https://www.xilinx.com/support/documentation/data_
sheets/ds963-u280.pdf

[24] Xilinx. 2021. DPUCAHX8H for Convolutional Neural Networks. Retrieved
December 28, 2021 from http://xilinx.eetrend.com/files/2021-08/wen_zhang_
/100553088-217819-pg367-dpucahx8h.pdf

[25] Xilinx. 2021. Vitis AI User Guide. Retrieved December 28, 2021
from https://www.xilinx.com/products/design-tools/vitis/vitis-ai.html#:
~:text=Optimal%20Artificial%20Intelligence%20Inference%20from,%2C%
20models%2C%20and%20example%20designs

[26] MarcoMaggioni Zhe Jia, Blake Tillman and Daniele P. Scarpazza. 2019. Dissecting
the Graphcore IPU Architecture via Microbenchmarking. Retrieved December
28, 2021 from https://www.graphcore.ai/hubfs/assets/pdf/Citadel%20Securities%
20Technical%20Report%20-%20Dissecting%20the%20Graphcore%20IPU%
20Architecture%20via%20Microbenchmarking%20Dec%202019.pdf?hsLang=en

PECS 2022 ICPE ’22 Companion, April 9–13, 2022, Bejing, China

152

https://doi.org/10.1145/1150402.1150464
https://doi.org/10.1145/1150402.1150464
https://rrc.cvc.uab.es/?ch=13&com=evaluation&task=1
https://rrc.cvc.uab.es/?ch=13&com=evaluation&task=1
https://www.ni.com/pdf/manuals/377263a.pdf
https://docs.graphcore.ai/projects/vipu-user/en/latest/concepts_and_architecture.html
https://docs.graphcore.ai/projects/vipu-user/en/latest/concepts_and_architecture.html
https://doi.org/10.1109/ICDAR.2019.00244
https://ark.intel.com/content/www/us/en/ark/products/120473/intel-xeon-gold-5118-processor-16-5m-cache-2-30-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/120473/intel-xeon-gold-5118-processor-16-5m-cache-2-30-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/64596/intel-xeon-processor-e52690-20m-cache-2-90-ghz-8-00-gts-intel-qpi.html
https://ark.intel.com/content/www/us/en/ark/products/64596/intel-xeon-processor-e52690-20m-cache-2-90-ghz-8-00-gts-intel-qpi.html
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf
https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf
https://docs.nvidia.com/dgx/pdf/dgxa100-user-guide.pdf
https://docs.nvidia.com/deeplearning/tenso rrt/developer-guide/index.html
https://www.graphcore.ai/hubfs/Cambrian%20AI%20white%20paper_Graphcores%20AI%20software%20stack%20is%20now%20customer%20driven.pdf
https://www.graphcore.ai/hubfs/Cambrian%20AI%20white%20paper_Graphcores%20AI%20software%20stack%20is%20now%20customer%20driven.pdf
https://www.graphcore.ai/hubfs/Cambrian%20AI%20white%20paper_Graphcores%20AI%20software%20stack%20is%20now%20customer%20driven.pdf
https://github.com/sovrasov/flops-counter.pytorch
https://doi.org/10.1109/FCCM48280.2020.00024
https://www.xilinx.com/support/documentation/data_sheets/ds963-u280.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds963-u280.pdf
http://xilinx.eetrend.com/files/2021-08/wen_zhang_/100553088-217819-pg367-dpucahx8h.pdf
http://xilinx.eetrend.com/files/2021-08/wen_zhang_/100553088-217819-pg367-dpucahx8h.pdf
https://www.xilinx.com/products/design-tools/vitis/vitis-ai.html#:~:text=Optimal%20Artificial%20Intelligence%20Inference%20from,%2C%20models%2C%20and%20example%20designs
https://www.xilinx.com/products/design-tools/vitis/vitis-ai.html#:~:text=Optimal%20Artificial%20Intelligence%20Inference%20from,%2C%20models%2C%20and%20example%20designs
https://www.xilinx.com/products/design-tools/vitis/vitis-ai.html#:~:text=Optimal%20Artificial%20Intelligence%20Inference%20from,%2C%20models%2C%20and%20example%20designs
https://www.graphcore.ai/hubfs/assets/pdf/Citadel%20Securities%20Technical%20Report%20-%20Dissecting%20the%20Graphcore%20IPU%20Architecture%20via%20Microbenchmarking%20Dec%202019.pdf?hsLang=en
https://www.graphcore.ai/hubfs/assets/pdf/Citadel%20Securities%20Technical%20Report%20-%20Dissecting%20the%20Graphcore%20IPU%20Architecture%20via%20Microbenchmarking%20Dec%202019.pdf?hsLang=en
https://www.graphcore.ai/hubfs/assets/pdf/Citadel%20Securities%20Technical%20Report%20-%20Dissecting%20the%20Graphcore%20IPU%20Architecture%20via%20Microbenchmarking%20Dec%202019.pdf?hsLang=en

	Abstract
	1 Introduction
	2 GraphCore IPU-M2000 Machine
	3 Test Application: Text Detection
	3.1 Text Detection Model: CRAFT
	3.2 Compressed CRAFT Models
	3.3 Training and testing

	4 Roofline Model for Compressed CRAFT (C6)
	5 Results and Discussions
	5.1 Experimental Setup
	5.2 Hardware Platforms Specifications
	5.3 Throughput Speed-up for Compressed Models
	5.4 Throughput vs. Precision Trade-off
	5.5 Throughput vs. Batch size Trade-off
	5.6 Profiling impressions from PopVision tool
	5.7 Dynamic Power Consumption Observation
	5.8 Throughput Efficiency Variations

	6 Conclusion
	Acknowledgments
	References

