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ABSTRACT
Energy efficiency has become amajor concern in the IT sector as the
energy demand for data centers is projected to reach 1PWh per year
by 2030. While hardware designers improve the energy efficiency
of their products, software developers often do not consider or are
unaware of the impact their design choices can make on the energy
consumption caused by the execution of their applications. Energy
efficiency improvements in applications can, to a certain extent, be
achieved through compiler optimizations. Nonetheless, software
developers should still make reasonable design choices to improve
energy efficiency further.

In this paper, we present the energy efficiency of common sorting
algorithms under different pre-sorted conditions. Previous work in
this field considered only randomized data. We expand on this pre-
vious work and measure the sorting algorithms’ energy efficiency
when the data is already partially sorted to 20% and 50%.

Our presented experience is a case study intended to demonstrate
the effect simple design choices, such as the selection of algorithm
as well as its implementation, can make on energy efficiency. It
is intended for industry practitioners to aid them in selecting a
more energy-efficient algorithm for their problems at hand through
helpful guidelines. Our results also can function as an incentive to
make energy efficiency a non-functional requirement for tenders,
and as a motivation for researchers to include energy efficiency
as an additional quality criterion when studying the properties of
algorithms.

CCS CONCEPTS
• Software and its engineering→ Software performance; Soft-
ware design tradeoffs; •General and reference→ Performance.
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1 INTRODUCTION
Energy efficiency has grown to be a major concern in the IT sector.
On battery-powered devices such as smartphones, high usage of
electricity caused by an inefficiently programmed application can
negatively impact the devices’ battery lifetime and, therefore, lower
user experience. However, energy efficiency is not only a concern
for battery-powered devices but also for data centers. The consider-
able growth of the number and size of data centers worldwide has
made energy efficiency an essential topic for the operators of such
facilities, given that energy consumption and cooling costs today
account for a large part of the operating costs [16]. Until 2030, the
data center energy consumption is projected to rise above the level
of 1PWh, even in the best case scenario [3].

While software developers have achieved remarkable progress,
for instance, by introducing techniques such as auto-scaling [7]
and optimizing efficient service consolidation or placement [8],
the software executed on the hardware often is not developed
with energy efficiency in mind. Yet, it has been shown that energy
efficiency can be influenced by the software itself [5, 10]. The results
of a study conducted by Pang et al. [12] suggest that many software
developers do not take energy efficiency into account. According
to Pinto et al. [14], the lack of attention energy efficiency receives
by developers can be attributed to the lack of tools, as well as the
lack of knowledge about energy-efficient design choices.

We analyze the energy efficiency of a set of well-known sorting
algorithms, a common task in a large variety of applications. Hence,
we extend on previous work by Schmitt et al. where the energy
efficiency of well-known sorting algorithms has been analyzed for
random data [17]. Unlike other existing research in this area, which
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focuses mainly on mobile devices, such as Rashid et al. [15] and
Bunse et al. [4], or on desktop computers (e.g., Chandra et al. [6]),
our research is aimed at computations performed in data centers.
This analysis of sorting algorithms in a data center environment
gives us the possibility to derive a set of recommendations for
software developers.

The experiments are conducted on two state-of-the-art servers
with CPUs from different vendors, which we consider represen-
tative of x86 servers commonly used in cloud data centers. We
evaluate the energy efficiency of the selected algorithms in three
different scenarios: sorting random data, sorting data that is 20%
pre-sorted, and sorting data that is 50% pre-sorted. For every sce-
nario, we use three different problem sizes to study how the input
size affects the algorithms’ energy consumption.

The remainder of this paper is structured as follows. We will
first present previous work in this area in Section 2 followed by
our measurement approach and setup in Section 3. We analyze
the results in Section 4, present our recommendations for industry
practitioners in Section 5, and discuss possible threats to validity
in Section 6. Finally, we conclude our work in Section 7.

2 RELATEDWORK
Many researchers have recognized the importance of taking energy
efficiency into account during the development of software. This
section provides an overview over earlier research, that focused on
the energy efficiency of software.

Bunse et al. [4] presented an approach for saving energy on
mobile devices by dynamically choosing from a set of available
algorithms for a given task based on the current needs of the user.
Like our work, they focus on sorting algorithms due to their preva-
lence in computing. Similarly, Rashid et al. [15] investigated the
energy efficiency of sorting algorithms. They conducted their ex-
periments on an ARM platform, which is often used for mobile
devices. Their study showed that the chosen algorithm, as well as
the programming language, can have a significant impact on en-
ergy consumption. Chandra et al. [6] conducted a basic study of the
energy efficiency of standard sorting algorithms. They concluded,
that the energy consumption is related to the time complexity of
the selected algorithms, and that the data type of the sorted data has
an influence as well. Similarly, to our work in this paper, Schmitt et
al. [17] compared the power consumption of well known sorting
algorithms when executed on servers. However, they used ran-
domly generated data as input to the algorithms. We argue that in
practice, the data often is pre-sorted to some extent. Therefore, in
this work, we analyze and compare the power consumption of the
same algorithms with more realistic, pre-sorted input data in order
to provide guidance to developers who aim to improve the energy
efficiency of their applications.

As developers not only need to know that an algorithm can be
made more efficient, they must also know where energy is spent to
identify the location for improvements and replace algorithms at
that location with more energy-efficient algorithms. Li et al. [11]
developed an approach for calculating the energy consumption
of Android applications on a per source-code-line-level. Their ap-
proach measures the energy consumption of a smartphone, and
uses path profiling in order to associate the collected measurements

with the executed parts of an application. The energy consump-
tion at the source code line level is then calculated through static
analysis and regression analysis. Pathak et al. [13] developed eprof,
an energy profiler for smartphone applications that can expose
which parts e.g., modules or functionalities of an application, cause
which fraction of the overall power consumption. Zhang et al. [18]
developed PowerBooter and PowerTutor. The former tool automat-
ically constructs a power model for a given smartphone without
the need for an external measurement device. The latter uses the
generated power model for online power estimation, thereby in-
forming developers and users about the consequences of design
and usage decisions with respect to power consumption. Aggarwal
et al. [1] developed Greenadvisor, a tool that predicts how changes
made to software affect its energy-consumption profile. It does so
by analyzing the changes in the appearance of system calls in the
application before and after a change to the source code has been
made. This builds on their preceding work, Aggarwal et al. [2],
where the authors were able to show that changes in the system-
call profile of an application from one version to the next correlate
with changes in power consumption.

While the aforementioned works gained valuable insights into
energy consumption caused by software and proposed approaches
towards more energy-efficient computing, the focus of research
seems to be on mobile or desktop devices. We consider this an
important knowledge gap to be closed given that energy consump-
tion is an increasing concern for data center operators, and many
computationally heavy tasks are shifted to the cloud.

3 APPROACH
At first, we describe the systems under test (SUT) and the exper-
iment setup. We base our approach, the selection of sorting algo-
rithms, the testbed setup, definition of problem size, and SUTs on
the work of Schmitt et al. [17]. This consistency allows us to keep
our results comparable.

3.1 Setup
In order to collect representative data, our experiments are con-
ducted on two state-of-the-art HPE ProLiant servers. As Table 1
shows, the systems differ with respect to their CPUs’ characteristics,
which are from different vendors and have different architectures.
The systems are equipped with identical 480GB SSD storage devices
and are operated by the CentOS 8 operating system. In order to
conduct the power measurements, the power supply of each server
is connected to a Yokogawa WT210 power analyzer as shown in
Figure 1. Hence, this setup measures the total power consumption
of the SUT and not a single subsystem like CPU or memory. While
the power analyzer internally uses a sampling rate of 10kHz, the
samples are aggregated over the course of one second. In our exper-
iments, we use this aggregated sampling rate of one second. Our
measurement setup complies with the methodology for power and
performance benchmarking as described by Kounev et al. [9].

3.2 Selected Sorting Algorithms, their
Implementation, and Sorting Task

For our study, as mentioned earlier, we selected the same six well-
known sorting algorithms as previous work by Schmitt et al. that
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Table 1: Systems under test.

Name Cores/Threads Clock Memory

Server A 36/72 2.60GHz 12x16GB
Server B 32/64 3.00GHz 16x16GB

Power Analyzer

NICInterface

Sorting Algorithm Under Test

NIC PSU

Controller

Figure 1: Measurement setup.

exhibit different properties with respect to runtime or space com-
plexity, as can be seen in Table 2. In this study, we did not consider

Table 2: Selected sorting algorithms.

Name Time Complexity Space
Best Average Worst Complexity

Merge Sort 𝑛 log (𝑛) 𝑛 log (𝑛) 𝑛 log (𝑛) 𝑛

Heap Sort 𝑛 log (𝑛) 𝑛 log (𝑛) 𝑛 log (𝑛) 1
Quick Sort 𝑛 log (𝑛) 𝑛 log (𝑛) 𝑛2 log (𝑛)
Insertion Sort 𝑛 𝑛2 𝑛2 1
Bubble Sort 𝑛 𝑛2 𝑛2 1
Selection Sort 𝑛2 𝑛2 𝑛2 1

other properties such as stability, or algorithms that constitute com-
binations of different sorting algorithms, such as Tim Sort. For our
experiments, the authors of [17] supplied us with their implementa-
tion of each algorithm in two variants, both in the C programming
language. The important differences between the implementation
variants for each algorithm are summarized in Table 3. In order
to stress the respective SUT, each algorithm had to sort a set of
integers. The size of this set is referred to as the problem size for
the remainder of this paper. The chosen problem sizes can be seen
in Table 4.

The problem sizes were chosen so the numbers to be sorted fit
into main memory in order to avoid distortion of the results due to
disc I/O. In addition, different problem sizes have been used on the
basis of the average time complexity of the chosen algorithms, given
that using the same problem sizes for all variants of algorithms,
their implementations, and the servers is not viable for practical
reasons. For instance, using small problem sizes for algorithms with
linear time complexity results in runtimes too short to collect a
reasonable amount of data from the power analyzer in a steady-
state. Measuring in a steady-state improves the ability to compute
statistical measures from our data [9]. On the other hand, using a
large problem size for algorithms with quadratic time complexity
causes impractically long runtimes.

The used problem sizes are kept the same for both SUTs, and the
integers are distributed equally among the threads of the respective

server. For instance, if 10 240 000 000 integers are to be sorted
on server A, which has 64 threads, and on server B, which has
72 threads, the individual threads of server A are provided with
10 240 000 000

64 = 160 000 000 integers, and the individual threads of
server B have to sort 10 240 000 000

72 = 142 222 222 integers.
Given that in practice, data is often pre-sorted to some extent, we

want to investigate if this affects the energy efficiency of the sorting
algorithms. To this end, we evaluate the algorithms under three
different scenarios. The first time, we use a set of random numbers
generated by reading from the urandom file. The second time, we
use numbers that are already pre-sorted by approximately 20%, and
the third time the numbers are pre-sorted by approximately 50%.
For the fully random scenario, results are taken from Schmitt et
al. [17] for comparison. Within each of these three scenarios, each
experiment configuration, i.e., each algorithm on each server and
with each problem size, is executed five times.

For generating the partially sorted datasets, we constructed the
respective set of integers by using two types of batches of integers:
one type of batch consisting of sorted integers and one type of batch
consisting of unsorted integers. The size of the batches consisting
of sorted integers was chosen such that each batch of this type
comprises 1% of the numbers of the dataset to be sorted. Each batch
of sorted numbers was created by randomly choosing an integer as
its first element and then filling the batch with consecutive integers
until the batch size was reached. The size of the batches of unsorted
data depends on the desired percentage of sorted numbers in the
dataset to be generated and is determined by the following for-
mula: 𝑠𝑖𝑧𝑒𝑢𝑛𝑠𝑜𝑟𝑡𝑒𝑑_𝑏𝑎𝑡𝑐ℎ = ( 100

𝑑𝑒𝑠𝑖𝑟𝑒𝑑 % 𝑜 𝑓 𝑠𝑜𝑟𝑡𝑒𝑑 𝑛𝑢𝑚𝑏𝑒𝑟𝑠
) − 1. These

batches are filled with random integers. Finally, the dataset with
the desired percentage of pre-sorted data was created, by starting
with one batch of sorted numbers, which is followed by a batch
of randomly selected numbers, which again is followed by a batch
of sorted numbers. We alternated in this fashion, until the overall
problem size of the dataset to be created was reached.

3.3 Analysis
For the execution of a sorting algorithm, the total energy consump-
tion in Joule is calculated as the sum of the power measurements
received every second.

𝐸 =
∑

𝑃 (1)

Furthermore, we calculate the energy efficiency as the number
of integers sorted per Joule of energy. Given that on the selected
systems an integer consists of four bytes, the problem size 𝑝 is
multiplied by four in order to calculate the amount of data sorted:

𝐸𝑓 𝑓 𝑖𝑐𝑖𝑒𝑛𝑐𝑦𝐸 =
𝑝 × 4
𝐸

(2)

In order to assess whether or not there is a statistically significant
difference between the energy efficiency of the chosen implemen-
tations, we calculate the 95% confidence intervals for the means of
the different repetitions of the respective experiment. The differ-
ence between two implementations is considered significant if the
confidence intervals do not overlap.

Given that we chose different problem sizes for the algorithms,
we do not report the actual runtimes. Instead, in order to be able to
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Table 3: Implementation variants of the selected sorting algorithms. [17]

Variant 1 Variant 2

Merge Sort Recursive and without
dynamic memory allo-
cation

Recursive and with dy-
namic memory alloca-
tion

Heap Sort Memory-based swap-
ping

Pointer-based swap-
ping

Quick Sort Memory-based swap-
ping

Pointer-based swap-
ping

Insertion Sort Memory-based swap-
ping and no separate
function for sorting

Memory-based swap-
ping but additional
function to perform
sort operation

Bubble Sort Memory-based swap-
ping

Pointer-based swap-
ping

Selection Sort Memory-based swap-
ping

Pointer-based swap-
ping

Table 4: Calibrated problem sizes.

Problem Size (# of integers)
Algorithm Small Medium Large

Merge Sort 10 240 000 000 10 880 000 000 11 520 000 000
Heap Sort 10 240 000 000 10 880 000 000 11 520 000 000
Quick Sort 10 240 000 000 10 880 000 000 11 520 000 000
Insertion Sort 640 000 12 800 000 19 200 000
Bubble Sort 640 000 12 800 000 19 200 000
Selection Sort 640 000 12 800 000 19 200 000

compare the results, we calculate the performance in sorted Kb per
second.

4 RESULTS AND ANALYSIS
As the results in Table 5, Table 6, and Table 7 show,Merge Sort, Heap
Sort, and Quick Sort are significantly more energy-efficient than
Insertion Sort, Bubble Sort, and Selection Sort across all problem
sizes and scenarios. This is not surprising, given that the former
have an average time complexity of 𝑛 ∗ 𝑙𝑜𝑔(𝑛) and the latter an
average time complexity of 𝑛2.

Within the set of algorithms with time complexity 𝑛 ∗ 𝑙𝑜𝑔(𝑛),
the Merge Sort implementation that uses pre-allocated memory
(variant 1) is the most energy-efficient across all problem sizes and
in all three scenarios. Its energy efficiency even increases notably
with problem size in most scenarios, while for most of the other
algorithms, energy efficiency often decreases or only increases by
a small margin. As the comparison between Table 5 and Table 6
indicates, the energy efficiency of Quick Sort variant 1 on both
servers decreases by a large margin when the data is approximately
20% pre-sorted in comparison to the non-pre-sorted data. For Heap
Sort (both implementation variants) on server A, this decrease in
energy efficiency also can be observed, but is much less pronounced.

On the other hand, for both variants of Merge Sort and Quick Sort
variant 2, the energy efficiency increases in this scenario. On server
A it can be observed that both variants of Heap Sort are less energy-
efficient on the medium and large problem sizes when the data
is 20% pre-sorted. However, Quick Sort variant 2 does not suffer
from this effect and is the second most efficient algorithm in these
circumstances, afterMerge Sort variant 1. Further, it can be seen that
Quick Sort variant 1 is more energy-efficient on the non-pre-sorted
data than variant 2, while in both scenarios with pre-sorted data,
variant 2 is significantly more energy-efficient. As Table 7 shows,
the energy efficiency of Quick Sort variant 1 significantly decreases
when the data is 50% pre-sorted. For the large problem size on server
A, the performance drops drastically, to only 16.95 Kb sorted per
second. This strong decrease in performance might be due to the
Quick Sort implementation with memory-based swapping getting
close to its worst-case execution time of 𝑛2 in this configuration.
When the data is pre-sorted for 50%, the energy efficiency of Merge
Sort variant 1 decreases by a large margin, compared to the case of
20% pre-sorted and non-pre-sorted data.

In our experiments, we have seen a significant difference be-
tween the implementation variants’ mean energy efficiency in most
circumstances, as indicated by the fact that the respective confi-
dence intervals of the energy efficiencies of the variants do not
overlap. A notable exception is Heap Sort on server B, where in
both scenarios with pre-sorted data and across all problem sizes, no
significant differences between the implementation variants could
be observed. On server A, the energy efficiency of the Heap Sort
implementation variants does not seem to be significantly different
on problem size small and large. Overall, the number of overlaps is
largest in our experiments when the data is 50% pre-sorted.

The results further demonstrate that the relationship between
performance and energy efficiency is non-trivial. For instance, in
both scenarios with pre-sorted data, the performance of Heap Sort
on server B does not vary much (approximately 50000 kb per second
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Table 5: Mean energy efficiency for both implementation variants in sorted kB per Joule. [17]

Problem Variant 1 Variant 2 V1 and V2
Server Size 𝐸𝑓 𝑓 𝑖𝑐𝑖𝑒𝑛𝑐𝑦𝐸 95% CI 𝐸𝑓 𝑓 𝑖𝑐𝑖𝑒𝑛𝑐𝑦𝐸 95% CI Overlap

M
er
ge

So
rt

A Small 3 057 140.43 68 234.82 401 219.46 1867.08 ✗

Medium 2 874 856.35 607 613.69 393 527.45 20 993.10 ✗

Large 3 406 575.21 109 261.19 376 680.40 41 104.92 ✗

B Small 3 554 848.68 702 507.71 322 805.22 1190.23 ✗

Medium 3 946 797.65 572 690.29 318 950.61 3342.17 ✗

Large 4 263 224.30 261 687.77 317 969.18 3109.83 ✗

H
ea
p
So
rt

A Small 156 507.34 9793.82 156 538.77 2647.30 ✓

Medium 159 005.12 491.70 156 300.54 1164.83 ✗

Large 156 701.09 2314.56 153 358.12 4113.29 ✓

B Small 112 808.83 165.06 107 845.36 110.66 ✗

Medium 112 207.69 350.81 107 072.05 135.36 ✗

Large 111 542.68 403.48 106 421.56 474.03 ✗

Q
ui
ck

So
rt

A Small 712 085.62 2818.19 581 176.35 49 584.84 ✗

Medium 687 025.63 80 615.43 583 890.48 44 280.08 ✓

Large 689 021.31 74 343.39 604 550.75 6370.04 ✗

B Small 539 591.67 6980.36 424 654.50 5686.78 ✗

Medium 544 565.18 7796.15 420 779.36 3926.93 ✗

Large 545 010.71 5673.11 424 777.04 3415.20 ✗

In
se
rt
io
n
So
rt A Small 1571.49 23.95 1299.39 13.67 ✗

Medium 1136.63 11.74 851.60 5.85 ✗

Large 819.89 5.01 600.31 2.20 ✗

B Small 1565.20 108.45 1328.51 29.46 ✗

Medium 1017.02 24.45 829.03 11.50 ✗

Large 711.04 11.77 578.79 6.98 ✗

Bu
bb
le
So
rt

A Small 464.87 2.79 447.34 2.23 ✗

Medium 249.44 1.82 237.70 0.37 ✗

Large 165.24 1.01 157.21 0.72 ✗

B Small 368.83 2.20 349.39 2.87 ✗

Medium 192.95 0.88 181.93 1.16 ✗

Large 127.86 0.52 121.80 1.31 ✗

Se
le
ct
io
n
So
rt A Small 571.07 3.53 901.45 5.29 ✗

Medium 314.75 1.36 537.04 3.14 ✗

Large 211.29 1.31 369.80 0.79 ✗

B Small 497.21 2.60 837.31 23.62 ✗

Medium 264.64 1.39 477.16 4.57 ✗

Large 176.83 1.09 320.51 1.09 ✗

in both scenarios); the energy efficiency, on the other hand, dras-
tically decreases when the data is 50% pre-sorted. In addition, for
both implementations of Heap Sort we observe a higher mean per-
formance on the large problem size in comparison to the medium
problem size but a lowermean energy efficiency on server B for both
the 20% pre-sorted data and the 50% pre-sorted data. For server A,
the same observation can be made for both implementations of
Heap Sort on the 50% pre-sorted data. Another example is Quick
Sort, for which this effect can be seen for implementation variant 2
on server B in the scenario with 50% of the data being pre-sorted

and on server A when the data is 20% pre-sorted. In summary, the
results demonstrate that the choice of algorithm and its implemen-
tation, as well as the degree to which the data is pre-sorted, can
have significant impact on the energy consumption.

5 RECOMMENDATIONS
Based on our analysis in Section 4, we compiled some basic rec-
ommendations for Merge Sort, Heap Sort, and Quick Sort. Bubble
Sort, Selection Sort, and Insertion Sort are the least energy-efficient
across all experiments, which can be attributed to their average
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Table 6: Mean energy efficiency for both C implementation variants in sorted kB per Joule with approximately 20% of data
being pre-sorted. In addition, we report the mean performance in sorted kB per second.

Problem Variant 1 Variant 2 V1 and V2
Server Size Performance 𝐸𝑓 𝑓 𝑖𝑐𝑖𝑒𝑛𝑐𝑦𝐸 95% CI Performance 𝐸𝑓 𝑓 𝑖𝑐𝑖𝑒𝑛𝑐𝑦𝐸 95% CI Overlap

M
er
ge

So
rt

A Small 604 729.91 7 226 675.77 258 008.91 128 675.95 633 450.26 13 732.42 ✗

Medium 639 617.16 7 608 674.38 629 193.97 128 370.32 599 772.35 12 512.02 ✗

Large 660 717.49 7 862 375.87 355 132.14 128 639.72 564 518.74 6565.78 ✗

B Small 438 093.03 4 645 249.78 1 542 776.39 100 503.58 1 056 276.30 483 836.50 ✗

Medium 549 780.03 5 256 787.92 702 389.74 125 422.31 1 236 522.83 19 817.66 ✗

Large 625 780.94 5 837 467.04 56 078.35 125 647.86 1 255 210.35 6064.84 ✗

H
ea
p
So
rt

A Small 49 630.19 149 080.29 474.10 48 316.82 141 192.27 1111.09 ✗

Medium 48 966.30 143 856.52 332.55 47 786.90 137 083.77 71.30 ✗

Large 48 936.58 142 315.77 29.02 47 658.96 135 156.26 303.32 ✗

B Small 48 693.01 263 214.81 2934.59 49 787.76 261 954.56 643.24 ✓

Medium 47 716.74 244 977.11 7146.92 49 140.34 246 847.89 3668.94 ✓

Large 47 957.82 239 117.31 4751.15 49 178.39 241 023.68 2512.59 ✓

Q
ui
ck

So
rt

A Small 36 052.76 124 860.80 141.21 188 511.70 2 173 849.85 138 240.14 ✗

Medium 25 216.41 96 432.52 2897.99 169 825.00 1 601 543.06 699 558.05 ✗

Large 39 221.62 132 254.86 112.03 192 946.51 1 600 880.31 55 879.56 ✗

B Small 30 890.77 151 402.67 1067.95 172 159.51 1 726 402.11 294 948.90 ✗

Medium 37 360.86 186 512.57 6769.22 177 049.82 1 756 853.85 243 615.47 ✗

Large 36 372.68 178 620.21 3598.98 177 167.79 1 769 536.51 240 796.61 ✗

In
se
rt
io
n
So
rt A Small 299.32 3633.81 29.13 283.59 3468.03 69.33 ✗

Medium 301.58 3802.35 51.70 262.69 3321.75 73.73 ✗

Large 251.02 1334.67 93.70 210.64 923.29 43.88 ✗

B Small 275.17 2588.00 17.98 232.92 2287.32 62.15 ✗

Medium 263.77 2565.22 49.07 204.55 2028.40 6.56 ✗

Large 215.96 2118.34 29.96 158.50 1423.02 29.65 ✗

Bu
bb
le
So
rt

A Small 121.23 1542.12 14.72 116.12 1344.53 129.24 ✗

Medium 76.35 238.75 2.07 71.82 219.83 3.86 ✗

Large 53.06 139.73 0.26 49.90 130.33 2.31 ✗

B Small 113.31 1110.36 29.34 110.80 1066.79 41.94 ✓

Medium 70.34 407.15 3.13 68.27 379.59 3.32 ✗

Large 49.11 201.72 1.36 47.76 189.98 0.55 ✗

Se
le
ct
io
n
So
rt A Small 151.44 1906.25 18.89 218.06 2695.36 12.97 ✗

Medium 101.58 360.46 7.17 169.44 914.70 13.54 ✗

Large 72.44 201.02 2.01 125.68 407.14 2.13 ✗

B Small 131.92 1288.17 22.69 186.60 1813.79 3.43 ✗

Medium 86.93 600.13 13.11 139.15 1363.93 22.40 ✗

Large 61.31 270.88 2.48 102.36 578.08 5.79 ✗

time complexity of 𝑛2. Therefore, we do not recommend the use of
these algorithms and they will not be considered in the following
guidelines.

Merge Sort. Preferable over all other selected algorithms in all
investigated scenarios, provided that memory is no constraint. The
implementation should use pre-allocation of memory instead of
dynamic allocation. It also scales well with problem size.

Quick Sort. Preferable over Heap Sort if memory is not a hard
constraint. When the data is not pre-sorted, use an implementation
variant with memory-based swapping. When the data is already
partially sorted, use an implementation variant with pointer-based
swapping instead of memory-based swapping.

Heap Sort. Preferable only over Merge Sort and Quick Sort if
memory is a hard constraint.
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Table 7: Mean energy efficiency for both C implementation variants in sorted kB per Joule with approximately 50% of data
being pre-sorted. In addition, we report the mean performance in sorted kB per second.

Problem Variant 1 Variant 2 V1 and V2
Server Size Performance 𝐸𝑓 𝑓 𝑖𝑐𝑖𝑒𝑛𝑐𝑦𝐸 95% CI Performance 𝐸𝑓 𝑓 𝑖𝑐𝑖𝑒𝑛𝑐𝑦𝐸 95% CI Overlap

M
er
ge

So
rt

A Small 495 898.52 7 481 817.33 316 176.56 137 745.20 615 232.08 31 679.89 ✗

Medium 554 983.03 8 103 984.30 248 482.84 138 404.66 593 207.44 9473.49 ✗

Large 580 883.41 8 655 502.10 292 472.06 139 417.39 569 874.89 7966.55 ✗

B Small 441 877.63 1 345 769.63 269 197.59 115 270.90 353 258.51 62 046.30 ✗

Medium 465 916.70 1 701 845.85 431 471.65 130 627.41 477 743.71 115 252.22 ✗

Large 510 472.94 1 363 307.92 230 911.01 129 890.45 337 188.47 12 612.42 ✗

H
ea
p
So
rt

A Small 55 955.77 163 561.83 10 384.19 55 470.05 158 657.44 709.38 ✓

Medium 57 356.30 163 088.19 312.09 55 050.51 154 190.05 463.42 ✗

Large 57 387.12 161 413.85 473.14 55 183.76 153 170.74 460.74 ✗

B Small 49 044.07 137 836.83 14 544.12 53 995.83 155 754.17 19 375.27 ✓

Medium 51 863.27 187 087.99 46 987.28 53 147.49 195 932.26 50 964.51 ✓

Large 52 111.77 137 480.05 9086.18 53 501.63 141 023.65 9401.27 ✓

Q
ui
ck

So
rt

A Small 325.42 1241.72 224.76 198 017.67 1 551 259.82 21 823.89 ✗

Medium 4081.32 14 560.23 8.23 200 020.05 1 426 626.22 47 272.31 ✗

Large 16.95 41.09 2.17 205 764.92 451 937.76 5469.30 ✗

B Small 8834.01 49 010.39 24 110.42 160 797.63 500 496.84 49 394.98 ✗

Medium 1406.19 50 197.02 36 052.31 155 899.85 444 691.99 75 834.45 ✗

Large 5364.61 51 511.26 33 082.98 184 972.21 485 434.48 38 230.55 ✗

In
se
rt
io
n
So
rt A Small 298.78 4224.64 18.11 284.32 4017.79 605.31 ✓

Medium 297.57 4375.40 272.73 261.32 2344.11 227.21 ✗

Large 248.96 1107.18 22.35 206.27 800.51 26.40 ✗

B Small 273.69 738.98 49.17 232.12 643.33 41.24 ✗

Medium 263.78 937.34 198.98 204.93 734.01 156.62 ✓

Large 215.05 556.70 1.64 159.09 413.55 1.46 ✗

Bu
bb
le
So
rt

A Small 118.93 847.11 31.72 114.07 738.51 34.12 ✗

Medium 74.41 221.37 1.09 70.76 208.82 1.28 ✗

Large 51.63 134.41 0.08 49.09 127.43 0.79 ✗

B Small 112.70 304.15 10.08 109.75 296.47 9.65 ✓

Medium 70.27 231.02 35.87 68.27 228.03 37.44 ✓

Large 49.10 128.79 0.15 47.66 125.02 0.23 ✗

Se
le
ct
io
n
So
rt A Small 150.13 2156.10 50.91 215.70 3664.01 185.54 ✗

Medium 99.18 325.75 2.75 167.89 740.03 11.03 ✗

Large 69.84 156.39 0.99 122.73 273.38 0.14 ✗

B Small 131.93 415.94 59.48 185.82 584.52 87.88 ✗

Medium 86.92 226.28 0.10 139.08 360.12 1.47 ✗

Large 61.34 162.99 1.77 102.42 271.75 3.33 ✗

6 THREATS TO VALIDITY
In this section, we will briefly discuss the threats to validity. They
are addressed in the order of their severity as rated by the authors.

Number of repetitions. Every combination of server, algorithm,
problem size, and degree to which the data is pre-sorted, was exe-
cuted and measured five times. Using a larger number of repetitions
per configuration could reduce the variance and provide more ex-
pressive statistics. For instance, the confidence intervals might be

tightened by a larger number of repetitions that could lead to some
of the detected overlaps of the confidence intervals of the different
implementation variants being resolved. Even though this could
affect some of the conclusions of our analysis, our presented guide-
lines still would be useful for selecting a good algorithm, even if
not the optimal one in every situation.

Programming language selection. For the implementation of
the selected algorithms, we selected the C programming language,
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given its wide-spread use and supposed prevalence in the future.We
are aware that interpreted languages might behave differently, and
that the compilation process introduces optimizations. However, we
argue that compiler optimizations are part of a realistic development
scenario and are widespread in use by C developers.

Degree to which the data is pre-sorted. In our study, we ana-
lyzed the energy efficiency of the selected algorithms under three
different conditions with respect to the degree to which the data
is pre-sorted. In the context of this work, we did not choose a
larger number of scenarios due to the already large number of
configurations to be tested and the resulting long duration of the
execution of our experiments. Nevertheless, we consider the se-
lected pre-conditions realistic reference values and have shown
that this property of the data not only affects the energy efficiency
of the sorting algorithms, but also that different algorithms can be
better suited for different scenarios.

Problem size selection. We selected three different problem
sizes for the set of integers to be sorted by the algorithms. The
sizes were selected in accordance with [17] so that the individual
sets fit into the memory of the selected servers to ensure stable
measurements and to ensure the feasibility of the experiments with
respect to runtime. Given the quadratic time complexities of some
of the selected algorithms, different problem sizes were chosen
for these algorithms. Given that we compare the normalized and
not the absolute energy efficiencies of the algorithms, we do not
consider the selection of different problem sizes a threat to the
validity of our conclusions.

Limited number of server configurations. We conducted our
experiments on two state-of-the-art servers, with CPUs from two
different major manufacturers. Even though we consider these
representative for x86 systems used in today’s cloud data centers,
using different hardware could yield results that differ from ours.

7 CONCLUSION
Energy efficiency is an increasing concern in the IT sector. Taking
energy efficiency into account when implementing tasks that are
executed very frequently can make a significant difference in the
overall energy consumption. In this work, we analyzed the energy
efficiency of six well-known sorting algorithms in two implemen-
tation variants and with partially sorted input data. While time
complexity can be used as an important first pointer of which al-
gorithm to choose, energy efficiency can vary significantly among
algorithms with similar time complexity. We observed that the
degree to which the data is pre-sorted, as well as small changes
in implementation, can significantly impact energy consumption.
Future work will focus on further characterizing such relationships
as well as the influence the available hardware resources and their
usage by the individual algorithms have on energy efficiency. We
hope this work will help with the selection of an energy-efficient
sorting algorithm and will inspire researchers and practitioners to
investigate and to consider the energy efficiency of often executed
tasks.
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