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ABSTRACT 
Queueing models of web service systems run at increasingly 
large scales, with large customer populations and with 
multiservers introduced by scaling up the services. “Scalable” 
multiserver approximations, in the sense that they that are 
insensitive to customer population size, are essential for solution 
in a reasonable time. A thorough analysis of the potential errors, 
which is needed before the approximations can be used with 
confidence, is the goal of this work. Three scalable 
approximations are evaluated: an equivalent single server SS, an 
approximation RF introduced by Rolia, and one based on a 
binomial distribution for queue state AB. AB and SS are 
suggested by previous work but have not been evaluated before. 
For AB and SS, multiple classes are merged into one to calculate 
the waiting. The analysis employs a novel traffic intensity 
measure for closed multiserver workloads. The vast majority of 
errors are less than 1%, with the worst cases being up to about 
30%. The largest errors occur near the knee of the 
throughput/response time curves.  Of the approximations, AB is 
consistently the most accurate and SS the least accurate. 
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• Software and its engineering → Software performance
• Computer systems organization → Cloud computing
• Mathematics of computing → Queueing theory
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1 Introduction 
Cloud performance management can only exploit contention 
(queueing) models if they can be solved quickly and robustly; 
accurate prediction is important but secondary. This work seeks 
improvement in analyzing FIFO multiservers, which are the 
usual model for contention at a replicated software server. 
FIFO multiservers are the rule in web service systems deployed 
in clouds. In a performance model there is no exact solution for 
these servers, so approximations must be used to predict the 
queueing delays. Most known solutions require calculation effort 
which increases at least linearly with the user population (e.g. 
[10]), which is often huge (related work is described in Section 
6). One well-established scalable approximation by Rolia [11] has 
convergence problems, as will be described further below. 
This work contributes a new and intensive evaluation of three 
approximations for the waiting time of closed FIFO multiservers 
which are insensitive to the user population size:  

• RF, the approximation by Rolia [11]
• SS, an equivalent single server, which has been used in

cloud models (without much scrutiny, e.g. [14][15])
• AB, which uses a binomial distribution for the queue.
Their accuracy is evaluated over a wide range of parameters,
which indicates that AB is the best by a modest margin.
The scalability problem  is illustrated by the solution times for
the simple model shown in Figure 1. It represents a set of 50
service instances attached to a load-balancer, which is subsumed
in the queue. There are three classes of customers with sizes
[2000, 400, 100].

Figure 1 A Simple Multiserver Model for a Web Service 

Table 1 compares the times by the LQNS solver [6] using three 
multiserver approximations. RF [11], and Conway [5] are the 
most-used built-in algorithms in the solver, while AB is new. 
The times shown are the average of 1000 LQNS solutions. The 
impact of even a linear term in 𝑁 or 𝐶 is evident. 

Permission to make digital or hard copies of all or part of this work for personal or 
classroom use is granted without fee provided that copies are not made or distributed 
for profit or commercial advantage and that copies bear this notice and the full citation 
on the first page. Copyrights for components of this work owned by others than the 
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or 
republish, to post on servers or to redistribute to lists, requires prior specific permission 
and/or a fee. Request permissions from Permissions@acm.org. 
ICPE '22 Companion, April 9–13, 2022, Beijing, China. 
© 2021 Copyright is held by the owner/author(s). Publication rights licensed to ACM. 
ACM ISBN 978-1-4503-9159-7/22/04...$15.00. 
https://doi.org/10.1145/3491204.3527472

“Thinking” State in which Users 
do other operations 

Customer Populations Nc =

Queue and 
Load Balancer 

50 
servers 

WOSP-C 2022 ICPE ’22 Companion, April 9–13, 2022, Bejing, China

129



 

Table 1 Comparison of LQNS Solution Times 

Approximation RF Conway AB 
Complexity per iteration  
(N customers, 𝑚 servers, 

𝐶 classes) 

O(𝐶) O(𝑁𝐶3) O(𝑚 +  𝐶) 

Average of 1000 solution 
times (ms) 

0.786 401.4 0.705 

 
AB and RF are about the same, and Conway is much slower. For 
the same model one simulation, giving confidence intervals of 
0.2%, took 1001 s., 2500 times as long as Conway. 

2. The Model 
The abstract model is a closed FIFO M/M/m//N queue serving a 
single class of customers: 

• 𝑁 = the number of customers, 
• 𝑍= the mean “think time” (between leaving the server and 

arriving for the next service) , 
•  𝑆= the mean service time (normalized to 1), 
• 𝑇 = the traffic intensity, the ratio of the maximum arrival 

rate 𝑁/𝑍 to the maximum departure rate 𝑚/𝑆: 
𝑇 = 𝑁𝑆/(𝑚𝑍)   (1) 

• 𝑊 = mean waiting time, 
• 𝑅 = 𝑊 + 𝑆 = response time , 
• 𝜆 = 𝑁/(𝑅 + 𝑍) = throughput in responses/s., 
• 𝐿∗ = an estimate of the mean expected number in queue (not 

service) when there are N-1 customers, used in approximate 
Mean Value analysis (AMVA), 

• 𝜆∗ = the corresponding throughput , 
• 𝑃 = the probability that a customer is in the queue or at the 

server: 
𝑃 =  (𝑊 + 𝑆)/(𝑊 + 𝑆 + 𝑍) (1) 

• 𝑝(𝑖)  = probability that there are  𝑖  customers in the 
queue+server, 

• 𝑃𝐵 = the probability that all 𝑚 servers are busy. 
The service time 𝑆 is normalized to 1 so that in general, 𝑍 
represents 𝑍/𝑆 . Approximate results are subscripted by the 
algorithm name, represented here by a subscript APP. 

• 𝑊APP
  and 𝑅APP

  = approximate mean waiting time and 
response time found by method APP (APP is one of Exact, 
AB, RF, SS, Sim) . 

• It is useful to recall the asymptotic bounds of 𝑅 for a single 
class with think time 𝑍 and service time 𝑆 [9]: 

• 𝑅 > max (𝑆, 𝑁𝑆/𝑚 − 𝑍) 
• which are shown in Figure 2. We see that 𝑇 = 1 at the point 

where the diagonal bound crosses the axis, near the 
intersection of the bounds. The actual response time curve 
has a knee near this point, where it turns upwards, and it is 
near this value that the largest approximation errors were 
found.  

 

 

Figure 2 The Asymptotic Bounds on R for One Class 

The exact solution for the state probabilities is found from a 
birth-death Markov model (see, e.g. [2]). Then the waiting and 
response times are given (using Little’s formula) by: 

𝜆Exact = ∑ min (𝑖, 𝑚)𝑝(𝑖)/𝑆𝑖  ;   
                               𝑅Exact= 𝑁/𝜆Exact – 𝑍;       

                         𝑊Exact  =  𝑅Exact –  𝑆           (2) 
Errors will be reported as their relative error 𝑅𝐸, normalized to 
the response time. For approximation APP, the error is 

𝑅𝐸(APP) = (𝑊𝐴𝑃𝑃 –  𝑊𝐸𝑥𝑎𝑐𝑡 )/ 𝑅𝐸𝑥𝑎𝑐𝑡   (3) 
The algorithms APP to be reported include Equivalent Single 
Server (SS), Rolia-Franks (RF) and the Arrival-theorem Binomial 
(AB). 
The notation 𝐴𝑅𝐸 is used for the absolute 𝑅𝐸, and 𝑀𝐴𝑅𝐸 for the 
mean 𝐴𝑅𝐸.  

3. The Approximations for One Class 

3.1 Rolia-Franks (RF, giving 𝑾RF)  
Rolia’s approximation [11] modified by Franks [7] assumes the 
servers are independent, to estimate the probability 𝑃𝐵 that all 
servers are busy. Conditioned on all servers busy, it estimates 
waiting by a conventional iterative AMVA approach. The update 
to W at each iteration is: 

𝑊 =  𝑆 + [(𝑈(1)∗)𝑚/𝑚]  𝑆 𝐿∗    (4) 
where 𝑈(1)∗ is the utilization of each server separately with one 
less customer, and 𝐿∗ is the expected customers to wait for. The 
mean queue length 𝐿∗ with one less customer is found from the 
previous value of 𝑊 by any AMVA approach. For example the 
Bard-Schweitzer Proportional Estimation (PE) algorithm [12] 
gives the iterative relationship: 

 𝐿∗  ≅  [(𝑊 + 𝑆) (𝑊⁄ + 𝑆 + 𝑍)][(𝑁 − 1) 𝑁⁄ ]            (5)
  
In applying RF with a fixed-point iteration, convergence requires 
under-relaxation of the form 

updated 𝑊 =  (new 𝑊) + (1 -  )(previous 𝑊)       (6) 
with a relaxation parameter  that was set here to 0.2. The 
complexity of RF with PE for one multiserver queue is O(1) per 
iteration. This makes RF highly scalable, and it has been the 
algorithm of choice in the LQNS solver for many years. However 
there have been problems with convergence. 
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3.2 The Equivalent Single Server (SS, giving WSS)  
Some authors (e.g. [14][15]) have approximated the waiting time 
for a set of servers, used to scale up a single service in a cloud 
deployment, by a single faster server. A set of 𝑚 servers is 
represented by a single server of 𝑚 times the speed (giving a 
service time 𝑆/𝑚). To provide the correct total delay at very 
light loads, an additional delay 𝑆(1 –  1/𝑚) is added to represent 
the remaining service delay (this is not found in the references). 
The additional delay is added to the response time of the server, 
but does not contribute to its utilization. For a closed model the 
exact solution may be used, making its complexity O(𝑁) for a 
single class, but using AMVA it has lower complexity. For 
example with PE the time complexity of each iteration is O(1); 
with Linearizer [4] it is larger but also O(1).  

3.3 The “Arrival-theorem Binomial” 
Approximation (AB)  

AB assumes that the movement of customers between the 
thinking and server states is independent, with the probability 
for each customer being at the server (waiting or in service) of 
𝑃 =  𝑅/(𝑍 + 𝑅). Independence gives a binomial distribution for 
the customers at the server, from which the probability 𝑝(𝐵)(𝑖) 
of 𝑖 customers is found for 𝑖 =  0 to 𝑚 − 1. This is similar to the 
single-class version of the approach by deSouza e Silva and 
Muntz described in [13]. 

𝑝𝐵(𝑖) = (𝑁! (𝑁 − 𝑖)! 𝑖!⁄ )𝑃𝑖(1 − 𝑃)𝑁−𝑖 

The probability that all servers are busy is 𝑃𝐵𝐵: 

𝑃𝐵𝐵 = 1 − ∑ 𝑝(𝐵)(𝑖)
𝑚−1

1
 

The throughput is then 

𝜆 = (1 𝑆⁄ ) ∑ 𝑖𝑝(𝐵)(𝑖)
𝑚−1

1
+ (𝑚/𝑆)𝑃𝐵𝐵 

𝑊 can be found from this throughput using Little’s formula but 
it was found to give inferior estimates. A better approach called 
AB was found by applying the Arrival Theorem [10] and 
considering a queue with 𝑁 − 1  customers, indicated by a 
superscript (𝑁-1). The probability 𝑃 is assumed to be the same, 
and 𝐿∗ estimates the mean number in in the queue:  

  𝑝𝐴𝐵
(𝑁−1)(𝑖) = ((𝑁 − 1)! (𝑁 − 1 − 𝑖)! 𝑖!⁄ )𝑃𝑖(1 − 𝑃)𝑁−1−𝑖  

  𝐿∗ = ∑ (𝑖 − 𝑚)𝑝𝐴𝐵
(𝑁−1)

(𝑖)𝑁−1
𝑖=𝑚+1    (7) 

Eq (7) can be re-arranged so that it uses only the first 𝑚 
probabilities: 
 𝐿∗ = (𝑁 − 1)𝑃– (𝑚 − 1)(1 − ∑ 𝑝(𝑁−1)(𝑖)𝑚−1

𝑖=1 ) − ∑ 𝑖𝑝(𝑁−1)(𝑖)𝑚−1
𝑖=1  

      (8) 
By the Arrival Theorem a customer waits on average for 𝐿∗ 
departures before entering service, giving 

𝑊𝐴𝐵  =  𝐿∗ 𝑆/𝑚 
Using Eq. (8) the complexity of AB is O(𝑚). 

4. Approximation Accuracy 
Figure 3 shows a quick look at the approximation errors for RF, 
and AB, for a model with 𝑁 =100. The traffic level 𝑇 takes values 
from 0 to 5, 𝑚 takes a range of values as shown, 𝑆 = 1 and. 𝑍 was 
computed from 𝑇 as: 

𝑍 =  𝑁/(𝑚𝑇) 
The errors have magnitudes less than 25%, and are mostly 
concentrated around 𝑇 = 1, although for large 𝑚, in both SS and 
RF the peak error tends towards higher values of 𝑇. SS is 
considerably the worst, and this was found to be generally true. 
In AB and SS, the errors converge towards zero as 𝑇 increases 
(rather slowly in the case of SS with large 𝑚). For RF with 𝑚 = 
70 the error increases above T=3 and takes a value of about 2%. 
Large 𝑚 and large 𝑇 model very large sets of servers under 
substantial load, which is an important case. For each algorithm 
there appears to be a defined “worst” value of 𝑇, mostly close to 
1.0, but varying with 𝑚 and 𝑁.  
It is notable that AB and SS tend to overestimate W (positive 
error), while RF tends to underestimate it. For different 𝑚 and 𝑁 
the curves are different, and AB sometimes underestimates as 
well. 

4.1 Absolute Relative Errors (ARE)  
To go beyond the error graphs in Figure 3, a contour map of ARE 
against 𝑇 and 𝑚, for 𝑁 = 500, is shown in Figure 4 above, for the 
three approximations. The range of 𝑇 was restricted below 2 
because the errors are quite small for all the approximations for 
larger 𝑇 and this customer population. 

 

   
 (a) RE(AB)  (b) RE(SS) (c) RE(RF) 

Figure 3 Relative Error of Three Approximations against the Traffic Level T, for 𝑵 = 100 
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(a) AB (c) SS (d) RF

Figure 4 Contours of the Absolute Relative Errors of the Three Approximations for 1<𝒎<20, 0<𝑻<2, and 𝑵 = 500 

The contours are spaced 0.02 apart. Server saturation is 
approached for 𝑇>1.2. All the approximations show ridges of 
error near 𝑇 = 1, corresponding to the positive and negative 
peaks below and above 𝑇 = 1  in the curves in Figure 3 above. AB 
and RF appear to be comparable, although the errors are 
concentrated differently. SS has a very large black area of large 
errors, but with a smaller peak value (0.16 vs 0.24 for AB and 
0.28 for RF). The largest errors for AB and RF are for single 
servers, but these are unimportant, since there are better solvers 
for single servers. 
For a quantitative comparison the average and maximum ARE 
was calculated for 200000 cases covering the parameter ranges 𝑚 
 [2, 50], 𝑁  [5, 1000], four ranges of traffic intensity 𝑇 with 10 
values in each range, with 𝑍 =  𝑁/(𝑚𝑇):  

Moderate loads below the saturation point, 𝑇  [0, 1], 
Mid-range loads near the saturation point, 𝑇  [1,3], 
Heavy loads which saturate the server, 𝑇  [3,10], 
Very heavy loads, 𝑇  [10,36], 

The cases included all combinations of 25 values of 𝑚, 200 values 
of 𝑁  and 40 values of 𝑇 . Table 2 shows the average and 
maximum values for each load range. The iteration in the RF 
approximation failed to converge in many cases with heavy 
traffic and the percentage of non-converged cases is shown in 
the last column. Convergence depends on a relaxation parameter 
which was set to 0.2; smaller values improve convergence but 
increase the average run-time. 
In Table 1, AB has smaller mean errors than RF everywhere, and 
smaller than SS in three out of four ranges. In the important 
range of moderate traffic (row 1) AB is much the best. Near 
saturation (row 2), the differences between the approximations 
are smaller and AB is between SS and RF. For maximum error, 
the smallest occurs for AB in the two heaviest ranges, for SS in 
the “Moderate” cases, and for RF in the Mid-Range” cases. From 
Table 1, either AB or SS would be preferred over RF, both for 
reasons of error and of convergence, with AB being preferred 
over SS because of the “Moderate” cases. 

Table 2. Absolute Relative Errors Over 200000 Cases 

AB SS RF RF non-
converged 

Moderate 
0<T<1 

Mean ARE 0.01496 0.05791 0.01866 0 

Max ARE 0.2020 0.1697 0.2487 
Mid-range 

1<T<3 
Mean ARE 0.01441 0.008969 0.02556 20542 

41% Max ARE 0.2169 0.1919 0.1532 
Heavy 
3<T<10 

Mean ARE 0.001019 0.002056 0.003450 36682 
73% 

Max ARE 0.06617 0.1926 0.08451 
Very Heavy 

10<T<36 
Mean ARE 0.0002134 0.001604 0.002931 39531 

79% 
Max ARE 0.02289 0.1932 0.09561 

For additional insight into the error distributions, Figure 5 shows 
histograms of the errors for the first three ranges of 𝑇. In the 
histograms the first cell (for relative errors less than 1%) is 
omitted because its count is so large, but its count is reported. 
Many results from all the approximations have less than 1% 
error. SS and RF are relatively poor in moderate traffic. RF shows 
some large errors in light traffic. Overall, AB and SS both appear 
to have acceptable errors. 

4.2 Worst-Case Analysis 
It is useful to know how the maximum errors are related to the 
parameter values. The maximum ARE, denoted as 𝐸∗(𝑚, 𝑁) 
were mapped over values of (𝑚, 𝑁) with 𝑚 in (1, 20) and 𝑁 in (5, 
500). For each configuration of m, N, there is a “worst” traffic 
level 𝑇∗(𝑚, 𝑁) (giving the largest value of 𝐸∗(𝑚, 𝑁)). 𝑇∗  was 
found by a numerical search over 𝑇 and is usually near to 1.0. 
Figure 6 displays 𝐸∗(𝑚, 𝑁) as a contour map, and Figure 7 
displays 𝑇∗(𝑚, 𝑁). 

0<ARE<0.02 
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convergence 

0    0.5    1   1.5    2 
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Figure 5 Histograms of the Absolute Relative Errors (AREs) at Moderate, Mid-Range and Heavy Loads 

(a) Max Error E* for AB (a) Max Error E* for SS (a) Max Error E* for RF

Figure  6.  Worst Case Analysis: Contour Plots of the Maximum Errors 𝑬∗
(
 𝒎, 𝑵)

The maximum ARE follows different patterns for the three 
approximations: 

• For AB the worst-case ARE is less than 0.1 over almost half
the space (the upper left half of the chart) The largest values 
(around 0.24) occur in the bottom right corner. These are 
cases with many customers, just one or two servers. Figure 

7(a) shows values of 𝑇∗ ≈ 1 in that corner, so think times are 
long relative to service times, to give 𝑇 near to 1.  

• For SS the worst-case ARE is greater than 0.1 for all 𝑚, 𝑁

but its highest value is smaller, less than 0.16.  There is a
band across the chart for cases with 3-12 servers, giving
worst-case errors between 0.15 and 0.16. In Figure 7(b) the
worst-case traffic levels in this area are between 0.5 and 0.9,
indicating moderately heavy traffic.

(a) AB
with T in (0,1): 
37818/50000 
points have 

RE<0.01 
(not shown) 

(d) AB 
with T in (1, 3): 

34925/50000 
points have 

RE<0.01 
(not shown) 

(f) AB 
with T in (3,10): 

49703/50000 points 
have RE<0.01 
(not shown) 

(b) SS
with T in (0,1): 

8240/50000 
points have 

RE<0.01 
(not shown) 

(e) SS 
with T in (1, 3): 

42134/50000 
points have 

RE<0.01 
(not shown) 

(h) SS
with T in (3,10): 

48156/50000 
points have 

RE<0.01 
(not shown) 

(c) RF 
with T in (0,1): 

34169/50000 points 
have RE<0.01 
(not shown) 

(f) RF with T in (1,3): 
14694/50000 points have 

RE<0.01 (not shown), 20542 
cases did not converge 

(i) RF
with T in (3,10): 

12017/50000 points 
have RE<0.01 
(not shown),  

39531 cases did not 
converge 

7000 1500 4500 

250 400 450
0 

3000 10000 3000 

1    100    200    300    400    500 
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(a) Contours of T* for AB (b) Contours of T* for SS (a) Contours of T* for RF 

Figure  7. Worst Case Analysis: Contour Plots of the Worst-Case Traffic Metric 𝑻∗(𝒎, 𝑵) 

• For RF the worst-case ARE is above 0.15 in a large region on 
the right, with worst-case traffic levels (in figure 7(c) just 
above 1.0, thus right at the knee of the response time curve. 
The error is relatively small along the X and Y axes (that is, 
for small 𝑚 or small 𝑁)  

5. Example Software Performance Application 
 

          

Figure 8 Layered Queueing Model of a Version of the 
SockShop Microservices Demonstration Software 

Figure 8 shows a layered queueing model of the Sockshop 
microservices demonstration software taken from [8], with the 
multiclass servers aggregated to a single class. The solution was 
found using different calculation options for the multiserver 
waiting. “Sim” applied the LQSIM tool described in [6], so as to 
obtain 95% confidence intervals of ±1%. Analytic approximations 
used in LQNS [6] were “Reiser” which applied exact MVA to the 
layer submodels, and AB and RF as described above; SS was not 
included in these experiments. 

Table 3 compares the solution times obtained. The simulation 
time varied with population. AB is the fastest approximation and 
also the most robust (along with exact MVA), since with AB the 
LQNS solver never failed to converge. These solution times are 
all quite short, however the difference is still significant when a 
model must be solved many times in a search process. Also, the 
multiplicity of 10 at the Router component limits the populations 
which contend for the lower layer servers to 10 and this limits 
the impact of the greater complexity. 

Table 3 Time for LQNS to solve the SockShop model 

Option Simulation 
(1500 clients) 

Reiser 
(MVA) 

Conway RF AB 

Time (ms) 1168000 47 39 15 10 
Non-

convergence 
in 25 cases 

 0 1 6 0 

 

 

Figure 9 Response Times for Varying Populations 

 
Figure 9 shows the response time solution obtained as the 
population is varied up to 2500. All the approximations gave the 
same result, with differences much less than 1% for all 
populations. However they all gave low estimates (compared to 
simulation) at the corner in the neighborhood of the onset of 
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saturation; this difference is a result of the LQNS solution 
strategy and may be due to LQNS ignoring service time variance 
in all its multiserver approximations (the coefficients of variation 
of the service time of the Router and the FrontEnd were 
estimated at 2.97 and 1.78 respectively).  

6. Related Work
Related work on FIFO multiservers with closed workloads begins 
with separable models with exact solutions by Mean Value 
Analysis (MVA) [10]. The high complexity of MVA, due to the 
need for marginal distributions of queue length, has led to 
AMVA approximations to multiservers, such as Linearizer [4], 
improved in SCAT [2] and in [1] by using an ad hoc distribution 
shape based on the mean. QD-MVA [3] takes a different 
approach and reformulates the solution as an optimization 
problem.  
For multiclass queues de Souza e Silva and Muntz approximated 
the queue state by a multinomial distribution [13] based on the 
mean values, to get the class waiting times, and combined these 
with AMVA methods. The single class version of the 
multinomial is the binomial distribution used in AB. Conway [5] 
adapted their method to AMVA, as it is used in LQNS. Rolia and 
Sevcik [11] described a much simpler AMVA calculation (RF in 
this work) that approximates the probability that all servers are 
busy, by the product of the individual probabilities (effectively 
assuming the servers are independently busy). Franks made a 
small improvement described in [7]. 
There are many other works on multiserver approximations that 
address different models, such as open arrivals, general service 
times and multiple classes. 

7. Conclusions
The AB approximation has been shown to be a useful addition to 
numerical methods for multiserver queue waiting. It is a little 
more accurate, and a little faster than the best alternative which 
is RF, and is more robust in terms of convergence. In defense of 
RF it should be mentioned that using a smaller relaxation 
coefficient 𝑎 in Eq (6) improves its convergence, at the expense 
of longer computation times. In other experiments not reported 
here we have been forced to make 𝑎 as small as 0.02 to obtain 
convergence. 
The example in Section 4 shows that the faster queue solution by 
AB translates into faster overall solutions. 
The in-depth investigation of AB, SS and RF show that SS is 
surprisingly good given its simplicity. It has substantial errors 

for many cases but its maximum errors are the least of the three, 
to it has a safety factor. 
The results are reported against the traffic ratio 𝑇, and the 
relationship of 𝑇  to the server utilization is of interest. 
Utilization for a given 𝑚 is close to 𝑇 or less than 𝑇; it increases 
with 𝑇 and reaches saturation between 𝑇=1 and 𝑇=2, in  most 
cases, depending on the balance of 𝑚, 𝑁 and 𝑍. For larger 𝑇 the 
server is saturated but the error behaviour still depends on 𝑇, 
indicating that it varies according to the balance of 𝑁 and 𝑍. 
Larger 𝑇 gives behaviour more like an open queue. 
The extension of AB and SS to multiple classes will be reported 
elsewhere. 
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