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ABSTRACT
Java uses automatic memory allocation where the user does not
have to explicitly free used memory. This is done by the garbage
collector. Garbage Collection (GC) can take up a significant amount
of time, especially in Big Data applications running large work-
loads where garbage collection can take up to 50 percent of the
application’s run time. Although benchmarks have been designed
to trace garbage collection events, these are not specifically suited
for Big Data workloads, due to their unique memory usage patterns.
We have developed a free and open source pipeline to extract and
analyze object-level details from any Java program including bench-
marks and Big Data applications such as Hadoop. The data contains
information such as lifetime, class and allocation site of every object
allocated by the program. Through the analysis of this data, we
propose a small set of benchmarks designed to emulate some of
the patterns observed in Big Data applications. These benchmarks
also allow us to experiment and compare some Java programming
patterns.
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1 INTRODUCTION
Big Data is a phrase that is commonly used to describe the collecting,
processing, analysis, and visualisation of large data collections [6, 7].
In recent years, Big data applications have been dominated by Java.
Its short development cycles and community support have played
a significant role in this. The Garbage Collectors are an important
component of the Java VirtualMachine [4, 23]. As garbage collectors
can take up a significant amount of time, micro-benchmarks are
an important tool to quantify and compare the impact garbage
collection has on the performance and efficiency [9, 20]. This is
especially true in Big Data applications running large workloads
where garbage collection can take a non-trivial percentage of the
application’s running time [12].

Although benchmarks have been designed to trace garbage col-
lection events [8], these are not specifically suited for Big Data
workloads which have garbage collection patterns that are different
from most other Java programs.

Detailed and fine-grained data is required to perform an in-
depth study of garbage collection patterns and compare the patterns
resulting from GC benchmarks and Big Data applications. There
exist many profiling tools for Java that provide actionable insights
into the Java heap space and objects that take up memory space,
such as VisualVM [10]. The level of information provided by these
tools is not adequate to perform analysis on the lifetime of objects. For
example, to figure out if one class of object allocated in a certain
function lives longer than the same object allocated elsewhere.
This type of analysis requires individual object data with lifetime,
class and allocation site details. AntTracks provides a JVM and a
visualising tool which can extract data at an individual object level.
We extend the AntTracks JVM and build a pipeline around it to
provide object-level data and insights. The object analyzer pipeline
is open sourced and the tool has been packaged in an easy to use
docker image 1.

The main contributions of this work are:
(1) Developing a methodology and improving existing tools to

provide per object statistics in an efficient manner.

1https://github.com/metonymic-smokey/JavaGC. This repository also contains the
code for the newly developed benchmarks.
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(2) Analysis of object lifetimes and building micro-benchmarks
representing Hadoop computations, based on this analysis.

(3) Performance analysis of the garbage collection patterns of
these micro-benchmarks to recommend best practices.

2 RELATEDWORK
There exist several profiling tools for Java applications viz. Visu-
alVM and NetBeans profiler. It should be noted that although these
tools provide aggregate object data such as the number of objects
alive of each type (class) at a given point in time on the heap, it
does not include data such as the allocation site, allocation time
and lifetime of each object.

AntTracks. Lengauer et al. introduced AntTracks [13–15], a mod-
ified Java 8 virtual machine that tracks objects throughout the
lifecycle of a Java application. It tracks the birth, death (collected
by the GC) and importantly, the movement of objects through the
heap. Though heap dumps provide data of objects that are present
on the heap at a given point in time, they do not contain the origin
(allocation site and time) and deallocation details in them. The JVM
does not keep track of unique object identifiers.

Lengauer et al. have changed the interpreter, just-in-time com-
piler and garbage collector to consider every object allocation and
move as an event. Each event is written to the trace file for further
analysis. Since there can be millions or even billions of object al-
located throughout an application, this object data must be stored
in a highly compressed manner. Frequent events are represented
more compactly than less frequent occurrences in the custom trace
format which is a compact binary file. Some of the event data which
can be pre-computed is saved to the trace file. Information that can
be rebuilt offline without the running JVM is excluded.

Object Data Representation in AntTracks. When an object ismoved,
its neighbouring objects are likely to be moved too. Thus, along
with the offset address of move, the number of adjacent objects
moved is also stored. This information, along with object sizes, pro-
vides complete information to reproduce all object movement. The
trace files generated by AntTracks JVM are parsed and analyzed
by the AntTracks Analyzer [3]. In our work, we build upon and
extend these tools to extract object-level information in Big Data
systems and analyze them.

Unique Characteristics of Big Data applications. Big Data applica-
tions have unique memory patterns compared to most other Java
applications. Xu et al. [22] performed an experimental evaluation
of garbage collection patterns in Big Data systems. Unique memory
usage patterns were found in Big Data applications - huge objects
and long-lived shuffled data. They also have unique computation
features - CPU-intensive operations and iterative computation. Con-
current garbage collectors such as CMS [17] and G1 reduce pause
time as intended, although this results in contention for CPU time
with the data operations. All of the three garbage collectors com-
pared (CMS, G1 and Parallel [18]) have been found to be inefficient
for large objects with frequent GC cycles observed and in some
cases, out of memory errors (in G1 GC). In iterative applications
where accumulated data is reclaimed after every iteration, all of
the three garbage collectors have been found to be inefficient.

Figure 1: The new object analyzer pipeline. The pipeline
extracts object-level data from any Java program using a
modified AntTracks JVM and the object analyzer tool. This
object data can then be analyzed to extract insights related
to object lifetimes and allocation sites.

3 METHODOLOGY
3.1 Object-level data collection pipeline
We present a pipeline to obtain and leverage object-level data, such
as lifetime, type and allocation site of each object allocated by the
JVM, from Java 8 applications using a modified AntTracks JVM for
analysing aspects such as lifetime distribution, variation of lifetime
with object type (or class) and variation with allocation site (line of
code where the object was allocated).

3.1.1 AntTracks JVM. The first component of our pipeline is the
AntTracks JVM which, as described earlier, is a modified JVM that
traces all objects allocated along with type, allocation site and many
other properties. The collected data is stored in a highly compressed
manner in three files - trace, symbols and class_definitions -
collectively named trace files henceforth. The trace file consists of
all the object allocations and the Garbage Collector moves that take
place during the execution of a Java runtime application. The sym-
bols file consists of encoded allocation information that is mapped
to numeric IDs in the events that occur. This reduces the amount
of space it would otherwise take up in the trace. The VM uses an
efficient format for storing this data that makes use of VM specific
knowledge to compress this information.

Our work extends the AntTracks JVM to support multiple JVMs
being invoked from the same directory, with support for separate
trace files for each JVM. This scenario is common in Big Data
applications and benchmark suites.

3.1.2 Object Analyzer. The trace files produced by the AntTracks
JVM are in a specialized format that could only be read by the
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AntTracks Analyzer. The Analyzer is a GUI tool in the AntTracks
ecosystem that parses trace files and produces various analysis from
them. The analysis obtained from the Analyzer was not sufficient
for our purposes since it did not provide individual object lifetime
data.

To extract the data that was required, a command-line application
(Object Analyzer) was created using the codebase of AntTracks
Analyzer. This command-line tool automated parsing the trace files
and extracting object data from it, as an alternative to the GUI.
AntTracks allows access to the entire state of the heap at various
events, which can then be used to find object details. AntTracks
emits various types of events; two of them are used for our purposes
- GC start and GC end. This provides us with the heap state before
and after every garbage collection event. The heap state includes all
the objects along with details such as its class, GC ID (incremental
integer) at which it was born, GC ID at which it was last moved (by
the GC), allocation site and many others. With this we can track
the lifecycle of each object as shown in Table 1.

Unchanged objects are ignored. Whenever the birth of an object
is identified, we attach an atomically increasing integer tag to the
object. This allows us to uniquely identify an object even when
it’s moved by GC. Since these events only provide the heap state
at points of time, the birth and death of every object needs to be
associated and the lifetime needs to be calculated from it. Whenever
an object born event is triggered, we store the object tag and the
GC time to allow constant time lookup. This data is used when the
same object is collected to calculate the lifetime of the object using
the difference of the current time and the value stored in the data.
All of the object’s data is then serialized to a CSV (comma separated
value) file.

3.1.3 Analysis. The object lifetime data obtained from the previ-
ously described Object Analyzer is in the form of a CSV file.

The object details from the larger analysis files (>10GB) did not
fit into memory. Considering that constraint, the following were
the tools used in the analysis:

• Used the Dask framework [5, 19]. Dask allowed us to paral-
lelize data loading and computation. Data is loaded in chunks
rather than all at once, allowing computation of files larger
than system memory while also parallelizing vectorizable
operations.

• Used Apache Parquet format [21] files partitioned by type
before performing analysis using Dask. As an example, a
16GB CSV was compressed to a 1.3GB parquet file. This led
to reduced disk usage, faster and parallelizable data loading
and faster computations.

The following analysis were obtained using the analysis script:

(1) Lifetime distribution: An initial analysis conducted on the
object data is to graph the distribution of object lifetimes. The
distribution is visualized using a Kernel Density Estimation
(KDE) plot with a Gaussian kernel. This was performed using
the Seaborn plotting library. The density plot provides an
estimate of how many objects have lived for a particular
lifetime. The distribution varies significantly between types
of workloads.

(2) Aggregate lifetimes of each class of object: The object lifetime
data contains the class (or type) of the object. This allows
grouping by the class and finding insights into how the
lifetime of each class differs. Some classes of objects may live
longer than others for various reasons: 1) A class of objects
may be used for global configuration objects. In this case,
the objects will be garbage collected only at the end of the
program leading to high mean and maximum lifetimes, 2) A
class of objects may be declared in the body of a frequently
executed loop. In this case, the objects will have a relatively
short lifetime since they will most likely be collected in the
next GC cycle. The mean, minimum and maximum lifetimes
of each class is calculated and plotted in a bar graph. Only
classes which have more than 1000 objects are considered
for the analysis.

(3) Aggregate lifetimes of each class with allocation site: Along
with the class, the allocation site of every object is also cap-
tured. The allocation site of an object is the function and
line number in the source code at which the object was allo-
cated. With this data we can differentiate an object allocated
in a hot function and one allocated during configuration.
The mean, minimum and maximum lifetimes of each class
with allocation site is calculated and plotted in a bar graph.
Only classes with allocation sites which have more than 1000
objects are considered for the analysis.

3.2 Analysis of object-level data
The Hadoop examples, described in Table 2, provided a good start-
ing point for garbage collection patterns in Big Data workloads.

Following are some of the observations made using the lifetimes
obtained in Figures 2, 3, 4, 5, 6 and 7:

• Map related classes are extensively used in Mapper. HashMap
related classes have moderate to large mean lifetimes, pos-
sibly due to frequent replacement of entries in hash maps,
making similar older objects garbage. Most objects live for
long enough so they are not garbage collected quickly (in a
minor GC).

• For each HashMap and ConcurrentHashMap entry, a HashMap
$Node entry is created too. Node<K,V> is the inner class used.
This can lead to consuming a significant amount of heap
space.

• Significant amount of dynamically allocated lists/collections
are used in Dancing Links (sudoku) and Terasort. Their un-
derlying Object[] arrays are immutable and hence, adding
or removing from them allocates more arrays, filling up the
heap in a shorter time.

• Proxy generator related classes in Bailey-Borwein-Plouffe
(BBP) (Pi) have high mean lifetimes, possibly since the arrays
generated internally are immutable.

• Apache unmodifiable entry set is a map that cannot be al-
tered. It has a large mean lifetime since it is a map wrapper
which has strong references, hence will be collected after
the other maps.
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Object State Description Event Identification
Born object was allocated by the JVM GC Start Current GC ID == Object’s birth GC ID

Moved object was moved to a different address during GC
(usually due to compaction) GC End Last GC ID == Object’s last moved GC ID

Death object was collected or destroyed by the GC GC end Object lies in space being collected
and was not moved

Unchanged object was not born, moved or collected Any None
Table 1: Object lifecycle tracking and identification of states.

Name Description Input type and size
Pi Estimates value of Pi using the quasi Monte Carlo method -

Pi (BBP) Computes exact digits of Pi using Bailey-Borwein-Plouffe algorithm [2] 100000 digits and 16 maps
Sudoku Solves a Sudoku puzzle using the Dancing Links algorithm [11] -

Word Count Counts the number of occurences of each word in a text file 100MB text file
Terasort Generates and sorts a large, pseudo-random file 1GB binary file

Table 2: Hadoop example programs and their specifications

Figure 2: Mean lifetimes (in milliseconds) of classes as seen
in an execution of the Pi program. It can be observed that
HashMap entries have a relatively larger lifetime, with Con-
currentHashMap entries having the highest lifetimes. When
the data is additionally grouped by allocation site and plotted
(not shown here), it provides content to this lifetime data. For
example, it can be seen that HashMap entries are allocated
in the EntryIterator. This means that while iterating over
HashMaps in this program, the entries are held in memory
for a long time.

Figure 3: Distribution of lifetimes (in milliseconds) in the Pi
program. Most objects live for less than a quarter of a second.
There is a small peak at around 1.5s and there are a very
small number of objects that live for 3.5s.

3.3 Custom benchmarks
Based on the access patterns observed in the Hadoop results, we
codified some of the patterns leading to custom benchmarks imple-
mented with JMH, having the Ionut benchmarks [8] as a reference.
The benchmarks tested the following patterns:

• dynamic vs fixed size array allocation - This was added since a
significant amount of dynamically allocated lists/collections
were being used in Dancing Links (Sudoku) [1].

• using primitive vs boxed type integers.
• string concatenation using implicit string addition vs using
StringBuilder - Thiswas considered since a significant amount
of implicit string addition is taking place and toString() is
invoked, in the Dancing Links (Sudoku) programs.
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Figure 4: Mean lifetimes (inmilliseconds) of classes as seen in
an execution of the Pi (BBP) program. UnmodifiableEntrySet
and ProxyGenerator related classes can be observed to have
large lifetimes.

4 RESULTS AND ANALYSIS
4.1 Experimental Setup
The Hadoop examples and custom benchmarks were run on a
virtual machine with the following specifications:

(1) CPU: AMD Ryzen 7 2700X. 8 cores (vCPUs), 3.7GHz clock
frequency, 256 KiB L1 cache, 4 MiB L2 cache, 64 MiB L3
cache, 64-bit.

(2) Memory: 16GB DDR4.
(3) Storage: 400GB SSD.
The following software versions were used:
(1) Operating System: Ubuntu 20.04.3 LTS Focal Fossa.
(2) Container runtime (for Hadoop): Docker 20.10.10 Commu-

nity.
(3) Hadoop 3.3.1.
(4) Java 8 (AntTracks JVM modified from jdk8u202-b00).

Figure 5: Mean lifetimes (in milliseconds) of classes as seen
in an execution of the Sudoku program. Large lifetimes can
be observed for arrays, specifically byte arrays (which are
represented by [B).

Figure 6: Maximum lifetimes (in milliseconds) of classes as
seen in an execution of the Sudoku program. Integer arrays
have significantly higher lifetimes since they are used inter-
nally by dynamic arrays, such as ArrayList.

(5) JMH 1.27.

4.2 Custom Benchmarks
These micro-benchmarks were developed to measure the impact of
garbage collection of common data structures like arrays and strings
on the performance of Hadoop workloads. We then suggest some
best practices based on the observations and reason out possible
causes for the observed impact.

They were implemented using the Java Micro-bench Harness
(JMH) framework [16]. The benchmarks were run with 5 warm-up
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Figure 7: Distribution of lifetimes (in milliseconds) in the
Terasort program. The majority of objects live for less than a
third of a second. Although, there are some objects that live
up to 8 seconds.

iterations and 5 measurement iterations. The average time taken
to complete each iteration is used as the metric 2. The insights
obtained from them are described in this section.

4.2.1 Array Benchmark. This benchmark compares the effects of
pre-allocating an array vs. adding elements to an empty array (dy-
namically allocated internally) and using boxed elements instead
of primitive types.

Pre-allocated vs. dynamically allocated arrays: Byte has a sim-
ilar mean lifetime in both. Object has a longer mean lifetime in
dynamically allocated arrays since it will be referenced each time
the capacity of the initial array is exceeded.

Boxed vs. primitive types: Byte in the boxed graph has twice
the mean lifetime of the primitive byte, since it is referenced by
java.lang.Bytewhich has a longer lifetime. java.lang.Byte has
an exceedingly long mean lifetime, as expected.

Insights
Running the Array Benchmark on various number of objects with
pre-allocation and boxing switched, we obtained the following
insights as seen in Figure 8:

• Pre-allocating a large array does not provide any runtime
performance benefits.

• Boxing has a large overhead in runtime performance. It is
best to avoid Boxed types when not necessary, although the
nature of Java generics requires the use of Boxed types in
some cases.

• Arrays scale linearly with a number of elements.

4.2.2 Multiple Array Benchmark. This benchmark compares allo-
cating multiple small arrays vs. a single large array.

Splitting a large array into multiple smaller arrays adds the
overhead of extra padding and reference size bytes for each smaller
array. Large array list lasts longer possibly because it uses less
2The complete data including min, max, standard deviation and 99.9% CI is provided
in the same code repository.

Figure 8: Comparison of execution times (𝑙𝑜𝑔10 of millisec-
onds) of the Array Benchmark with varying number of ob-
jects and with pre-allocation and boxing switched.

memory than smaller arrays so the heap fills up slower. Object
type, on an average, lasts longer in a larger array than a smaller
one, possibly since instantiating more objects takes more bytecode
instructions.

Insights
Running the Multiple Array Benchmark on a range of number of
small arrays and a range of bytes provided the following insights
as seen in Figure 9:

• Using one large array or a small number of large arrays
is preferable to having hundreds or thousands of small ar-
rays. This is due to the object reference overhead for each
array. Having multiple small arrays leads to fragmentation
in memory.

• Performance degrades quickly when a very large number
of smaller arrays are used. When thousands of arrays are
present, most of the computation time is used in the overhead
of the internals of these arrays.

4.2.3 String Benchmark. This benchmark compares the garbage
collection resulting from string concatenation using implicit string
additions vs. using StringBuilder().

• There is a very minor difference in the mean lifetime of
objects in both cases.

• The String object when using StringBuilder() has a min-
imum and maximum lifetime greater than when using im-
plicit addition.
This could be possibly attributed to the fact that using im-
plicit additions creates extra objects, which fill up the heap
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Figure 9: Comparison of execution times of the Multiple
Array Benchmark with varying number of small arrays and
number of bytes. Note that the first graph uses a linear scale
whereas the second uses a log10 scale.

Figure 10: Comparison of execution times (𝑙𝑜𝑔10 of millisec-
onds) of the String Benchmark with implicit addition and
StringBuilder() switched.

faster, triggering GC and hence, the lifetime of the objects is
shorter.

Insights
Running the String Benchmark on a range of string sizes and im-
plicit addition/StringBuilder() switched the following insights
as seen in Figure 10:

• There is a very negligible difference in the runtime perfor-
mance of using StringBuilder() and using implicit string
addition. Although StringBuilder() can be slightly more
performant, the convenient syntax of implicit additionmakes
it the clear choice when it is applicable.

• String addition scales linearly with the string sizes.

5 CONCLUSIONS AND FUTUREWORK
We developed a pipeline to extract and analyse object level patterns
in any Java program and obtained data for Hadoop workloads
since Big Data workloads have object lifetime patterns different
from those of standard benchmarks. Using the data obtained, we
developed a set of benchmarks to mimic some patterns noticed
in Big Data applications, and to understand the effects of using
different Java constructs or data structures.

The object data pipeline includes a modified AntTracks JVM, a
newly developed Object Analyzer, data conversion (CSV to parquet)
and analysis scripts (implemented using Dask). This pipeline is the
result of experimenting with and comparing various tools. We
analyzed garbage collection patterns in Big Data workloads and
GC benchmarks using the pipeline. We then implemented analysis
scripts on the obtained CSV files in an optimized manner to support
hundreds of millions of objects.

The insights obtained from the custom benchmarks show that
adding elements to an array and string addition both scale linearly
with size. Pre-allocating an array does not provide any performance
benefit whereas using a primitive type instead of a boxed one as
array elements does. Using StringBuilder() in cases where string
addition can be used does not provide any performance benefit.
From the multiple array benchmark, it can be concluded that a large
number of very small arrays should be avoided and a small number
of (or one) large arrays should be used instead.

Our future work will involve further analysis on a variety of
Big Data workloads, with a focus on the internals of common Big
Data tools since they play the greater role in most such workloads.
Our future work will also involve running these on multiple nodes
since that will give us a more realistic idea of how these workloads
perform in real-life deployments, which are usually distributed and
rarely single-node.
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