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ABSTRACT
Self-Adaptive Systems (SASs) adapt themselves to environmental
changes during runtime to maintain Quality of Service (QoS) goals.
Designing and optimizing the adaptation strategy of an SAS re-
garding its impact on quality properties is a challenging problem.
Usually the design space of adaptation strategies is too large to be
explored manually and, hence, requires automated support to find
optimal strategies. Most approaches address this problem with op-
timization at runtime requiring the system is already implemented.
However, one expects design-time optimized adaptation strategies
to more effectively maintain QoS goals than purely runtime op-
timized strategies. Also formal guarantees benefit from designed
and analysed strategies. We claim that design-time analysis and
optimization of adaptation strategies improve in particular qual-
ity properties such as performability. To address the research gap
between runtime optimization and the ability to make statements
on the achieved quality, we envision an approach that builds upon
the concept of Model-Based Quality Analysis (MBQA). Many ap-
proaches in MBQA address single aspects such as formal languages
for adaptation strategies, architectural description languages or
QoS prediction. However, they lack integration, which leads, for
example to prediction approaches assuming rather static systems.
In this paper, we envision an unified approach by considering sev-
eral sub-approaches as building blocks for performability-based
optimization of adaptation strategies at design-time.
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1 INTRODUCTION
In recent years a great deal of attention has been devoted to software
systemswith automated self-adaptation capabilities at runtime. Self-
Adaptive Systems (SASs) rely on adaptation strategies to realize
runtime adaptations due to changed environmental conditions [16].
The addressed optimization problem with regard to runtime adapta-
tion strategies is to find the best adaptation option that guarantees
the compliance of the overall adaptation goals without deteriorat-
ing the system quality attributes (QA) despite the uncertainty of
the context of the system, that triggers the adaptation (referred to
as "taming" uncertainty [35]). Due to uncertainty of the context
behaviour at design-time, the SAS decision making process uses
formal verification techniques at runtime by applying machine
learning (ML) [18] to (i) analyze adaptation options (quantitative
verification [6, 25], statistical model checking [22, 44]) or to (ii) take
proactive adaptation options [29, 40] . Performing verification at
runtime suffers from its inherent state-space explosion problem
caused by the increasing number of state variables in the system.
This results in a serious effort to perform verification both in terms
of resources and time. Because adaptations are only applied in re-
sponse to changes in the short term, it may result in inefficiencies
since the system might execute sequences of sub-optimal adapta-
tions. Proactive approaches that make adaptation decisions with a
look-ahead horizon try to improve this drawback.

Unlike static software systems, SASs introduce an additional
level of complexity induced by the permanent change of system
configurations over time [33], referred to as uncertainty "Parameter
over time" [13]. This additional complexity makes it inherently hard
to analyse and optimize adaptation strategies at design-time. Hence,
optimization of adaptation strategies is commonly performed at
runtime where uncertainties are resolved by collecting runtime
data. However, it is desirable to support early architectural decision
making for adaptation strategies before system implementation.
Even runtime optimization approaches require an initially designed
strategy as a starting point. We argue that design-time analysis and
optimization not only help to explore and identify possible candi-
dates of adaptation strategies, but arguably increase the conver-
gence behaviour of runtime optimization by identifying promising
adaptation strategy candidates in advance.

Performability has brought together the disciplines for modeling
and evaluating performance, reliability and availability attributes
of software systems. Failure types (e.g. hardware, software and
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network failures) are known causes in performance engineering
that lead to undesirable conditions or system degradation. Well-
known works in this context extensively studied the influence
of failures on system performance and developed modeling and
analysis techniques to evaluate the ability of static software systems
to meet quality requirements in uncertain situations [20, 28]. We
see the challenge, that designing adaptation strategies which ensure
continuous operation in uncertain scenarios even in the presence
of faults is a key aspect of SASs.

Model-based Quality Analysis (MBQA) has quite a success story in
modelling and simulating software architectures to predict quality
attributes such as performance or reliability (e.g. Palladio approach
[31] for static systems, Simulizar [4] for SASs). Moreover, there have
been some efforts in developing Domain-Specific Languages (DSLs)
to specify adaptation strategies [8, 36]. We claim that combining
MBQA with state-of-the-art DSLs are the two main building blocks
for design-time optimization of runtime adaptation strategies.

In this paper, we envision an approach that builds on the MBQA
concept. We discuss key features of a DSL required for optimization
of runtime adaptation strategies. We outline how such a DSL can be
integrated into the MBQA approach of [34] as an unified approach
for performability-based optimization of adaptation strategies at
design-time. Finally, we propose our vision on optimizing rule-
based adaptation strategies at design-time that may complement
several lines of research with tools to improve the adaptation logic
during design-time for higher runtime effectiveness.

2 PROBLEM STATEMENT
In this section, we formulate the optimization problem faced by
software engineers at design-time. In previous works [33, 34], we
consider an SAS as Markov Decision Process (MDP). An MDP is
formally described by a tuple (𝑆,𝐴, 𝑡, 𝑟 ) that comprises two sets,
namely the set of states 𝑆 and the set of actions 𝐴. The transition
function 𝑡 : 𝑆×𝐴×𝑆 → [0, 1] evaluates the probability to transition
to state 𝑠𝑡+1 at time 𝑡 + 1 given the current state 𝑠𝑡 and action 𝑎𝑡
at time 𝑡 . The deterministic function 𝑟 : 𝑆 ×𝐴 × 𝑆 → R is known
as reward function that returns a value 𝑅 that is called reward and
corresponds to a real number 𝑅 ∈ R. We consider the engineering
challenge to develop a policy or adaptation strategy 𝜋 : 𝑆 → 𝐴

that determines the action to be taken in each state so that the sum
of rewards generated is maximized over time. We encode quality
objectives as rewards such that decisions of a policy 𝜋 are evaluated
w.r.t. quality requirements.

There are a variety of policies 𝜋 for system adaptation that
must be taken into account by a software engineer to meet quality
requirements. Let Π be the set of all possible policies that we denote
as Policy Space. As stated before, each policy 𝜋 ∈ Π determines
(w.r.t. transition function 𝑡 ) how an SAS moves through the state
space and generates a reward over time: 𝑅0, 𝑅1, ..., 𝑅𝑇 . Let 𝑣𝜋 (𝑇 ) :=∑𝑇
𝑖=0 𝑅𝑖 be a function that accumulates all generated rewards of a

policy 𝜋 until a fixed time instance 𝑇 (based on the value function
introduced in [37]). The function 𝑣𝜋 (𝑇 ) induces a partial order on
set Π: 𝜋 ≥ 𝜋 ′ ⇐⇒ 𝑣𝜋 (𝑇 ) ≥ 𝑣𝜋 ′ (𝑇 ). We consider the optimization
problem as search in policy space Π for an optimal policy 𝜋∗ that
maximizes the accumulated reward over time such that:

∀𝜋 ∈ Π : 𝑣𝜋∗ (𝑇 ) ≥ 𝑣𝜋 (𝑇 ) (1)

In this paper, we restrict the optimization problem to performability-
related quality objectives. However, it is worth noting that the
optimization problem generalizes other quality dimensions (e.g.
strategy-related qualities such as stability properties) which can be
encoded as reward or directly reflected in the reward function 𝑟 .

3 STATE OF THE ART
3.1 Languages for specifying adaptation

strategies
This section summarizes existingwork on self-adaptation languages
to formalize adaptation strategies both at runtime and design-time.

3.1.1 Languages and tools. There are various formal languages
(general-purpose and modeling languages) and tools to specify
adaptation strategies, mainly applied at runtime. CoBRA [23] real-
izes adaptation strategies as dynamic Java AOP aspects; [12] uti-
lizes the Prism-MW architectural middleware platform to specify
adaptation strategies as Java classes; Starfish [5] provides a policy
specification language based on event-condition-actions paradigm;
PBAAM [17] and StarMX [3] specify policies as expert system rules.
IRIDIUM [2] represents adaptation strategies by adaptation rules
as a tree-based composition of expressions. Expressions include op-
erators that are mapped to actions at a configurable evaluation rate.
Model-transformation languages use graph-grammars to specify
adaptations on the model level: UML-based graph transformation
approach for domain-specific model transformation implementa-
tions [1], Story diagrams [15], GRAF adaptation management [11].
[41] presents a model-driven approach specifying adaptation strate-
gies in terms of model transformation rules using Triple Graph
Grammars. [42] proposes a high-level graph-based architectural
(re)configuration language by modeling architectures with cate-
gorical diagrams and reconfiguration by algebraic graph rewriting.
Formal modeling approaches (e.g. Darwin [26], ArchWare [30])
use 𝜋-calculus semantics to specify reconfigurations of distributed
systems.

3.1.2 DSL. There are various works on DSLs for adaptation strat-
egy specification both at runtime and design-time The runtime-
modeling DSL Stitch [8] for architecture-based self-adaptation com-
prises a set of key features to codify self-adaption at runtime, e.g
a DSL for self-adaptation, architectural abstractions as first-class
entities, QoS-based choice, constraints and event-condition-actions.
The runtime-modeling DSL S/T/A (strategies/tactics/actions) [21]
describes runtime adaptations in component-based system architec-
tures based on architecture-level system QoS models by separating
knowledge about possible adaptation steps from the actual adap-
tation plans. [36] presents a design-time modeling DSL to express
self-adaptation actions and the impact on system performance by
specifying actions together with their transient effects expressed
as resource demands.

3.2 Performability analysis and modeling of
(dynamically) reconfigurable
Component-Based Software Systems (CBSS)

This section summarizes existing work on performability model-
ing and analysis of (dynamically) reconfigurable CBSS. Meyer [28]
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introduced the performability concept by a general modeling frame-
work. The framework models the performance of a system 𝑆 over
a utilization period 𝑇 as a random variable 𝑌 that takes values in
a set 𝐴 of accomplishment levels. As a result each element of 𝐴
represents a possible performance outcome that can be attained by
𝑆 . Thus the performability model is defined as a stochastic process
𝑋 referred to as base model 𝑋 . Changes in structure, internal state
and environment can all have an influence on system performance
[28]. Haverkort et al. [20] proposes a performability modeling and
analysis approach based on a (Semi-)Markov reward process. The
approach uses behavioural decomposition by breaking down the
overall base model 𝑋 into (i) a structural model (i.e. for describing
changes in the system structure) and (ii) a family of performance
models (i.e. analytical models such as queuing networks to evaluate
changes in the structural model). Rewards are used to quantify
performance gains and losses of system state changes based on cer-
tain events. Roughly speaking, rewards are determined each time a
new event occurs or when adaptations are made by evaluating the
changed structural model with the analytical models. The models
can be applied to calculate probabilistic reward measures like the
reward at some time instant 𝑡 , or the total reward accumulated over
some time interval [0, 𝑡] [19]. Introducing dynamic reconfiguration
features to CBSS adds even more complexity to QoS assessment in
terms of design and verification of (non-)functional requirements
[19]. Grassi et al. [19] propose a model-driven approach to support
the analysis of CBSS focusing on non-functional quality attribute
assessment (i.e. performance and reliability) by using performabil-
ity models as analytical models. The performability concept can
be easily extended to other kinds of reconfigurable systems by re-
fining the structural model to a reconfiguration model describing
changes in the system configuration by manual intervention of
system administrators [19].

3.3 Optimization of adaptation strategies
This section summarizes existing work on optimization approaches
of adaptation strategies classified into classical optimization ap-
proaches and machine learning (ML).

3.3.1 Classic Optimization Approaches. Ewing and Menasce [14]
employ various heuristic algorithms such as hill-climbing, beam
search, neighbourhood filtering, simulated annealing and evolu-
tionary programming to optimize architecture search and service
selection in SOA software systems. Peropteryx [27] uses a multi-
objective evolutionary algorithm to identify a set of pareto-optimal
architecture candidates to support architectural decision making
by detailed exploration. De Gyvés Avila and Djemame [10] pro-
pose a Fuzzy-logic based optimization approach based on historical
and real QoS analysis data by estimating the benefit of adaptation
through service selection. Sutton [37] applies Dynamic program-
ming based optimization approaches in the context of reinforcement
learning.

3.3.2 ML. Saputri and Lee [32] present a systematic literature
research (SLR) that investigates the application of various ML ap-
proaches in SASs. They identified eight types of ML techniques
to address adaptation: reinforcement learning (RL), fuzzy learning,
regression, Bayesian theory, clustering, neural networks, decision

trees and genetic algorithms whereas the two top most approaches
are RL and fuzzy learning. Gheibi et al. [18] present an SLR on
applying ML in SAS by systematically listing the problems tackled
by machine learning in SAS.

In summary no approach like our envisioned approach for design-
time optimization of runtime adaptation strategies yet exists.

4 RESEARCH GAP
Current SAS research mainly focus on system runtime models by
observing their evolution over time.

Most DSLs to specify adaptation strategies are solely applied
at runtime on already implemented software systems (see section
3.1.2). Optimization takes places on the initially defined software
architecture based on collected runtime data during system opera-
tion. Thus, adaptation decisions are based on a well-founded data
basis. In contrast, design-time approaches facilitate a higher degree
of abstraction by omitting extraneous information while still deliv-
ering reliable analysis results. The proposed approach of Stier and
Koziolek [36] is the only existing DSL approach for modeling and
analysing adaptations at design-time known to us. The approach
details a reconfiguration with its enclosed actions by mapping their
impact and effect on system performance but lacks a mechanism to
describe a suitable set of rules required for optimization purposes.
From this, it is necessary to identify the lacking but required ele-
ments of an adaptation DSL (e.g. parameters, if-then-rules, set of
rules) to describe the currently missing parameters and variation
points required for design-time optimization.

In the past performability evaluationwas traditionally applied for
design-time analyses of static systems. The approach does not cover
structural changes of the system configuration over time resulting
from triggered actions of selected dynamic reconfigurations due to
changed environmental conditions at runtime. With reference to
Grassi et al. [19] we suggest to extend this concept to SAS as they are
a more recent representative of dynamic reconfigurable systems. In
particular, we see performability as an starting point to evaluate and
optimize adaptation strategies with respect to designing resilient
software systems. Hence, we claim that applying performability
evaluation at design-time on SAS can help to build more resilient
software systems by preventing system degradation through the
design of effective adaptation strategies. Therefore, we propose to
refine the traditionally used Markov Reward models by expanding
them to MDPs where adaptations form the semantically equivalent
concept of actions. This extension allows us to explore the impact
and effects of adaptation actions on system QoS attributes and lay
the foundation for subsequent optimization approaches.

To the best of our knowledge, there is no approach for the opti-
mization of adaptation strategies at design-time. This is arguably
due to several uncertainties associated with the development pro-
cess of an SAS at design-time [13]. However, advances in MBQA
enable the modeling and simulation of software-architectures to
predict quality attributes such as performance (Palladio approach
[31], Simulizar [4]). Simulizar supports the simulation of adaptation
strategies but neglects the evaluation of their long-term effects by
comparison of different strategies. In addition, the work of [27]
builds upon MBQA to optimize architectures of static software
systems w.r.t. several quality attributes.
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Figure 1: Znn.com-based system taken from [34]

Thus, the research gap that this work focuses on is whether
MBQA is also suitable for optimizing (w.r.t. the optimization prob-
lem introduced in section 2) adaptation strategies of SASs at design-
time. Finally, the question of which optimization approach to use
(see section 3.3) must be thoroughly evaluated as each approach has
its own requirements (e.g. training data, simulated environments).

5 VISION
An abstract system representation is the basic prerequisite for SAS
design-time analyses and when investigating adaptation strate-
gies. By creating abstract system representations in terms of mod-
els, MBQA provides means to explore various architectural design
alternatives together with their impact on the SAS’s quality at-
tributes. These techniques are applicable along the whole devel-
opment phase.MBQA supports software architects in elaborating
adaptation strategies by considering the effects that adaptation
strategies can have on the SAS’s quality attributes resulting in well-
founded design decisions. There are already various model-driven
approaches available in literature to specify each of the aspects
we highlight hereafter individually. No approach exists yet that
combines all aforementioned aspects into a single unified meta
model to perform design-time optimization. In the following, we
envision such an unified approach.

5.1 Motivating example
We motivate our vision by considering the widely used SAS com-
munity example system Znn.com [9]. The version we use here origi-
nated from [34]. The system is managed by an SAS to distribute the
incoming load in order to keep the system responsive (see Figure 1).
The system contains a load balancer and two individual application
server components each on a separate node. The system encounters
overload scenarios with high workloads that deteriorates system
performance. Since the context of this work is performability, we
transfer the system into a scenario that focuses on performability.
Thus both application server nodes are subject to individual node
failures. Regarding performability, hardware failures (i.e. failures
of server nodes) are considered as a second factor that potentially
degrades the system performance. We can take the situation of
high workloads and the unavailability of application server 1 as
an example. Thus, the adaptation problem becomes more complex
because the system must not only remain responsive in high load
scenarios but also deal with situations where hardware resources

are not available to distribute the incoming load as best as possible.
With respect to performability, an optimized adaptation strategy
might consider various aspects, namely variations in the applied
threshold values, an optimally balanced load distribution factor, the
provisioning time and number of required replicated resources to
keep the system responsive in case of failures.

5.2 Envisioned meta model
As we consider the adaptation strategy covering the overall MAPE-
K loop, this section first discusses the unified MAPE-K meta model
representing the MAPE-K loop. The meta model serves as concep-
tual basis for our discussion of the prerequisites and requirements
for a formal language to describe adaptations strategies at design-
time in general and the set of rules applied during the planning
phase in particular.

Analyzer Planer

Rule

Monitor ExecutorKnowledge

Data

Environment
Data

Knowledge
Data

Runtime
Data

Parameter

RuleParam ActionParam Adaptation
Strategy

Action Condition

triggers

*
creates creates

uses

calls

uses

creates

uses
uses

stores

Figure 2: Envisioned meta model - DSL

5.2.1 MAPE-K meta model. SAS design commonly follows the
MAPE-K concept [24]. Modeling the information of the various as-
pects contained herein at system design time calls for the existence
of a proper meta model. We sketched a first DSL version for our
envisioned meta model in figure 2. Therefore the unified MAPE-K
meta model should consist of the following sub-meta models orga-
nized in different sub-packages (SP) by analogy of MAPE-K loop:
The monitor SP defines the available monitors to observe system
properties by collecting runtime data. The analyze SP contains the
set of rules to evaluate the collected monitor data. The planning SP
defines the set of rules and specified model-transformations. The
execute SP is implicitly represented by the specific application of
the determined adaptation. The knowledge SP contains the current
system state and the knowledge about the variability points in form
of a variability meta model containing the required parameters. In
addition to the SPs that represent the classical MAPE-K phases, we
introduce the set of rules SP. It contains the set of rules that refers
and accesses the concepts of the MAP(E)-K SPs or to put it more
precisely both the analyse and planning phases. Also, the set of
rules SP specifies the if-then-rules that decide based on the avail-
able monitors which actions should be executed during the execute
phase. The MAPE-K representation by means of a unified meta
model predefines the available information that can be analyzed
while deriving suitable system adaptations in case of unexpected
situations. Thus it would be appropriate to design a formal language
for describing adaptation strategies in a similar way such that its
partial aspects can be assigned to individual stages of the MAPE-K
loop. We see the need of a formal language reflected by a unified
meta model that should include at least the following aspects:
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In the monitor phase the system observes distinct system prop-
erties by collecting runtime data. Following the common practice
as described by Garlan et al. [16] this is usually achieved by the
definition of suitable monitors for system properties of interest
which are then accessible via respective sensors. This allows the
observation of different system properties at runtime. Thus the
language needs a formalism to represent the system properties
of interest by specifying monitors through suitable metrics that
describe the desired system properties.

The analyze phase evaluates the previously collected data based
on a set of rules to detect abnormal system behaviour. The collected
monitor data supply the events the system must react on. Thus the
language must provide ways to describe the different event types.
Events can arise from the external system environment (e.g. node
failures) and from internal (e.g. software failures) sources. Also the
language needs a formalism to represent a set of rules to allow
the specification of certain conditions and criteria that requires
either system adaptation by new planning or else continue working
with the current system configuration. Of particular interest is the
specification of conditions and criteria because the same concept
needs to be reapplied in another context of the follow-up planning
phase. Thus, reusing the same formalism for set of rules specifi-
cation is a desirable objective. We believe that the conditions and
criteria should be at least expressed as Service Level Objective (SLO)
specifications and environmental conditions.

The planning phase evaluates a predefined set of rules to deter-
mine the required adaptations for the detected abnormal system
behaviour. Thus, the language needs a formalism to allow the def-
inition of a set of rules that can be evaluated and applied during
the planning phase. The set of rules must allow to represent Event-
Condition-Action (E-C-A) rules. The formulation of the condition
part can be reused from the analyze phase. Basically E-C-A rules
are expressed in the form of if (condition) then (action) statements.
Conditions specify the evaluation of monitor data for given events.
They reflect the point in time and the present system state at which
a modification is required. Actions describe the resulting modifica-
tions of the system’s structure and behaviour. Conditions can be
considered as the temporal part. Whereas actions can be seen as the
operational part. The planning phase determines a set of actions,
that when applied transitions the system back into a steady state.

The execute phase carries out the planned reconfiguration by exe-
cuting the selected actions. These actions are bundled in a concrete
adaptation with a fixed parameterization. The impact on the overall
system behaviour may become critical, if inappropriate operations
are conducted due to a poor planning result.

We argue that the requirements for a formal specification lan-
guage for system adaptation strategies must consider different
aspects of the MAPE-K loop. A dedicated DSL will support the
expression of adaptation rules and adaptation actions. A further
challenge is the incorporation of our meta model with the existing
ones SLO and monitor [4] and variability [27].

5.2.2 Set of rules and control structure representation. This section
takes a closer look on the requirements regarding the representa-
tion of the set of rules and control structures. The planning phase
addresses the set of rules interpretation in order to select appropri-
ate adaptations that are executed in the subsequent execute phase.

However, one must distinguish between the definition of a set of
rules and its actual execution. The former requires a formalism to
provide an abstract representation of a set of rules. The latter re-
quires a formalism to explicitly define the execution logic of a set of
rules, i.e. the representation of suitable control structures like if/else
statements, loops, switches, break , etc.. As model-transformations
like QVTo already provide the required language elements to sup-
port control structure representation, we exclude the definition of
control structures from our set of rules meta model and focus only
to describe the set of rules on an abstract level. We will leave the
definition of model-transformations based on the abstract represen-
tation of the set of rules as explicit task of an domain expert. The
mere set of rules is represented by if (condition) then (action) rules.
The planning phase evaluates the set of rules at runtime by select-
ing the most appropriate rule(s) which best matches the currently
observed conditions. A formal language to describe a set of rules
therefore requires language elements to specify if (condition) then
(action) rules. The set of rules meta model references the unified
MAPE-K meta model as input for condition and action specifica-
tion. An condition term reflects system property values that must be
fulfilled by the system. The unified MAPE-K meta model provides
the observed system properties together with the monitored data as
input for condition evaluation. The specification of condition terms
should support the definition of simple Boolean expressions and
the combination of more complex terms by linking multiple simple
expressions through logical or arithmetic operators. The action part
describes the system’s structural and behavioural adaptations. It
defines individual modification steps in detail as abstract parameter-
ized operations. We consider actions as an abstract representation
of adaptations which are realized through model-transformations.
The specification of actions should support the construction from
both atomic operations and complex operations build frommultiple
atomic operations. Again, the unifiedMAPE-Kmeta model provides
input information about the current system state and knowledge
about the variability points as part of its knowledge SP.

5.2.3 Action parameterization using variability. This section dis-
cusses possible optimization parameters. Abstract actions describe
the structural and behavioural modifications that the system must
carry out to comply with its quality objectives. Actions are de-
fined in an abstract way in the then part. Each abstract action
will be mapped to a respective model-transformation. We assume
that the model-transformations are defined in advance by domain
experts. Part of the planning phase is the fine planning of the
model-transformation as action parameterization by referencing
a variability model instance of the variability meta model. In gen-
eral a large number of different variations exist resulting from the
design space of all potential adaptations. From a design-time per-
spective, however, only a limited set of adaptations can contribute
to the overall system goals in a meaningful way. Thus the main goal
should be to support decision making in such a way that it helps to
determine optimal variability parameters for adaptations. From our
point of view, we distinguish between the structural description of
an adaptation and its parameterization, e.g. the specific amount of
structural elements like components or connectors. Therefore, it is
sufficient to describe adaptations and their variability points on an
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abstract level and leave the formulation of adaptation specification
as part of the action implementation.

The variability meta model encodes the system’s variability
points. It specifies the system structure parts that can be adapted or
changed accordingly. Also, the variability meta model shall specify
the system’s behavioural part, e.g. the distribution factor of a load
balancer component. The integration of behavioural specifications
regarding control flow into the variability meta model is still an
open question and requires further investigation. We consider the
variability as part of the knowledge that will be applied during the
planning phase to determine concrete adaptations. The variability
model is again part of the set of rules. There, the variability model
is parameterized with support of using e.g. optimization techniques.
Each adaptation inherently contains a certain degree of variability
for which one would like to find out the best possible option. It
thus becomes possible to classify the optimization parameters into
when and how parameters. The first category describes when a
rule is triggered, the second category defines the variability how to
approach the environmental event, i.e. the concrete adaptation.

5.2.4 Modeling uncertainties in SAS at design-time. We think a
challenging question is the way of modeling uncertainties in SAS
at design-time and in particular how these uncertainties shall be
resolved for the optimization at design-time.

SASs are exposed to a range of potential sources of uncertainties.
Weyns defines uncertainty in SAS as “any deviation of deterministic
knowledge that may reduce the confidence of adaptation decisions
made based on the knowledge” ([43, p. 139]). The major challenge
in SAS lies on taming uncertainty by “providing guarantees for
the compliance of a self-adaptive system to its adaptation goals
despite the uncertainty the system is exposed to” ([43, p. 137]). This
involves dealing with the contrariness of uncertainties on the one
hand and guarantees for the system goals on the other hand. Weyns
[43, 140] lists sources of uncertainties classified into four groups
each with a set of characteristic sources of uncertainty that relate
to the: (i) system itself, which can refer to both the managed sys-
tem and the managing system, (ii) goals of a SAS, (iii) context of a
SAS, (iv) humans involved in the functioning or operation of a SAS.
The manifold sources of uncertainties can manifest themselves at
design-time, runtime or both. We see the challenge to identify the
potential candidates of uncertainty sources that have an impact at
design-time and provide modeling means for their adequate rep-
resentation. In particular, we argue that depending on the system
concerns under study, only a subset of uncertainty sources must
be considered for optimization at design-time. Optimizing runtime
adaptation strategies with regards to performability, means to han-
dle disruptive events like unexpected failures or changes in the
demand. The meta model shall be capable of modelling the uncer-
tainties relevant for the particular system concerns of interest.

SAS typically apply formal verification techniques at runtime
to make adaptation decisions for taming uncertainty by following
a two-step decision making process. In step 1 the analyzer evalu-
ates the adaptation options by using formal verification techniques.
In step 2 the planner selects the best adaptation option based on
the previous verification results. The most widely used runtime
instances of this approach in SAS literature are: (i) quantitative
verification at runtime to analyze the adaptation options (QoSMOS

[6], PRISM [25]), (ii) statistical model checking applied at runtime
to analyze the adaptation options (ActivFORMS [22, 44]), (iii) prob-
abilistic model checking applied at runtime to make proactive adap-
tation decisions ([29], mRUBiS [40]). We argue, that the selected
decision making approach, i.e. one out of approaches (i)-(iii), has a
significant impact on the design of the feedback loop. In particular,
the knowledge representation heavily changes both in terms of the
required data and parameters that need to be represented in terms
of adaptation goal specification and parameterization of the used
quality models. Also, the accessed information from the knowl-
edge base by the analyzer and planner slightly differs in terms of
data layout and access mode. Thus regarding modeling, we see
the challenge of finding a common abstract representation of the
knowledge base and the decision making process that is suitable
for design-time optimization.

5.3 Vision on optimizing rule-based adaptation
strategies

In the previous sections, we discussed formal modeling languages
for representing and optimizing adaptation strategies. Based on
these two building blocks, we now envision how such strategies
can be optimized at design-time.

Optimizing strategies at design-time is challenging due to the
inability of observing extrinsic events in the environment (e.g. vary-
ing workloads), intrinsic events of the system (e.g. resource failures)
or quality attributes (e.g. response time) that are crucial for opti-
mization. In addition, optimization requires interaction with the
environment to assess the quality of decisions. Hence, a framework
is required that (𝑖) simulates the operating environment of an SAS
and its interaction, (𝑖𝑖) simulates the adaptation process triggered
by the adaptation strategy to represent system changes and (𝑖𝑖𝑖)
predicts quality attributes (e.g. response time). Such a framework
allows not only to evaluate optimization approaches, but most im-
portantly to answer the question whether it is generally possible
to optimize adaptation strategies at design-time.

Advances in MBQA have proven to be successful to model, sim-
ulate and predict quality attributes (see section 4). Based on MBQA,
we developed a model-based framework [34] for SASs which satis-
fies the aforementioned requirements (𝑖) − (𝑖𝑖𝑖). The framework
enables validation of adaptation strategies in terms of their effective-
ness by probabilistically simulating the environment, the adaptation
process and predicting quality attributes to assess the impact of de-
cisions made by the strategy. The framework serves as foundation
and is supposed to be extended for optimizing adaptation strategies.

Based on the framework, the eligibility of several optimization ap-
proaches can be evaluated at design-time. Considering the state-of-
the-art optimization approaches, we focus on two well-researched
approaches, namely reinforcement learning (e.g. [45]) and dynamic
programming (e.g. [37]). In addition, we consider a promising ML
technique termed Learning Classifier Systems [38] that is focused
on optimizing rule-based systems. Furthermore, the chosen opti-
mization approach also raises questions about the requirements of
training data (kind and origin).

Quality attributes predicted at design-time deviate from the real
values measured at runtime. Therefore, a strategy optimized at
design-time deviates from a strategy optimized at runtime. The
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deviation, however, decreases with the accuracy of the prediction
tools and provides a near-optimal candidate that is more suitable
than an initially designed strategy. There are good reasons to move
the optimization to runtime, for instance, all possible environmen-
tal conditions cannot be enumerated or even foreseen at design
time, or uncertainty can only be resolved at runtime. However, a
challenging question is to which extend is it still possible to already
identify and drop unsuited candidates and thus significantly reduce
the adaptation space later explored at runtime by identifying a
meaningful pre-selected set of adaptation strategies. Van et al. [39]
apply ML to reduce large adaptation spaces of SAS. We argue, that
already the exploration of the adaptation space at design-time can
help to identify inappropriate adaptation strategies in advance that
might violate system quality attributes at runtime. As stated in our
problem statement (see section 2) our goal regarding design-time
optimization is twofold; for one thing selecting one strategy out of
a given set of possible adaptation strategy families and secondly,
optimizing the selected strategy in terms of its optimal parameter-
ization. We argue, that by identifying candidates of appropriate
adaptation strategy families at design-time, significantly reduces
the adaptation space that needs to be explored later at runtime. A
good candidate of an adaptation strategy family distinguishes itself
by the characteristic that it meets the SAS’s specific uncertainties
in terms of proper quality attribute fulfillment. Thus our goal is to
select the best candidate of an adaptation strategy family with its
optimal parameterization. Optimization approaches aim to select
the best candidate out of a given set of objects in relation to the
properties to be optimized. In our case we try to find an adapta-
tion strategy from a set of adaptation strategy families. Runtime
optimization approaches start their selection process without any
previous knowledge. Thus finding such a strategy takes consid-
erable time. We argue, that a preceding design-time optimization
step facilitates to restrict the candidates of strategies to a reduced
set with a positive impact on the system QA. While starting the
runtime optimization from a restricted set of candidates, chances
are high that the approach will find an optimal strategy quicker
and thus converges arguably faster. We argue that design-time
analysis and optimization not only helps to explore and identify
possible candidates of adaptation strategies, but arguably increase
the convergence behaviour of runtime optimization.

SAS offline/online approaches (e.g. MOSAICO [7]) have the dis-
advantage that both the managing and the managed system are
already implemented to some extend. Thus the interplay between
the managing system in terms of the applied adaptation strategy
and its managed system regarding different characteristics is fixed.
Consequently required changes are much more expensive and time
consuming compared to an abstract representation of the system
at design-time that allows the exploration of different design al-
ternatives. Thus another advantage of design-time optimization
compared to offline/online approaches is the possibility to addition-
ally investigate the impact an adaptation strategy might have on
its managed system. In particular, the execution of actions during
the adaptation phase can have a significant impact on the managed
system and its QA. A design-time approach could also support in
reasoning about the actual cause of the problem and its effect on
the system architecture as it is directly observable in the model.

As the optimization of SAS adaptation strategies is typically
performed at runtime but rather neglected at design time this also
calls for a trade-off between how much optimization should or
actually can be done effectively at design time and how much at
runtime. We think that we need to deal with the challenge to what
degree the integration of design-time and runtime optimization are
supportive for the design of SAS adaptation strategies.

Especially when less domain knowledge is available, design-
time optimization frees software engineers from the burden of
initially engineering strategies without knowing how they behave
at runtime. Finally, runtime optimization can use the near-optimal
strategy as a starting point to increase the convergence behaviour.

6 CONCLUSION AND FUTURE WORK
In this paper, we envisioned a model-based approach for design-
time performability optimization of runtime adaptation strategies.
At first, we reviewed a representative selection of the state-of-the-
art. Then we outlined a formal language for describing adaptation
strategies and a model-based framework based on previous work
to integrate and optimize modeled adaptation strategies at design-
time. We plan to implement our envisioned approach within the
MOSAIC project which aims to develop tools for designing self-
adaptive IoT systems in the cloud. In addition, we plan to implement
a self-adaptive IoT system that we use as evaluation case study to
enable the comparison of our design-time predictions with runtime
results of the case study.
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