
Renoir: Accelerating Blockchain Validation using State Caching
Nitin Awathare

IIT Bombay
nitina@cse.iitb.ac.in

Sourav Das
UIUC

souravd2@illinois.edu

Vinay J. Ribeiro
IIT Bombay

vinayr@iitb.ac.in

Umesh Bellur
IIT Bombay

umesh@cse.iitb.ac.in

ABSTRACT
A Blockchain system such as Ethereum is a peer to peer network
where each node works in three phases: creation, mining, and vali-
dation phases. In the creation phase, it executes a subset of locally
cached transactions to form a new block. In the mining phase, the
node solves a cryptographic puzzle (Proof of Work - PoW) on the
block it forms. On receiving a block from another peer, it starts the
validation phase, where it executes the transactions in the received
block in order to ensure all transactions are valid. This execution
also updates the blockchain state, which must be completed before
creating the next block. A long block validation time lowers the
system’s overall throughput and brings the well known Verifier’s
dilemma into play. Additionally, this leads to wasted mining power
utilization (MPU).

Through extensive measurement of 2000 nodes from the produc-
tion Ethereum network we find that during block validation, nodes
redundantly execute more than 80% of the transactions in greater
than 75% of the blocks they receive - this points to significant
potential to save time and computation during block validation.

Motivated by this, we present Renoir, a novel mechanism that
caches state from transaction execution during the block creation
phase and reuses it to enable nodes to skip (re)executing these trans-
actions during block validation. Our detailed evaluation of Renoir
on a 50 node testbed mimicking the top 50 Ethereum miners illus-
trates that when gas limit is increased to 20 times the default value,
to accommodate computationally intensive transactions, Renoir
reduces validation time by 90% compared to Ethereum. In addi-
tion, throughput of Ethereum reduces from 35326 tx/hour to 24716
tx/hour and MPU from 96% to 67% but these barely change for
Renoir. Furthermore, we deploy a node running Renoir on the
production Ethereum network. Our measurement illustrates that
Renoir reduces the block validation time by as much as 50%.

CCS CONCEPTS
• Computer systems organization → Peer-to-peer architec-
tures; • Networks→ Network measurement.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICPE ’21, April 19–23, 2021, Virtual Event, France
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8194-9/21/04. . . $15.00
https://doi.org/10.1145/3427921.3450247

KEYWORDS
Blockchain; Ethereum; Scalability

ACM Reference Format:
Nitin Awathare, Sourav Das, Vinay J. Ribeiro, and Umesh Bellur. 2021.
Renoir: Accelerating Blockchain Validation using State Caching. In Pro-
ceedings of the 2021 ACM/SPEC International Conference on Performance
Engineering (ICPE ’21), April 19–23, 2021, Virtual Event, France. ACM, New
York, NY, USA, 12 pages. https://doi.org/10.1145/3427921.3450247

1 INTRODUCTION
A blockchain system consists of a peer-to-peer network of nodes
that agree upon and maintain a state machine with the help of
a data structure called a blockchain. Each block contains a hash
pointer to the previous one, except for the starting “genesis” block,
resulting in a chain-like structure of blocks. Each block contains an
ordered set of transactions, that when executed updates the state
machine [28, 34]. Transactions are generated over time by users,
after which they are broadcast in the blockchain network.

Among all outstanding transactions (those not yet included in
the blockchain) maintained in a node’s transaction pool, it picks
a subset and orders them in building a new block. The node also
executes these transactions to ensure that its block contains only
valid transactions. This is termed the block creation phase. Based
on the consensus protocol, a block from one of the nodes is chosen
as the next one in the chain. This “winning” block is broadcast by
the node that created it, and all other nodes execute this block’s
transactions to ensure that it only contains valid transactions and to
update state. This is termed the validation phase. The entire process
of creating the next block then repeats. In this paper, we primarily
focus on PoW (where node solves a cryptographic puzzle) based
blockchains but Renoir can complement other committee based
BFT protocol, as explained in §8.

Executing transactions takes a non-trivial amount of time - hence
a lengthy and computationally intensive validation phase leads to
several performance issues: [8, 21, 26, 34, 36]. (i) It slows the pro-
cess of extending the chain with newer blocks and hence limits
the overall throughput of the system. (ii)More importantly, high
validation time introduces the well known verifier’s dilemma 1 in
the Proof-of-Work (PoW) based Nakamoto consensus protocols [27]
and hence prevents such systems from accepting transactions that
require high validation (i.e. computation) time. Also, [5, 14] illus-
trates that the miners would benefit from not verifying blocks. (iii)

1Briefly, this refers to a situation in which nodes skip validation of a received block in
order to quickly get to the mining phase of the new block they are creating. Doing so
risks mining a block on top of a potentially invalid block - hence the dilemma

Session 1: Testing, Measurement and Profiling ICPE ’21, April 19–23, 2021, Virtual Event, France

9

https://doi.org/10.1145/3427921.3450247
https://doi.org/10.1145/3427921.3450247

Lastly, a high validation time also lowers the mining power utiliza-
tion (MPU) (computation spent on the winning blocks chosen by
the consensus protocol) of the overall system resulting in wasted
computation. As we show in Section 6, the decrease is more pro-
nounced for nodes controlling a lower fraction of mining power
and having weaker connectivity.

In this paper we propose Renoir, an approach to reduce the
time required for the validation phase. Renoir is inspired by the
following hypothesis: Often, nodes execute the same transactions
both during the creation and validation phases. This results in
a large number of redundant transaction executions during the
block validation phase. Hence, the core idea is to allow nodes to
cache the execution result of transactions during the block creation
phase, and use the same to avoid (wherever possible) re-execution
of transactions during the block validation phase.

Deciding whether it is valid to skip re-executing a transaction
is non-trivial. The subtlety primarily arises because the order of
transactions in the creation and validation phases can be different
and executing transactions in different orders can result in different
final states. To address this, each node caches the keys (state vari-
ables) and the corresponding values accessed by transactions during
the creation phase and uses them during the validation phase in
the following manner. For every transaction tx in the block being
validated, the node checks if it was executed in the creation phase
and if the values of the variables read during the execution of tx
are identical. If so, it skips executing tx and updates the state using
cached data. In all other cases, the node executes tx.

Clearly, the reduction in re-execution of transactions depends
on the ordered set of transactions that various nodes pick during
the block creation phase. What the scope of this reduction is in pro-
duction blockchains has so far been an open question. As our first
contribution, we present extensive measurements of the Ethereum
blockchain to answer this question. We pick Ethereum as it is per-
missionless thereby allowing us to deploy our own measurement
nodes, it is popular with more than 7000 active nodes spread across
the globe, and supports generic smart contracts. Smart contracts
consists of state variables and bundles of instructions, called func-
tions, that a transaction can execute to update the state (§2.2). We
estimate the fraction of transactions which 2000 nodes in Ethereum
can skip executing in the validation phase for approximately 83
thousand blocks.

Our measurement reveals a high degree of intersection in the
transaction sets and their ordering that any node executes during
its block creation and validation phases. In particular, we estimate
that on average for more than 75% of the blocks, nodes can skip
executing at least 80% of transactions during the block validation
phase. Our measurements suggest that this is likely due to (i) the
low broadcast latency of transactions and (ii) the use of the same
default algorithm (that maximizes the block transaction fee) by
nodes to select and order transactions in a block.

As a second contribution, we design and implement Renoir. As
part of Renoir, we propose a novel algorithm to decide when to
reuse existing transaction execution results, and prove the correct-
ness of our algorithm. To test the benefits of Renoir, we connect
a Renoir equipped Ethereum node to the Ethereum mainnet and
determine that the validation time reduces by 50%.

As our third contribution, we perform a comprehensive evalua-
tion of Renoir with varying parameters on a network of 50 virtual
machines on the Oracle cloud which mimic the 50 top miners of
production Ethereum networks that contributes to 99.98% of the
total mining power. The goal of these experiments is to study the
improvements that Renoir gives with blocks which include com-
putationally intensive transactions, i.e. when Ethereum raises the
current gas limit. Our results show that an increase in the gas limit
to 20 times the default value raises the validation time to 5 sec while
the nodes running Renoir validate the same in a tiny fraction of
sec. Results also show that increasing the validation time reduces
the throughput of Ethereum from 35326 tx/hour to 24716 tx/hour
and MPU from 96% to 67%, but that these remain unaffected for
Renoir.
Paper organization. The remaining part of the paper is organized
as follows. We describe the necessary background in §2 followed by
our approach and findings of Ethereummeasurement in §3. We give
an overview of Renoir and describe the implementation details
in §4. We then theoretically prove the correctness of our design
in §5. §6 describes our prototype implementation, experimental
setup and evaluation result. We then describe the relevant related
works in §7 and conclude with a discussion and further scope for
future research in §8.

2 BACKGROUND
In this section, first, we summarize the consensus protocols nodes
use to maintain a consistent blockchain. We then describe smart
contracts and their execution model. Lastly, we describe the details
of block creation, block validation, and propagation of transac-
tions and blocks in Ethereum as they are relevant to the Ethereum
measurement study we present.

2.1 The Consensus Protocol
Nodes in a blockchain system form a connected peer-to-peer (P2P)
network and run a consensus protocol to append newer blocks
to the blockchain. Typically, the consensus protocol is either the
Proof-of-Work (PoW) based Nakamoto consensus [28] or the tradi-
tional committee based Byzantine Fault Tolerant (BFT) consensus
protocol [12, 35]. In this paper we primarily focus on PoW based
blockchains, so we provide a brief background on them next. We
discuss on how to apply our ideas to committee based BFT protocol
in §8.

In PoW blockchains such as Bitcoin [28] and Ethereum [11] each
node maintains the same blockchain. Nodes are required to solve
a cryptographic puzzle in a process termed mining, to append a
block to the blockchain. Each node independently mines a block
on top of the last block in the longest chain at that node. The
resulting mining rate of a node follows a Poisson process with a
rate proportional to the mining power controlled by the node [19].
The length of the longest chain at a node is termed the height of
the chain. Occasionally, the chain at a node diverges into two paths,
a process termed forking and can occur as a result of two or more
miners mining a block at the same time. In the presence of multiple
paths, a new block is mined on top of the longest path.

Session 1: Testing, Measurement and Profiling ICPE ’21, April 19–23, 2021, Virtual Event, France

10

func inc(val) {
 val
 mod
}

 func inc(val) {
 val
 mod
 }

 func mod(val) {
 val
 }

Contract	 Contract	 Contract	

: inc

: inc

Final	State

Final	State

Figure 1: Contract 𝑐1, 𝑐2 and 𝑐3 with their initial state {(𝑘1 :
53), (𝑘2 : 5) and 𝑘3 : 10)}, respectively. Transaction tx1 and
tx2 are two transactions that update these states according
to the specified program logic.

2.2 Smart Contracts & Transactions
Smart contracts are program logic structured as functions. Each
smart contract has a unique cryptographic address. A smart con-
tract is created when a transaction containing its description is
included in the blockchain. Once deployed, the functions of the
contract can be invoked by any transaction by referring to the ad-
dress of the contract, the identity of the function, and supplying
its parameters. A function in a smart contract can call a function
in another smart contract. Each smart contract maintains state, a
disjoint set of key-value pairs. The state maintained by a smart
contract is read and modified when transactions that address the
contract are executed. For every transaction tx, the set of keys read
and written by tx during its execution is termed the read-set and
write-set of tx respectively. We refer to the read-set and write-set
of a transaction tx as Rd(tx) and Wr(tx), respectively.

Figure 1 illustrates three smart contracts 𝑐1, 𝑐2, and 𝑐3 along with
their state (𝑘1 : 53), (𝑘2 : 5), and (𝑘3 : 10), respectively. Here on,
for any key 𝑘 , we will use [𝑘] to indicate the value stored at the
key. For example, [𝑘1] is 53. Contract 𝑐2 and 𝑐3 have a function
named inc that takes in an integer val as its input and adds val to
the content of their respective keys. Contract 𝑐1 has a functionmod
which takes in a integer input val and update the contents of its
key 𝑘1 with [𝑘1]%val. Consider two transactions tx1 and tx2 as
described in Figure 1. These transactions can be included in the
blockchain in any chosen order. Indeed, if they were included in the
order tx1 followed by tx2, then the resulting state of the system
will be (𝑘1 : 3), (𝑘2 : 10), and (𝑘3 : 13). On the other hand, if the
transactions were included in the order tx2 followed by tx1, the
resulting state of the system will be (𝑘1 : 1), (𝑘2 : 10), and (𝑘3 : 13).
However, in both possible chosen order, the read-set and write-set
of the transactions are same.

2.3 Block Creation and Validation in Ethereum
A transactions is created at a node which then broadcasts it. Upon
receiving new transactions, nodes validate and adds them to their
transaction pools.
Block creation. To create a block at height 𝑖 , a node 𝑟 picks an
ordered list of transactions T′ from its transaction pool by priori-
tizing the transactions paying higher fees. Next, 𝑟 executes all the

transactions from T′ in the order they appear in T′. This execu-
tion modifies the state of any smart contracts that the transactions
operate on. Finally, 𝑟 starts mining on the block containing these
transactions. If 𝑟 successfully solves the cryptographic puzzle for
the block at height 𝑖 before receiving any other valid block at the
same height, 𝑟 broadcasts its block and proceed to create the next
block at height 𝑖 + 1. As transactions continue to arrive at 𝑟 dur-
ing mining, 𝑟 periodically updates T′ to include a newly arrived
transaction that offers higher fees and restarts the mining process,
if not complete. The period after which 𝑟 updates the ordered list
is referred to as the recommit interval.
Block validation. During the mining process, if 𝑟 receives a new
block, say 𝐵𝑖 , at height 𝑖 that includes the ordered list of transac-
tions T, 𝑟 abandons its mining process and validates the received
block as follows. First, 𝑟 validates that the creator of 𝐵𝑖 successfully
solved the cryptographic puzzle. Then, 𝑟 executes the transactions
included in T in the order they are placed in the block. On successful
validation, 𝑟 discards the execution result of T′ and proceeds to
create the next block at height 𝑖 + 1 on top of 𝐵𝑖 . Validation can
be computationally intensive and the time taken to execute the
transactions during validation is termed the block validation time.
Serial nature of validation, creation and consensus:On receiv-
ing a block, say 𝐵𝑖 , at height 𝑖 from other nodes in the network,
the node 𝑟 validates 𝐵𝑖 . Next, 𝑟 creates the potential block 𝐵′𝑖+1 at a
height 𝑖 + 1. Finally, 𝑟 starts PoW(mining) on the 𝐵′

𝑖+1.

3.	Choose	 	
4.	Execute	transac-
				tions	in	

Creation	Phase Mining	Phase

5.	Mine	using	PoW

Validation	Phase

1	Execute	transac-
			tions	in	
2.	Check	whether	
				final	state	is	equal

Received	
block	

Received	
block	

Figure 2: Serialization of the block validation phase, block
creation phase and mining phase

.

As the transactions included in 𝐵𝑖 update the state, an attempt to
create the subsequent potential block 𝐵′

𝑖+1 before the validation of
𝐵𝑖 , may result in an inconsistent state. This makes the validation of
the received block and creation of a new block on it a serial process.
For example as illustrated in Figure 2, 𝑟 starts validating 𝐵𝑖 at time
instance 𝑡 and finishes it at 𝑡 + 𝜏 , where 𝜏 is the block validation
time. Assuming block validation and creation takes equal amount
of time, creation of block 𝐵′

𝑖+1 ends at 𝑡 + 2𝜏 . Lastly, mining starts
on 𝐵′

𝑖+1.
Increase in block validation time delays the creation of a subse-

quent potential block further and hence PoW on it. This reduces
the time a node can invest for PoW and accordingly reduces the
chance of solving the cryptographic puzzle, more so for a node with
a lesser mining power.

2.4 Transaction/Block Propagation in
Ethereum

Nodes in Ethereum run one of the available implementations of
Ethereum protocol [3]. We observe that the protocols followed by

Session 1: Testing, Measurement and Profiling ICPE ’21, April 19–23, 2021, Virtual Event, France

11

nodes vary slightly with different implementations. Nevertheless,
in this paper we will focus on only the go-ethereum [4] and parity-
ethereum [31] implementations as more than 93% of the nodes in
Ethereum run one of these two implementations.

In these implementations, on receiving a new transaction from
another node, the receiver node first validates the transaction by
checking that it is appropriately signed, adheres to the required
encoding and pays the appropriate fees. Upon successful valida-
tion, the node adds the transaction to its transaction pool and
immediately broadcasts it to its peers. Nodes running go-ethereum
broadcast it to all their adjacent peers while parity-ethereum nodes
broadcast it to a randomly chosen square root number of its adjacent
peers.

Both go-ethereum and parity-ethereum nodes follow the same
protocol to broadcast received blocks. In particular, a node 𝑟 with 𝑁

adjacent peers, first broadcasts every received block to a randomly
chosen

√
𝑁 of its peers. Next, 𝑟 validates the transactions included in

the block by executing them. On successful validation, 𝑟 broadcasts
a hash of the block to all the remaining peers.

This propagation model makes it highly likely that transactions
pools from which new blocks are created at different nodes are
similar - a property that we can exploit in avoiding redundant
transactions.

3 EMPIRICAL STUDY OF ETHEREUM
In this section, we will first describe our approach to measure
the potential benefits of avoiding re-execution of transactions in
Ethereum network. Then, we will present our measurement results
and analyze them in detail.

3.1 Definitions
Let Rd(tx) be the read set of a transaction tx computed during its
execution in the block creation phase. Recall that the read set of
a transaction consists of keys read by the transaction during its
execution. During validation of a received block 𝐵 a node 𝑟 skips
re-execution of transaction tx only if the values stored in keys from
Rd(tx) has not been modified by any preceding transaction in 𝐵.
Hereon, we refer to such transactions as a unaltered transaction.

In Ethereum, the time taken to execute every transaction can
be different and is measured in gas, a unit of computation. Every
transaction has a parameter used gas which is proportional to the
amount of time needed to execute the transaction. Since our goal
is to measure the reduction in time required to validate a block,
which in turn depends on the gas used by skipped transactions, we
define the notion of similarity of a block. Formally,

Definition 3.1. (Similarity) For a received block 𝐵 with ordered
list of transaction T, its similarity is the ratio of total gas used by
unaltered transactions in T to total gas used by all the transactions
in T. Let U ⊆ T be the subset of unaltered transactions in T, then,

Similarity of block 𝐵 =
∑
∀tx∈U Gas used by tx∑
∀tx∈T Gas used by tx

(1)

3.2 Measuring Similarity
Observe that to compute similarity of a Ethereum block at any
given node 𝑟 , one needs to know the (i) set of transaction 𝑟 executes
during the block creation phase, and; (ii) the order in which 𝑟

executes these transactions. Since existing Ethereum nodes, here
on referred to as the host nodes, do not reveal the set of transactions
they execute during the block creation phase to any of its peers,
measuring similarity at host nodes turns out to be non-trivial.

We address this challenge by developing a heuristic to approxi-
mate the similarity at host nodes. Our heuristic exploits the fact that
host nodes in Ethereum immediately broadcast the transactions and
blocks they receive to a subset of its peers (§2.4). Recall from §2.3,
Ethereum host nodes add new transactions to their transaction
pool from which they pick a subset of transactions ordered by the
fee each transaction pays. This suggests that if we can estimate
the transaction pool of a host node 𝑟 , we can use its contents to
identify the ordered list of transactions 𝑟 would execute during
the block creation phase. Indeed we follow this approach in our
measurement.

We connected 10 new instrumented Ethereum nodes, here on
referred to as the probe nodes and denoted using {𝑛1, · · · , 𝑛10}, to
approximately 2000 distinct host nodes spread across different geo-
graphical locations on the Ethereum mainnet. Each probe node ran
on a Oracle virtual machine (VM) with 16 2.1 GHz cores, 120GB
memory, 6.4TB NVMe SSD, 8.2 Gbps network bandwidth running
Ubuntu 16.04 and go-ethereum version 1.9.0. Each probe node was
deployed in one of the following ten different geographical regions:
US East (Ashburn), US West (Phoenix), Switzerland (Zurich), UK
(London), Australia (Sydney), Japan (Tokyo), Canada (Toronto),
India (Mumbai), Brazil (Sao Paulo), and Germany (Frankfurt).
Transaction pool estimation. For every host node 𝑟 that was
connected to one of our probe nodes, say 𝑛1, we measured the
similarity at 𝑟 as follows. First, based on the IP address of 𝑟 , we
estimated the geographical location of 𝑟 and used this location
to determine the network latency, here on referred to as latency,
between 𝑟 and 𝑛1. We determined latency using [1]. Also, from
our measurements, we found that on average a host node takes
approximately 40 milliseconds to validate a block header and ap-
proximately 200 milliseconds to validate an entire block. Here on,
we refer to them as headValidTime and blkValidTime, respectively.

For every transaction 𝑛1 receives from host node 𝑟 at time 𝑡𝑛1 , 𝑛1
estimates the time instant, 𝑡𝑟 , when 𝑟 received the same transaction
to be 𝑡𝑟 = 𝑡𝑛1 − latency. Similarly, when 𝑛1 receives information
about a new block from 𝑟 at time 𝑡𝑛1 , we estimate 𝑡𝑟 to be either 𝑡𝑟 =
𝑡𝑛1 − latency−headValidTime or 𝑡𝑟 = 𝑡𝑛1 − latency− blkValidTime
depending upon whether we receive the entire block or only the
hash of the block. We used the same value of latency for both block
and transaction because, 𝑡𝑛1 in our case is the arrival time of first
network packet from 𝑟 . Note that, the latency of first packet in
any communication channel is independent of the total size of the
message being transmitted.

We then used our estimation of 𝑡𝑟 for the received transactions
and blocks to estimate the transaction pool of host nodes. In par-
ticular, at any given time instant 𝑡 , the transaction pool at node 𝑟
consists of all the transactions that arrive at 𝑟 before 𝑡 and are not
included in any of the blocks. For example, in Figure 3, according
to our estimate, by time 𝑡𝑐1 , 𝑟 receives the transaction tx0 and tx1.
Since 𝑟 also receives and validates the block 𝐵′ which include tx0
by time 𝑡𝑐1 , the transaction pool of 𝑟 at time 𝑡𝑐1 contains only tx1.
Similarly, transaction pool of 𝑟 at time 𝑡𝑐2 contains tx1 and tx2.

Session 1: Testing, Measurement and Profiling ICPE ’21, April 19–23, 2021, Virtual Event, France

12

Host	
node	r

Probe	
node	n1

B' B

Transaction	
pool	at	

Transaction	
pool	at	

Recommit	
Interval

time

time

Figure 3: Transaction and block flow between host node and
probe node

Computing similarity.We used our estimated transaction pool
to pick the ordered list of transactions a host node would have
executed during the block creation phase and use that to compute
the similarity of every received block. In our estimation, we also
accommodate the fact that nodes in Ethereum repeatedly execute
a new set of transactions after every recommit interval (ref. §2.3).
In particular, for a node 𝑟 we measure the similarity of a received
block 𝐵 at 𝑟 with the ordered list of transactions chosen at time
instant 𝑡 . Here, 𝑡 is the latest time instant when 𝑟 executed the new
ordered list transactions from its transaction pool. 𝑡 is measured by
incrementing the time in multiples of ∼3 seconds (3 seconds+block
creation time) from the validation of parent block of 𝐵. Specifically,
let 𝐵′ be the parent block of 𝐵, and blkCreateTime is the time
required to create a block. Also, let 𝑡𝐵

′
𝑟 and 𝑡𝐵𝑟 be the time of arrival

of block 𝐵′ and 𝐵, respectively. Thenwe pick 𝑡 = 𝑡𝐵
′

𝑟 +blkValidTime+
𝑘×(3+blkCreateTime) for the largest value of 𝑘 that satisfies 𝑡 < 𝑡𝐵𝑟 .

For example, in Figure 3, after validating block 𝐵′, 𝑟 will create
a new block 𝐵0 and start mining. When the recommit interval
expires at time 𝑡𝑐2 , say 𝑟 updates its block to 𝐵1 which includes the
newly arrived transaction tx2. Upon arrival of the block 𝐵 at 𝑟 , we
compute the similarity of 𝐵 with 𝐵1, the block 𝑟 creates during its
latest recommit.
Validating the approach. To validate the approach we deployed
a 11th probe node, say 𝑛11. Then, we treated the first ten probe
nodes, {𝑛1, · · · , 𝑛10} as host nodes and estimated the similarity for
these ten nodes using 𝑛11. Next, we computed the actual similarity
at 𝑛1 to 𝑛10 and compared it against the similarity we estimated
using 𝑛11.

We report our detailed findings and analysis from our measure-
ment in the next section.

3.3 Findings & Analysis
Our measurements from October 3 to October 9, 2019, using our
probe nodes recorded data for a duration of approximately 83 thou-
sand Ethereum block intervals. The data consists of blocks and
transactions along with the estimated time instant they arrive at
each neighboring host node.

Figure 4 illustrates our estimated similarity at host nodes running
go-ethereum. We observe a similarity of more than 80% for more
than 75% of the blocks at go-ethereum hosts. However, estimation
of similarity at hosts running parity-ethereum is not possible as

40 45 50 55 60 65 70 75 80 85 90 95 100 105
0

0.5

1

Similarity (in %)

Fr
ac
tio

n
of

bl
oc
ks Estimated

Figure 4: Cumulative average estimated similarity at host
nodes running go-ethereum implementation.

40 45 50 55 60 65 70 75 80 85 90 95 100 105
0

0.5

1

Similarity (in %)
Fr
ac
tio

n
of

bl
oc
ks Estimated Measured

Figure 5: Cumulative similarity at our instrumented go-
ethereum nodes {𝑛1, · · · , 𝑛10}. The measured similarity re-
ports the actual similarity observed at these nodes and the
estimated similarity reports our estimation of similarity at
𝑛1 to 𝑛10 using a different probe node 𝑛11.

hosts running parity-ethereum only broadcast transactions to a
square root number of its total peers (ref §2.4). Thus here on, we
will only illustrate our measurements for go-ethereum hosts.

Figure 5 illustrates findings that validate our process for esti-
mating similarity. In particular, we measure the true similarity at
nodes 𝑛1 to 𝑛10 and compare it against the similarity estimated at
these nodes by our additional probe node 𝑛11. Note that, in our
measured scenario, we observe more than 90% similarity for almost
all blocks. Furthermore, we observe that the estimated similarity
is significantly lower than the true similarity. Upon close inspec-
tion, we find that 𝑛1 to 𝑛10 were dropping approximately 10% of
the total transactions before sending them to our probe node 𝑛11.
This is because host nodes uses a queue of size 128 for each of its
peers to send transactions to them and drops transactions whenever
the queue is full. This suggests that true similarity at Ethereum
host nodes are likely to be significantly greater than our estimated
values.

Recall from §3.2, that Ethereum hosts periodically recommits the
ordered list of transactions they process to include newly arrived
high fee transaction. Because the block propagation takes around
3 seconds to reach 95% of the network (Figure 8), host nodes may
compute the similarity of the received block with the chosen order
list of transaction at different recommits. Hence, a natural question
is how does the similarity vary across different recommits. Further-
more, it also raises concerns about the incorrect estimation of time
to recommit in our measurements. To address these questions, we

Session 1: Testing, Measurement and Profiling ICPE ’21, April 19–23, 2021, Virtual Event, France

13

−10 0 10 20 30 40 50 60 70 80 90 100 110
0

0.2
0.4
0.6
0.8
1

1.2

Similarity (in %)

Fr
ac
tio

n
of

bl
oc
ks last and 4th last recommit

last and 3rd last recommit

last and 2nd last recommit

Figure 6: Cumulative similarity between ordered list of
transactions chosen for measuring the similarity at a host
node and the ordered list chosen at different recommits. Re-
sults are averaged over all hosts nodes running go-ethereum
implementation.

0 50 100 150 200 250 300 350
0

0.5

1

Propagation delay(ms)

Cu
m
ul
at
iv
e
Fr
ac
tio

n Transaction propagation delay

Figure 7: Transaction propagation delay in Ethereum net-
work.

estimate the similarity between the ordered list of transaction we
pick to compute similarity of host nodes, i.e., the last recommit,
with ordered list of transactions chosen at previous recommit in-
stances. We identify the time instants of recommits based on our
approach described in §3.2. Figure 6, illustrates the average similar-
ity between ordered list of transactions at last recommits and three
previous recommits. Observe that the value of similarity does not
change much across last four recommits.

Other findings. As a part of our case study, we also compute the
propagation delay of transactions and blocks in Ethereum, which
might be of independent interest to the reader. We measure the
propagation delay of a transaction as the elapsed time between the
first time one of our probe nodes hears about the transaction and
the time our probe nodes hear the same transaction from 95% of the
Ethereum node they are connected with. We use the same approach
to compute the block propagation delay as well. Figure 7 and Fig-
ure 8 presents the measured transaction and block propagation
delay, respectively.

4 RENOIR DESIGN
The core idea of Renoir is to cache the results of executing transac-
tions during the block creation phase and use the same to eliminate
(re)executing the same transactions during the block validation
phase. The challenge arises from the fact that transactions often
depend on each other. As a result, a difference in the order of trans-
actions in the received block and those executed during the creation

0 1 2 3 4 5 6 7
0

0.5

1

1.5

Propagation delay(s)

Cu
m
ul
at
iv
e
Fr
ac
tio

n Block propagation delay

Figure 8: Block propagation delay in Ethereum network.

phase can result in different final states. Renoir must also ensure
that it does not miss executing new transactions that the node has
not executed during the block creation phase.

4.1 Overview
Renoir addresses these issues in the following manner. Recall
from §2.3 that for every new block at height 𝑖 , during its block
creation phase the node picks a new ordered list of transactions T′
and executes them. For each transaction in the ordered list, the node
computes its read and write sets during its execution and caches it
locally. Further, for every key in the read set of each transaction,
the node maintains the order of transactions that writes to the key.

Upon receiving a new block at height 𝑖 containing an ordered list
of transactions T, a node in Renoir uses the cached information to
process transactions in T. In particular, for each transaction, tx, in
the received block, if 𝑟 has not executed tx during the block creation
phase, i.e., tx ̸∈ T′, 𝑟 executes tx. Otherwise, 𝑟 skips executing tx if
the transactions preceding tx in the received block accesses (writes
to the values corresponding to) the keys in the read-set of tx in
same order as they did during the block creation phase. The idea is,
if the order of transactions that accesses the keys in the read set
of a transaction are identical during both the block creation and
validation phase, the execution result of the transaction remains
reusable during the block validation phase.

In our implementation, we use two tables, namely, transaction
table and key table to maintain the desired information. The trans-
action table maintains the read and write set of every transaction
executed during the block creation phase. Similarly, the key ta-
ble maintains the order of transactions that accesses the keys in
read and write sets of each transaction. Further, the key table also
maintains the values written by the transactions during the block
creation phase. During block validation phase, nodes use these two
tables to skip only those transactions whose access order are iden-
tical to the access order during the block creation phase. Also, once
a node decides to skip a transaction, it uses the values stored in
the key table to update the state touched by that transaction. The
updated state is used by future transactions. We prove that Renoir
ensures the correct final state in §5. Renoir maintains these table
for each block till its gets confirmed, i.e., appended by six blocks. So
Renoir node at any point of time contains six such pairs of tables.

Next we will describe the data-structures of the transaction table
and key table along with the algorithms a Renoir node follows

Session 1: Testing, Measurement and Profiling ICPE ’21, April 19–23, 2021, Virtual Event, France

14

during block creation phase and block validation phase. Finally, we
illustrate the protocol with an example.

4.2 Data Structures
Here on we refer to the transaction and key table with TxTable and
KeyTable, respectively.
Transaction table. TxTable stores a row for each transaction ex-
ecuted during the block creation phase. Each row contains a list
of triples, 𝐿𝑡𝑟𝑎𝑛𝑠 , comprising one triplet for every key accessed by
the transaction during its execution. In particular, for a transaction
tx and for a key 𝑘 accessed by tx, the corresponding triple stores
⟨𝑘, ver(𝑘), isWrite⟩, where ver(𝑘) denotes the version of 𝑘 accessed
by tx, and isWrite is a bit that records whether the txwrites to 𝑘 or
not. By default, ver(𝑘) of every key is initialized to 0. We use ver(𝑘)
and isWrite for every key to maintain the order in which the key is
accessed during the block creation phase. We then use this order
to decide whether to skip re-executing a transaction. Note that, a
naive approach of comparing values at keys to take this decision
would not work as values stored at any key could be arbitrarily
large.
Key table. KeyTable stores a separate row for each key accessed by
the transactions during the block creation phase. For a key 𝑘 , the
corresponding row contains a list of pairs ⟨ver(𝑘), 𝑣⟩ where ver(𝑘)
is the version of the 𝑘 accessed by tx and 𝑣 is the value of 𝑘 written
by tx. We refer to this list of pairs as 𝐿𝑙𝑖𝑠 . If tx does not overwrite
the value associated with 𝑘 , we store ⊥ as the value of 𝑣 . Each row
also stores the index and isValid, and they are initialized with 0 and
True, respectively.

Algorithm 1 TableCreation

1: input T′ = {tx′1, tx
′
2, . . . , tx

′
𝑚′}

2: TxTable← {},KeyTable← {}
3: for each transaction tx in T′ do
4: Wr, Rd← execute(tx′)
5: UpdateTables(tx′, Wr, Rd)
6: return (TxTable, KeyTable)
7:
8: procedure UpdateTables(tx, Wr, Rd)
9: add tx to TxTable
10: for each key 𝑘 in Rd ∪ Wr do
11: if 𝑘 not in KeyTable then
12: add 𝑘 to KeyTable

13: if 𝑘 in Wr then
14: add ⟨𝑘, ver(𝑘), 1⟩ to 𝐿𝑡𝑟𝑎𝑛𝑠 of tx
15: add ⟨ver(𝑘), Wr(𝑘)⟩ to 𝐿𝑙𝑖𝑠 of 𝑘
16: ver(𝑘)← ver(𝑘) + 1
17: else
18: add ⟨𝑘, ver(𝑘), 0⟩ to 𝐿𝑡𝑟𝑎𝑛𝑠 of tx
19: add ⟨ver(𝑘),⊥⟩ 𝐿𝑙𝑖𝑠 of 𝑘

4.3 Block Creation Phase
Let 𝑟 be the node andT′ be the ordered list of transaction chosen by 𝑟
to create a new block. For each transaction tx ∈ T′, 𝑟 adds a new row
in the TxTable. While executing tx, 𝑟 identifies the keys accessed by

tx, and for every key𝑘 , it adds a tuple ⟨𝑘, ver(𝑘), isWrite⟩. The ver(𝑘)
is the version of the key 𝑘 (and the corresponding value) before
executing tx and starts with 0. Similarly, isWrite is set to True if
tx writes to the value associated with the 𝑘 during its execution.
After executing tx, 𝑟 increments the version numbers of all the
keys whose values are overwritten by tx.

For those keys accessed by tx during the block creation phase,
𝑟 updates KeyTable as follows. For each key that is present in the
KeyTable, 𝑟 append the pair ⟨ver(𝑘), 𝑣⟩ to its 𝐿𝑙𝑖𝑠 . On the other
hand for each key that is not already present in the KeyTable, 𝑟
adds a new row containing the tuple ⟨ver(𝑘), 𝑣⟩, where ver(𝑘) is
the version of 𝑘 before executing tx and 𝑣 is the value tx writes
for 𝑘 . 𝑟 stores ⊥ in 𝑘 if tx does not overwrite the value associated
with the 𝑘 . Procedure UpdateTables in Algorithm 1 describes the
pseudo-code updating the TxTable and KeyTable.

4.4 Block Validation Phase
Upon receiving a new block 𝐵 containing an ordered list of transac-
tions T, 𝑟 processes the transactions in T in the order they appear.
For a transaction tx, if 𝑟 has not executed it during the block cre-
ation phase, i.e., tx ̸∈ T′, 𝑟 executes tx and computes its read write
set. Let Wr(tx) be the corresponding write set. Then, for every key
𝑘 in Wr(tx), 𝑟 invalidates the row corresponding to 𝑘 in KeyTable
by setting the value of isValid variable to be False.

If the transaction tx is present in both T and T′, 𝑟 skips tx only
if the sequence of transactions that modifies the values associated
with the keys in Rd(tx) is identical in both T and T′. In particular,
while processing the transaction tx, 𝑟 checks that for every key
𝑘 in the 𝐿𝑡𝑟𝑎𝑛𝑠 of tx, the corresponding row in KeyTable is still
valid, and the current version of these keys matches the version
stored in 𝐿𝑡𝑟𝑎𝑛𝑠 . We use the index stored in the row corresponding
to KeyTable to identify the current version of the key. If both condi-
tions are satisfied then 𝑟 skips executing tx, and increments index
for all the keys in read-set of tx. Also, 𝑟 uses the value 𝑣 stored in
the 𝐿𝑙𝑖𝑠 to update the state appropriately. If any of these conditions
is not satisfied, then 𝑟 invalidates the rows corresponding to keys
in write-set of tx. Also, 𝑟 re-executes tx, computes its new write
set, and invalidates rows for all the keys in the new write set. Algo-
rithm 2 illustrates the pseudo-code of validating a received block
with ordered list of transactions T.

4.5 An Example
Let T′ = {tx1, tx2, tx3} be the ordered list of transactions that a
node 𝑟 executes during the block creation phase. Tables 1(a), 1(b),
and 1(c) illustrate the read-write set information for transactions
in T′, the TxTable, and the KeyTable created using transactions in
T′ respectively. Since, tx1 is the first transaction in T′, version of
all the keys in its access list is zero. Moreover, since tx1 writes to
address 𝑘1 and 𝑘2, the version of key 𝑘1 in tx2 is 1. Also, since no
transaction writes to key 𝑘3, the isWrite for 𝑘3 is zero everywhere.

Upon receiving a block with ordered list of transactions T =
{tx1, tx4, tx3} with read and write sets as shown in Table 2, 𝑟
processes them as follows. Since tx1 is present in both T and T′, its
read-write set from the block creation phase is stored in TxTable.
Furthermore, the row corresponding to each key in the read set
of tx1 is valid in KeyTable. Also, the version of each key in the

Session 1: Testing, Measurement and Profiling ICPE ’21, April 19–23, 2021, Virtual Event, France

15

Index Transaction Read set Write set
1 tx1 {𝑘1, 𝑘2 } {𝑘1 : 3, 𝑘2 : 2}
2 tx2 {𝑘1, 𝑘3 } 𝜙

3 tx3 {𝑘1, 𝑘2, 𝑘3 } {𝑘2 : 4}
(a)

Transaction { ⟨key 𝑘, ver(𝑘), isWrite⟩ }
tx1 ⟨𝑘1, 0, 1⟩; ⟨𝑘2, 0, 1⟩
tx2 ⟨𝑘1, 1, 0⟩; ⟨𝑘3, 0, 0⟩
tx3 ⟨𝑘1, 1, 0⟩; ⟨𝑘2, 1, 1⟩; ⟨𝑘3, 0, 0⟩

(b)

Key 𝑘 { ⟨ver(𝑘), 𝑣⟩ } index isValid
𝑘1 ⟨0, 3⟩; ⟨1,⊥⟩; ⟨1,⊥⟩ 0 True
𝑘2 ⟨0, 2⟩; ⟨1, 4⟩ 0 True
𝑘3 ⟨0,⊥⟩; ⟨0,⊥⟩; 0 True

(c)

Table 1: (a) Read and write set of transactions tx1, tx2 and tx3 from T′, when they are executed in the order specified by the
index. (b) TxTable for transactions in T′, and (c) KeyTable for transactions in T′.

Algorithm 2 BlockValidation

1: input T = {tx1, tx2, . . . , tx𝑚}
2: for each transaction tx in T do
3: if tx in TxTable then
4: if CanSkip(tx) then
5: for each key k in write-set of tx do
6: commit value of k
7: continue
8: for each key k in write-set of tx do
9: set isValid of 𝑘 in KeyTable to be False
10: Wr, Rd← execute(tx)
11: for each key k in Wr do
12: set isValid of 𝑘 in KeyTable to be False
13:
14: procedure CanSkip(tx)
15: for each key 𝑘 in the write-set of tx do
16: if isValid of 𝑘 in KeyTable is False then
17: return False
18: if ver(𝑘) mismatch in KeyTable & TxTable then
19: return False
20: return True

Index Transaction Read set Write set
1 tx1 {𝑘1, 𝑘2 } {𝑘1 : 3, 𝑘2 : 2}
2 tx4 {𝑘2 } {𝑘2 : 3}
3 tx3 {𝑘3 } {𝑘2 : 4}

Table 2: Read and write set of transactions tx1, tx4 and tx3
from the ordered list of received block, when their are exe-
cuted in the order specified by the index.

read-set matches the version in the KeyTable. Hence, 𝑟 skips re-
executing tx1. As tx4 is not present in T′, 𝑟 will execute tx4 and
invalidate all the rows corresponding to the write set of tx4. In
particular, from Table 2, the write-set of tx4 consists of 𝑘2, hence, 𝑟
will invalidate the KeyTable row corresponding to 𝑘2. As a result of
this invalidation, the first condition for skipping tx3 gets violated,
i.e., rows for all keys in its key-set is no longer valid. Hence, 𝑟 will
re-execute tx3. Note that at the end of block validation phase the
final state at node 𝑟 is equivalent to the state of re-executing all the
transactions in T.

5 PROOF OF CORRECTNESS
In this section, we will prove that the block validation procedure of
Renoir produces a state equivalent to the state of naive re-execution

of all the transactions in the received block. We will first show that
nodes in Renoir skip re-executing a transaction, tx, only when the
sequence of transactions writing to each key in the read set of tx
is identical with the sequence of transactions that accesses these
keys during the block creation phase. We then show that all the
transactions writing to the set of keys have been skipped during
the block validation phase.

Let state𝑁
𝑖−1 and state𝑅

𝑖−1 be the resulting states after executing
all the transactions till the block at height 𝑖 − 1 using naive re-
execution and using Renoir validation, respectively. Also, for a
block at height 𝑖 , let T′ and T respectively, be the ordered list of
transactions a node 𝑟 executes during the block creation phase and
the ordered list of transactions included in the received block. We
will prove that starting with an identical state at block height 𝑖 − 1,
i.e., state𝑁

𝑖−1 = state𝑅
𝑖−1, the resulting states after block height 𝑖 are

identical, i.e., state𝑁
𝑖

= state𝑅
𝑖
.

Definition 5.1. (Write Sequence) For an ordered list of transaction
T and a transaction tx ∈ T, the write sequence of a key 𝑘 ∈ Rd(tx)
is the ordered list of transactions from T that appear before tx
and write to 𝑘 during their execution. We use WSQtx

T (𝑘) to de-
note the corresponding write sequence. We use |WSQtx

T (𝑘)| and
{WSQtx

T (𝑘)} to denote the number and the unordered set of trans-
actions in WSQtx

T (𝑘).

Lemma 5.1. During the block validation phase, Renoir skips re-
executing a transaction tx ∈ T ∩ T′, only if both {WSQtx

T′ (𝑘)} and
{WSQtx

T′ (𝑘)} are identical.

Proof. Renoir skips tx only when version of every key in the
Rd(tx) matches in the TxTable and KeyTable. Since, version of a
key is incremented only during a write access, this implies that the
number of transactions in the write sequence of each key in Rd(tx)
are identical in T and T′, i.e.,

|WSQtx
T (𝑘)|= |WSQtx

T′ (𝑘)|,∀𝑘 ∈ Rd(tx) (2)

For every key 𝑘 ∈ Rd(tx), every transactions in WSQtx
T (𝑘)

is also present in WSQtx
T′ (𝑘). Otherwise, for each transaction in

WSQtx
T (𝑘)\WSQtx

T′ (𝑘), Renoirwould have invalidated𝑘 , and hence
would not have skipped tx. This implies that when treated as sets,

WSQtx
T (𝑘) ⊆ WSQtx

T′ (𝑘),∀𝑘 ∈ Rd(tx) (3)

Combining equation 2 and 3, we get the desired result. □

Lemma 5.2. During the block validation phase, Renoir skips re-
executing a transaction tx ∈ T ∩ T′ only when all the transactions
in the write sequence of every key in Rd(tx) were skipped during
the block validation phase.

Session 1: Testing, Measurement and Profiling ICPE ’21, April 19–23, 2021, Virtual Event, France

16

Proof. For the sake of contradiction, assume that there exists
a transaction tx′ ∈ WSQtx

T (𝑘) for some key 𝑘 ∈ Rd(tx) that has
been re-executed during the block validation phase. Then Renoir
would have invalidated KeyTable rows for all the keys (including 𝑘)
from the write set of tx′. This implies that Renoir would not have
skipped tx, thus leading to a contradiction. □

Theorem 1. When Renoir skips re-executing a transaction tx ∈
T∩T′, the write sequence for every key in Rd(tx), is identical for both
T and T′, i.e.,

WSQtx
T (𝑘) = WSQtx

T′ (𝑘),∀𝑘 ∈ Rd(tx) (4)

Proof. For the sake of contradiction assume that this is not
true for some key 𝑘 ∈ Rd(tx). But, from Lemma 5.1, we know that
WSQtx

T (𝑘) and WSQtx
T′ (𝑘) has same set of transactions. Further-

more, from Lemma 5.2, we know that Renoir skips every transac-
tion in them.

LetWSQtx
T (𝑘) andWSQtx

T′ (𝑘) differ for the first time at an index
𝑙 . Let tx′ ∈ WSQtx

T′ (𝑘) and tx′′ ∈ WSQtx
T (𝑘) be the corresponding

transactions. This implies that inWSQtx
T′ (𝑘), tx

′′ appear later than
tx′. Thus, in WSQtx

T′ (𝑘), tx
′′ reads a version of 𝑘 strictly greater 𝑙 .

Hence, according to the specification, Renoir will detect a version
mismatch for tx′′ during block validation phase, and hence will
re-execute tx′′. This contradicts Lemma 5.2. □

Starting from state𝑁
𝑖−1 = state𝑅

𝑖−1, let state
𝑁
𝑖−1(𝑢) and state𝑅

𝑖−1(𝑢)
be the state of the transaction after executing the 𝑢th transaction
in T using the naive approach and Renoir approach, respectively.
Next, we will use Theorem 1 to prove that the block validation in
Renoir produces a state equivalent to the state produced by naively
re-executing every transaction in the received block.

Theorem 2. Starting with initial state state𝑁
𝑖−1 = state𝑅

𝑖−1, for
every received block at height 𝑖 with ordered list of transactions T,
Renoir and the approach of naive re-execution of all transactions in
T will result in identical final state, i.e., state𝑁

𝑖
= state𝑅

𝑖

Proof. It is obvious that until Renoir skips re-executing any
transaction in T, the state in Renoir and naive re-execution remains
identical. Hence, we start with the first transaction that Renoir
skips and then prove the theorem via induction.

Base case. Let 𝑢 be the index of first transaction Renoir decides
to skip and tx = T[𝑢]. Hence, the write sequence of every key in
Rd(tx) is empty. This implies that the contents of keys in Rd(tx)
have not been modified by any preceding transaction of tx. Thus,
execution of tx will result in same state update as in the creation
phase. Hence the final state after skipping tx will be identical to
naive re-execution.

Induction hypothesis. For any index 𝑣 ≥ 𝑢, assume that the state
after executing transactions up to (including) 𝑣 have resulted in the
correct state, i.e.,

state𝑁𝑖−1(𝑣) = state𝑅𝑖−1(𝑣) (5)

Inductive step. Let tx′ = T[𝑣 + 1]. If Renoir decides to re-execute
tx′, then trivially state𝑁

𝑖−1(𝑣 + 1) = state𝑅
𝑖−1(𝑣 + 1). Otherwise, from

Theorem 1 we know that the write sequence of for all keys in
Rd(tx′) are identical to the block creation phase. Furthermore, from

Lemma 5.2 Renoir skips all transactions that appear in these write
sequences. Since the last transaction writing to every key in Rd(tx′)
are the same in both the block creation and the block validation
phase, and Renoir skips all of them, the value stored in these keys
are also identical in both phases. Stating differently, the contents
stored at all keys in Rd(tx′) are identical. Since tx is deterministic
and its execution only depends on the values stored at the keys
in its read set, the resulting state will be identical. This proves the
theorem. □

6 RENOIR EVALUATION
We implemented Renoir on the open-source Go-Ethereum client
version 1.9.3 and measured its performance under two different
setups described below.

6.1 Experimental Setup
First, we deploy a Renoir equipped node to the Ethereum mainnet
and investigate the extent of reduction in the block validation time
due to Renoir. The node had one 2.19GHz dual-core CPU, 8 GB
RAM, and 6.4TB NVMe SSD.

Second, we create a private blockchain network on 50 Oracle
Virtual Machines to observe the effect of varying block creation time
on both Ethereum and Renoir. In this setup each VM is equipped
with one 2.19GHz dual-core CPU, 8 GB RAM and 128GB HDD.
All VMs were running ubuntu 16.04 with download and upload
bandwidth of 1 GBps and 100 MBps, respectively. Each VM runs one
blockchain network node. Throughout the experiment, we have
controlled the block mining difficulty so as to take 15 seconds to
solve the Proof-of-Work puzzle to mine the block. This implies
that the average block inter-arrival in our Ethereum experiment
is 15 seconds + block propagation delay + block creation time +
block validation time and the last quantity is replaced with the
Renoir validation time for Renoir. With this experimental setup,
we compare Renoir and Ethereum on metrics we define below.
Nodes, network delays and topology. We assign mining power
to each node in our 50 node setup in accordance with the dis-
tribution of mining power of the top 50 miners of the Ethereum
network [2]. The top 50 miners (by mining power) contribute to
around 99.98% of total mining power of the real Ethereum network,
with the most powerful miner controlling ∼33% of the total min-
ing power. Also, we use the geographical location of these top 50
Ethereum miners from [2] to mimic the location of our 50 nodes.
We ensure that the inter-node latency (using Linux tc command)
between any pair of nodes is in line with the ping delay correspond-
ing to the geographic locations of the nodes [1] in effect mimicking
the delays between real nodes of the Ethereum mainnet.

In line with the topology of the Bitcoin networkwhere the degree
of a node follows the power-law distribution [10] we design the
topology of our experimental setup as follows: Each node connects
to a random set of other nodes such that the degree of the node
follows the power-law distribution.
Applications tested. We evaluate both Renoir and the Ethereum
by deploying three types of smart contracts, each implementing
quicksort, 2D matrix multiplication, and loop iteration with basic
arithmetic operations. Throughout the experiment, we maintain an

Session 1: Testing, Measurement and Profiling ICPE ’21, April 19–23, 2021, Virtual Event, France

17

0.011 0.122 0.139 0.205 0.253

50

100

150

𝜏/I

M
in
in
g
Po

w
er

ut
il. 𝐸𝑡ℎ𝑒𝑟𝑒𝑢𝑚 𝑅𝑒𝑛𝑜𝑖𝑟

(a) MPU

0.011 0.122 0.139 0.205 0.253
2

3

4

5
·104

𝜏/I

Th
ro
ug

hp
ut
(tx

/h
ou

r)

𝐸𝑡ℎ𝑒𝑟𝑒𝑢𝑚 𝑅𝑒𝑛𝑜𝑖𝑟

(b) Throughput

Figure 9: Mining power utilization and throughput of Ethereum and Renoirwith a confidence interval of 95%measured in our
private network with varying block creation-arrival ratio

0.011 0.122 0.205

50

100

150

Block creation-arrival ratio

M
in
in
g
Po

w
er

ut
il. 𝑛1 𝑛2 𝑛3 𝑛4

𝑛5 𝑛6 𝑛7

(a) Ethereum

0.011 0.139 0.253

Block creation-arrival ratio

𝑛1 𝑛2 𝑛3 𝑛4
𝑛5 𝑛6 𝑛7

(b) Renoir

93 75 50

Similarity in %

𝑛1 𝑛2 𝑛3 𝑛4
𝑛5 𝑛6 𝑛7

(c) Renoir, Block creation-arrival ratio=0.253

Figure 10: Mining power utilization of the first 7 nodes of Ethereum and Renoir with a confidence interval of 95% measured
in our private network with varying block creation-arrival ratio and varying similarity

average of ∼165 transactions per block which is the average number
of transactions in a Ethereum block. Thus, whenever required, we
vary the block creation time by varying the time it takes for a node
to execute each of these transactions.
Parameters and Metrics. The block creation-arrival ratio is the
ratio of the block creation time to the average block inter-arrival
time (block creation time+block validation time+avg. block mining
time) and is an important parameter in the performance evaluation
of a blockchain system. In particular, a high block-creation inter-
val ratio indicates that the system has high throughput if it(high
block-creation interval) is the result of including more number of
transactions in the block. Thus, we investigate the effect of increas-
ing block creation-arrival ratio on mining power utilization, block
validation time and throughput. Throughput is the number of main
chain transactions processed per unit time. Mining power utiliza-
tion of a node is the ratio of the number of blocks mined by the
node that eventually makes it to the main chain to that of the total
number of blocks mined by the node. This indicates the extent to
which mining was successful - the blocks that do not make it to the
main chain represent wasted effort.

6.2 Experiments and Results
Reduction in block validation time. Figure 11 illustrates the
reduction in block validation time as a result of using Renoir in
Ethereum public network. Specifically, observe that without Renoir
a Ethereum host node takes ∼200 milliseconds to validate a received

9.95 9.95 9.95

·106

0

100

200

300

Block height

Bl
oc
k
va
lid

at
io
n
tim

e
(m

s)

with Renoir without Renoir

Figure 11: Validation time of 1000 real Ethereum blocks at
two nodes, one of which is equipped with Renoir and the
other is not.

block, whereas a node equipped with Renoir only takes ∼100 mil-
liseconds, hence, a 50% reduction in block validation time. The
reduction in block validation time is lower than our estimated simi-
larity of more than 80% (§3.3), because the node spends additional
time to decide whether to skip a transaction or not. Similarly, Fig-
ure 12 illustrates the reduction in block validation time we observe
on our second setup (private 50 node network) with varying block
creation-interval ratio with ∼93% similarity. In particular, we find
that for high block creation-interval ratio, nodes equipped with
Renoir only spend a tiny fraction of a second to validate received
block. On the other hand, nodes equipped with Ethereum takes
over a few seconds to validate the block.

Session 1: Testing, Measurement and Profiling ICPE ’21, April 19–23, 2021, Virtual Event, France

18

1.1 · 10−2 0.13 0.21 0.25
0

2,000

4,000

Block creation-interval ratio

Bl
oc
k
va
lid

at
io
n
tim

e(
m
s)

Ethereum
Renoir

Figure 12: Time taken by the node to validate a received
block with and without Renoir for varying block creation-
interval ratio.

Mining power utilization. A low mining power utilization in-
dicates a high degree of wasted computation. In Figure 9(a), we
observe that the overall mining power utilization significantly drops
with increase in block creation-arrival ratio, i.e., with high block
creation/validation time. In Figure 10(a), we observe that with the
increase in block creation-arrival ratio, the mining power utilization
of the first seven nodes in Ethereum drops significantly. Further-
more, this decrease is more for nodes with lower mining power.
The reason behind this decrease is that, with high block creation
and validation time, blocks take longer to propagate as nodes only
forward those blocks for which it has validated all its ancestor
blocks. This results in a high fork rate in the network and hence
low mining power utilization.

In Figure 9(a) we observe that mining power utilization of the
system in Renoir remains unaffected even for high block creation-
interval ratio of 0.253, unlike Ethereum. Figure 10(b) illustrates
the mining power utilization of first seven Renoir nodes (ordered
by mining power) in our experiment with 93% similarity. Unlike
Ethereum, in Renoir the mining power utilization of nodes remains
unaffected. This is due the fact that despite high block creation time,
as illustrated in Figure 12 the block validation time in Renoir is
very small. We also evaluate Renoir by varying the similarity and
measure its effect on mining power utilization for block creation-
interval ratio of 0.253. Figure 10(c) illustrates our findings. Observe
that even with 50% similarity, mining power utilization of nodes are
better than mining power utilization of Ethereum at higher block
creation-arrival ratio of 0.205. This illustrates that Renoir achieves
better, mining power utilization and is robust against variations in
similarity.
Throughput Figure 9(b) illustrates that throughput of the system
in Ethereum declines with the increase in block creation-arrival
ratio. On the other hand, we observe that higher block creation-
interval ratio barely affects the throughput of Renoir. This is be-
cause of the higher fork rate, as observed in figure 9(a), which then
delays the extension of the main chain. Note that the increase in
block creation-interval ratio in our experiment is a result of the
inclusion of the transactions that require more amount of computa-
tion, in the blocks and not the increase in the number of transactions.
Later will give the scope to increase the throughput further but, at
the cost of an increase in block size.

7 RELATEDWORK
We present related work in three parts. The first is about other
measurement studies on the Ethereum network. We then look at
efforts that have attempted to reduce the block validation time.
Finally, we briefly discuss the recent proposals on smart contract
scalability and how Renoir can complement these proposals for
better performance.
Blockchainmeasurements.Gencer et al. [20]measure the degree
of decentralization in the Ethereum network. They observed that
Ethereum nodes are more widely distributed than Bitcoin nodes but
have less spare bandwidth. Kim et al. [23] explored the RLPx and
DEVp2p layer of Ethereum network. Ethereum uses RLPx for node
discovery, and DEVp2p to explore the information propagation in
the network. Wang et al. [33] investigate the behavior of partici-
pants in mining pools and their effects on the Bitcoin’s transaction
fees and propagation delay of transactions. TxProbe [16] explores
the Bitcoin network and propose a technique to reconstruct Bitcoin
topology with precision and recall surpassing 90%. To our knowl-
edge, there has not been any study that attempted to measure or
estimate the set of transactions contained in the transaction pool
at nodes and their dependencies with each other, which is critical
in reducing validation time as we have seen.
Concurrent smart-contracts. In an alternative approach, a new
line of work has tried to reduce the block validation time by con-
currently executing transactions [7, 17, 37]. Dickerson et al. [17]
enable the miner to concurrently execute the transaction using a
pessimistic abstract lock and inverse-log represented as a directed
acyclic graph (happen-before graph). This inverse-log is later used
in the validation phase, to replay the block creator’s parallelization
schedule. Anjana et al. [7] replaced the pessimistic lock with OCC
favoring low-conflict workloads but at the cost of high abort rate for
transactions with higher conflicts. Zhang et al. [37] improves con-
currency of the validation phase by recording the write set of each
transaction in the block, at the cost of additional storage and com-
munication overhead. Due to dependency between transactions,
they lead to wastage of computation resources and also have limited
scalability. Furthermore, these approaches rely on a large amount
of additional resources for parallel execution of transactions
Smart contract scalability. Recently, numerous works have pro-
posedmechanisms to enable computationally intensive transactions
in blockchains [13, 15, 18, 22, 32]. Typically, these approaches dele-
gate the task of intensive computation to a set of offline, untrusted
volunteer nodes and later run a result aggregation protocol to iden-
tify the correct execution result. These approaches do not address
the problem of reducing the block validation time. Nevertheless,
due to the modularity of our design, Renoir can be used as a com-
plementary system to avoid re-execution of transactions during the
result aggregation protocol.

8 SUMMARY & EXTENSIONS
In this paper, we presented Renoir, whose design enables nodes to
skip the (re)execution of transactions in the block validation phase
to speed the validation. Via a comprehensive empirical study of
block and transaction propagation in Ethereum mainnet, we have
determined that the scope of reduction in block validation time is

Session 1: Testing, Measurement and Profiling ICPE ’21, April 19–23, 2021, Virtual Event, France

19

significant. Renoir uses information about the read andwrite sets of
transactions to decide about skipping executing the transaction. We
experimentally evaluated the Renoir on Ethereummainnet and our
50 node network setup and determined that Renoir outperforms
Ethereum especially for high block creation-arrival ratios. Lastly,
we have presented a complete theoretical proof of correctness of
Renoir.

Although we present an implementation of Renoir on permis-
sionless PoW based blockchains, the core ideas of Renoir will work
just as well with other consensus protocols such as committee
based BFT [6, 9, 24, 30, 35], Paxos [25], RAFT [29]. Furthermore, as
permissioned blockchains usually have fewer nodes and the connec-
tivity among these nodes are more regulated, we expect to observe
a higher value of similarity, than with permissionless blockchain
networks. However, in a typical committee based protocol, only the
leader creates the block which other nodes validate. Thus to extend
Renoir to committee based consensus, each node will execute the
transactions available in their transaction pool and cache the result
of the execution. On receiving the block from the leader, the node
will use the cached result by following the Renoir mechanism.

ACKNOWLEDGMENTS
We thank Shashi Bhushan Singh for his generous help in the data
collection part. We also thank Oracle Corp. for supporting us with
a grant in terms of free cloud credit, which we used to run all our
experiments demonstrated in this work.

REFERENCES
[1] [n.d.]. Global Ping Latency. https://wondernetwork.com/pings [Online; accessed

15-March-2020].
[2] [n.d.]. Mining Power Distribution of Ethereum. https://investoon.com/charts/

mining/eth [Online; accessed 16-May-2019].
[3] 2020. Ethereum clients. https://github.com/ethereum/wiki/wiki/Clients,-tools,-

dapp-browsers,-wallets-and-other-projects#ethereum-clients
[4] 2020. Go Ethereum, Official Go implementation of the Ethereum protocol. https:

//geth.ethereum.org/
[5] Maher Alharby, Roben Castagna Lunardi, Amjad Aldweesh, and Aad vanMoorsel.

2020. Data-Driven Model-Based Analysis of the Ethereum Verifier’s Dilemma.
arXiv:2004.12768 [cs.CR]

[6] Elli Androulaki, Artem Barger, Vita Bortnikov, Christian Cachin, Konstantinos
Christidis, Angelo De Caro, David Enyeart, Christopher Ferris, Gennady Lavent-
man, Yacov Manevich, et al. 2018. Hyperledger fabric: a distributed operating
system for permissioned blockchains. In Proceedings of the Thirteenth EuroSys
Conference. 1–15.

[7] Parwat Singh Anjana, Sweta Kumari, Sathya Peri, Sachin Rathor, and Archit
Somani. 2019. An efficient framework for optimistic concurrent execution of
smart contracts. In 2019 27th Euromicro International Conference on Parallel,
Distributed and Network-Based Processing (PDP). IEEE, 83–92.

[8] Vivek Bagaria, Sreeram Kannan, David Tse, Giulia Fanti, and Pramod Viswanath.
2018. Deconstructing the blockchain to approach physical limits. arXiv preprint
arXiv:1810.08092 (2018).

[9] Mathieu Baudet, Avery Ching, Andrey Chursin, George Danezis, François Garillot,
Zekun Li, Dahlia Malkhi, Oded Naor, Dmitri Perelman, and Alberto Sonnino.
2019. State machine replication in the Libra Blockchain. The Libra Assn., Tech.
Rep (2019).

[10] Annika Baumann, Benjamin Fabian, and Matthias Lischke. 2014. Exploring the
Bitcoin Network. WEBIST 2014 - Proceedings of the 10th International Confer-
ence on Web Information Systems and Technologies 1. https://doi.org/10.5220/
0004937303690374

[11] Vitalik Buterin et al. 2013. Ethereum white paper. GitHub repository (2013),
22–23.

[12] JPMorgan Chase. 2020. A permissioned implementation of Ethereum supporting
data privacy.

[13] Raymond Cheng, Fan Zhang, Jernej Kos, Warren He, Nicholas Hynes, Noah
Johnson, Ari Juels, Andrew Miller, and Dawn Song. 2019. Ekiden: A platform for
confidentiality-preserving, trustworthy, and performant smart contracts. In 2019
IEEE European Symposium on Security and Privacy (EuroS&P). IEEE, 185–200.

[14] Sourav Das, Nitin Awathare, Ling Ren, Vinay Joseph Ribeiro, and Umesh Bellur.
2020. Better Late than Never; Scaling Computations in Blockchain by Delaying
Transactions. arXiv preprint arXiv:2005.11791 (2020).

[15] Sourav Das, Vinay Joseph Ribeiro, and Abhijeet Anand. 2019. YODA: Enabling
computationally intensive contracts on blockchains with Byzantine and Selfish
nodes. In Proceedings of the 26th Annual Network and Distributed System Security
Symposium.

[16] Sergi Delgado-Segura, Surya Bakshi, Cristina Pérez-Solà, James Litton, Andrew
Pachulski, Andrew Miller, and Bobby Bhattacharjee. 2019. TxProbe: Discovering
Bitcoin’s Network Topology Using Orphan Transactions. In Financial Cryptogra-
phy and Data Security, Ian Goldberg and Tyler Moore (Eds.). Springer Interna-
tional Publishing, Cham, 550–566.

[17] Thomas Dickerson, Paul Gazzillo, Maurice Herlihy, and Eric Koskinen. 2017.
Adding concurrency to smart contracts. In Proceedings of the ACM Symposium
on Principles of Distributed Computing. ACM, 303–312.

[18] Jacob Eberhardt and Stefan Tai. 2018. ZoKrates-Scalable Privacy-Preserving
Off-Chain Computations. In IEEE International Conference on Blockchain. IEEE.

[19] Juan Garay, Aggelos Kiayias, and Nikos Leonardos. 2015. The bitcoin backbone
protocol: Analysis and applications. In Annual International Conference on the
Theory and Applications of Cryptographic Techniques. Springer, 281–310.

[20] Adem Efe Gencer, Soumya Basu, Ittay Eyal, Robbert van Renesse, and Emin Gün
Sirer. 2018. Decentralization in Bitcoin and Ethereum Networks. CoRR
abs/1801.03998 (2018). arXiv:1801.03998 http://arxiv.org/abs/1801.03998

[21] Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nickolai Zel-
dovich. 2017. Algorand: Scaling byzantine agreements for cryptocurrencies. In
Proceedings of the 26th Symposium on Operating Systems Principles. 51–68.

[22] Harry Kalodner, Steven Goldfeder, Xiaoqi Chen, S Matthew Weinberg, and
Edward W Felten. 2018. Arbitrum: Scalable, private smart contracts. In 27th
{USENIX} Security Symposium ({USENIX} Security 18). 1353–1370.

[23] Seoung Kyun Kim, Zane Ma, Siddharth Murali, Joshua Mason, AndrewMiller, and
Michael Bailey. 2018. Measuring Ethereum Network Peers. In Proceedings of the
Internet Measurement Conference 2018 (Boston, MA, USA) (IMC ’18). Association
for Computing Machinery, New York, NY, USA, 91–104. https://doi.org/10.1145/
3278532.3278542

[24] Eleftherios Kokoris Kogias, Philipp Jovanovic, Nicolas Gailly, Ismail Khoffi, Linus
Gasser, and Bryan Ford. 2016. Enhancing bitcoin security and performance with
strong consistency via collective signing. In 25th {usenix} security symposium
({usenix} security 16). 279–296.

[25] Leslie Lamport. 2019. The part-time parliament. In Concurrency: the Works of
Leslie Lamport. 277–317.

[26] Chenxing Li, Peilun Li, Dong Zhou, Wei Xu, Fan Long, and Andrew Yao. 2018.
Scaling nakamoto consensus to thousands of transactions per second. arXiv
preprint arXiv:1805.03870 (2018).

[27] Loi Luu, Jason Teutsch, Raghav Kulkarni, and Prateek Saxena. 2015. Demystifying
incentives in the consensus computer. In Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security. ACM, 706–719.

[28] Satoshi Nakamoto et al. 2008. Bitcoin: A peer-to-peer electronic cash system.
(2008).

[29] Diego Ongaro and John Ousterhout. 2014. In Search of an Understandable
Consensus Algorithm. In 2014 USENIX Annual Technical Conference (USENIX ATC
14). USENIX Association, Philadelphia, PA, 305–319. https://www.usenix.org/
conference/atc14/technical-sessions/presentation/ongaro

[30] Sajjad Rizvi, Bernard Wong, and Srinivasan Keshav. 2017. Canopus: A scalable
and massively parallel consensus protocol. In Proceedings of the 13th International
Conference on emerging Networking EXperiments and Technologies. 426–438.

[31] Parity Technologies. 2020. Parity Ethereum Client - OpenEthereum. https:
//www.parity.io/ethereum/

[32] Jason Teutsch and Christian Reitwießner. 2017. A scalable verification solution
for blockchains. (2017).

[33] Canhui Wang, Xiaowen Chu, and Qin Yang. 2019. Measurement and Analysis of
the Bitcoin Networks: A View from Mining Pools. CoRR abs/1902.07549 (2019).
arXiv:1902.07549 http://arxiv.org/abs/1902.07549

[34] GavinWood et al. 2014. Ethereum: A secure decentralised generalised transaction
ledger. Ethereum project yellow paper 151 (2014), 1–32.

[35] Maofan Yin, Dahlia Malkhi, Michael K Reiter, Guy Golan Gueta, and Ittai Abra-
ham. 2019. Hotstuff: Bft consensus with linearity and responsiveness. In Pro-
ceedings of the 2019 ACM Symposium on Principles of Distributed Computing.
347–356.

[36] Haifeng Yu, Ivica Nikolic, Ruomu Hou, and Prateek Saxena. [n.d.]. OHIE:
Blockchain Scaling Made Simple. In 2020 IEEE Symposium on Security and Privacy
(SP). 112–127.

[37] An Zhang and Kunlong Zhang. 2018. Enabling concurrency on smart contracts
using multiversion ordering. In Asia-Pacific Web (APWeb) and Web-Age Informa-
tion Management (WAIM) Joint International Conference on Web and Big Data.
Springer, 425–439.

Session 1: Testing, Measurement and Profiling ICPE ’21, April 19–23, 2021, Virtual Event, France

20

https://wondernetwork.com/pings
https://investoon.com/charts/mining/eth
https://investoon.com/charts/mining/eth
https://github.com/ethereum/wiki/wiki/Clients,-tools,-dapp-browsers,-wallets-and-other-projects#ethereum-clients
https://github.com/ethereum/wiki/wiki/Clients,-tools,-dapp-browsers,-wallets-and-other-projects#ethereum-clients
https://geth.ethereum.org/
https://geth.ethereum.org/
https://arxiv.org/abs/2004.12768
https://doi.org/10.5220/0004937303690374
https://doi.org/10.5220/0004937303690374
https://arxiv.org/abs/1801.03998
http://arxiv.org/abs/1801.03998
https://doi.org/10.1145/3278532.3278542
https://doi.org/10.1145/3278532.3278542
https://www.usenix.org/conference/atc14/technical-sessions/presentation/ongaro
https://www.usenix.org/conference/atc14/technical-sessions/presentation/ongaro
https://www.parity.io/ethereum/
https://www.parity.io/ethereum/
https://arxiv.org/abs/1902.07549
http://arxiv.org/abs/1902.07549

	Abstract
	1 Introduction
	2 Background
	2.1 The Consensus Protocol
	2.2 Smart Contracts & Transactions
	2.3 Block Creation and Validation in Ethereum
	2.4 Transaction/Block Propagation in Ethereum

	3 Empirical Study of Ethereum
	3.1 Definitions
	3.2 Measuring Similarity
	3.3 Findings & Analysis

	4 Renoir Design
	4.1 Overview
	4.2 Data Structures
	4.3 Block Creation Phase
	4.4 Block Validation Phase
	4.5 An Example

	5 Proof of Correctness
	6 Renoir Evaluation
	6.1 Experimental Setup
	6.2 Experiments and Results

	7 Related Work
	8 Summary & Extensions
	Acknowledgments
	References

