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ABSTRACT
In the last years, blockchains have become a popular technology
to store immutable data validated in a peer-to-peer way. Software
systems can take advantage of blockchains to publicly store data
(organised in transactions) which is immutable by design. The most
important consensus algorithm in public blockchains is the proof-
of-work in which miners invest a huge computational power to
consolidate new data in a ledger. Miners receive incentives for their
work, i.e., a fee decided and paid for each transaction. Rational
miners aim to maximise the profit generated by the mining activity,
and thus choose the transactions offering the highest fee per byte
for their consolidation.

In this paper, we propose a queueing model to study the relation
between the fee offered by a transaction and its expected consolida-
tion time, i.e., the time required to be added to the blockchain by the
miners. The solution of the queueing model, although approximate,
is computationally and numerically efficient and software systems
can use it online to analyse the trade-off between costs and re-
sponse times. Indeed, a static configuration of the model would not
account for the high variations in the blockchain workload and fees
offered by other users. The model takes into account the dropping
of transactions caused by timeouts or finite capacity transaction
pools. We validate our results with data extracted from the Bitcoin
blockchain and with discrete event simulations.

CCS CONCEPTS
• Computer systems organization → Peer-to-peer architec-
tures; • Mathematics of computing → Markov processes.
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1 INTRODUCTION
Blockchain is a distributed ledger designed to store immutable data
validated through a consensus protocol. In public, permissionless,
blockchains the consensus protocol involves potentially all the
ledger users in a pseudonymous way. Probably, the most well-
known blockchain is that underlying the cryptocurrency Bitcoin
(BTC). Most of the information stored in this system is related to
pure transfers of cryptocurrency, but we should recall that we can
store in the Bitcoin blockchain also other types of data like smart
contracts or immutable signatures of documents.

The most common consensus protocol adopted in permissionless
blockchains (but sometimes also in permissioned ones [16]) is called
Proof of Work (PoW) and has been introduced in the seminal work of
Nakamoto [4, 18]. While we leave to Section 3 a detailed description
of the salient features of PoW, here we just informally introduce
some important aspects.

The blockchain users send requests to the distributed ledger in
which they ask to consolidate transactions. The consolidation of a
transaction consists in its inclusion in one of the new blockchain
blocks in an immutable way. Using the Bitcoin nomenclature, we
call MemPool the set of transactions that have been sent to the
blockchain but have not yet been consolidated. We will see that the
Mempool behaves as a priority queue.Miners fetch the transactions
from the local copy of the Mempool, validate them according to
some rules (e.g., one cannot spend twice the same deposit), and
try to solve a problem on the computation of the hashing. This
problem is computationally expensive to solve but is very easy
to verify. Once the problem has been solved, any other miner can
verify the integrity of the information stored in the newly generated
block and the process restarts.

Clearly, in order to incentivize the users to collaborate in mining,
some reward mechanism must be planned to cover the energy and
hardware costs that the miners have to face. This is a common
problem for all systems with distributed validation (see, e.g., [9]). In
Bitcoin, there are two types of rewards received by the miner who
successfully consolidates a block: the first is an amount of cryp-
tocurrency generated for this purpose and the second is the sum
of the fees paid by the transactions. The first mechanism will pro-
gressively disappear as specified by the Bitcoin protocol. Therefore,
the latter is gaining more and more importance. Since the block
size is limited and the expected number of consolidated blocks per
unit of time is approximately constant, the miners privilege the
transactions offering the highest fees to maximise their profit.
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Figure 1: Intensity of the transaction arrival process from
2019 October, 13th to 2020 October, 12th. The plot shows the
average obtainedwith a slidingwindowof 7 days. Data taken
from blockchain.com.

As a consequence, the transition sojourn time in the MemPool
depends on the offered fees: higher fees correspond to shorter
consolidation times.

Software applications relying on PoW-based blockchains to store
public immutable information must decide the fee that they intend
to pay for their consolidation. Unfortunately, the connection be-
tween offered fees and expected consolidation time (also called
confirmation time) depends on factors that are highly dynamic
in the system, i.e., the distribution of the other users’ offers, the
intensity of the transaction arrival process at the MemPool and the
availability of miners together with the level of difficulty of the
PoW. The variability of the arrival process intensity in Figure 1 and
Figure 2 shows that the average consolidation time for a transaction
has varied from 30 to 160 minutes during the last year. Moreover,
miners drop the transactions that stay in the MemPool more than
a certain amount of time. This is needed to guarantee the stability
of the mining process, i.e., from a queueing theoretical prospective,
it guarantees the stability of the MemPool queue.

In this paper, we propose a queueing theoretical framework to
support the decision policy at software level about the trade-off
between cost reduction and system performance for what concerns
the expected transaction consolidation time. The model that we
propose is parameterised with the distribution of the fees offered by
the blockchain users and the intensity of the arrival rate and allows
the application to estimate the expected consolidation time associ-
ated with a certain fee. Figure 3 shows a sketch of an application
running the proposed prediction system. A node will monitor and
log the transactions arriving at the blockchain and communicates
the intensity of the arrival process and the distribution of the fees
to the model. The solution of the queueing model will provide esti-
mates of the expected consolidation times for the application and
will prepare its own transaction with the fee dynamically computed.
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Figure 2: Expected transaction consolidation time from 2019
October, 13th to 2020 October, 12th. The plot shows the av-
erage obtained with a sliding window of 7 days. Data taken
from blockchain.com.
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Figure 3: Structure of a software application with dynamic
prediction of the expected transaction consolidation time.

We consider a queueing model with a set of jobs and with a
priority scheduling. The analysis of sojourn time distribution for
M/G/1 queues with priority is presented in [20], and an efficient
computation algorithm of the steady-state probabilities, based on
a matrix-geometrics method, is given for the M/M/1 queue with
priority in [17]. Some works consider the analysis of the waiting
time for the multiclass M/M/c queue with priority, with a closed
form expression of the Laplace transform of the waiting time [8,
15], the average class sojourn time approximation in queues with
preemption and different service rates [7], and an exact analysis,
based on the generating function of the number of jobs with low
priority, for the M/M/c with two priority classes [21].
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Here, we consider a queuing model M/M𝐵/1 with bulk services
of size 𝐵 with hard priority and reneging for the class with the
lowest priority. We provide an exact solution of the model without
reneging and an approximate solution for the reneging case that
has been validated by means of discrete event simulations.

The paper is structured as follows. Section 2 discusses some
related work. Section 3 briefly describes the salient aspects of the
mining process in PoW blockchains and emphasises the features
that we model in this work. In Section 4, we describe the queueing
model and its solution. In section 5, we use the BTC blockchain to
validate our model. Specifically, we compare the predictions of our
queueing model with the data available from the miners and stored
in the chain. Section 6 shows some experiments with the reneging
policy and, finally, Section 7 concludes the paper.

2 RELATEDWORK
While the analysis of the blockchain system has drawn much atten-
tion from the research community for example with the develop-
ment of simulators as [2], the analysis of the behaviour of a single
transaction is still largely an open problem.

The users of a blockchain have an obvious need for a fee estimate
and currently the Bitcoin network does not provide this service.
There are independent services that try to give a rough estimate1
and are based upon the MemPool state during the previous three
hours and performMontecarlo simulations. However, this method is
quite slow for online predictions. Other services infer fees from the
current MemPool state23. Finally, we note that third party services,
e.g. cryptocurrency exchanges, ignore the fee problem by imposing
very high fees to the users, independently of the network state.
The importance of the impact of the miners’ selfish decisions in a
blockchain is studied in [1] by resorting to simulations.

In [12], the authors propose a simulator based on Omnet++ to
study the relation between offered fee and consolidation time in
Direct Acyclic Graph (DAG) blockchains. Although the purposes
of the work are close to ours, they consider a different type of
blockchain. In contrast with our contribution, [12] heavily relies
on simulation while we develop an analytical model which is faster
to solve and usable for online predictions.

In [13, 14], the authors propose a priority queueing model with
batches with the same aims of ours. However, the two works differ
for some important aspects. First, in [13, 14], when a miner includes
a transaction in the block he is mining, he will not remove it, re-
gardless to the fees of the following arrivals. In general, miners
take advantage of the fact that the mining process is memoryless,
i.e., the number of unsuccessful hashes computed on batch of trans-
actions does not help the prediction the remaining work. Thus,
whenever a high fee transaction arrives, it is better to change the
candidate block composition. This has important consequences for
the heavy-load case. Since high fee transactions arrive according to
an independent process at the miner MemPool, they will find the
block being mined full with high probability. Thus, if not allowed to
replace existing low fee transactions, they will have to wait until the
next block for consolidation. The experiments in Section 5, show

1https://bitcoinfees.earn.com
2https://twitter.com/bitcoin_fees
3https://btc.network/estimate
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Figure 4: Sketch of the mining process. The color of the
boxes representing the transactions in theMemPool denotes
their fees: the darkest colors correspond to the highest fees.

that, even under heavy load, the expected number of blocks that a
high fee transaction have to wait is slightly above 1 (we discuss in
the same section why it is not exactly 1). In our model, the miners
always choose the transactions with the highest fee when they
mine a block. A second difference is that we consider the possibil-
ity that low priority queues receive insufficient service capacity,
and examine mechanisms for avoiding their saturation. Thirdly,
we compare the prediction of our models both with discrete event
simulation and with real data obtained by the BTC blockchain.

3 BACKGROUND ON POW IN BLOCKCHAIN
NETWORKS

Blockchains store immutable transactions aggregated in blocks.
Transactions are confirmed thanks to a consensus protocol that char-
acterises the blockchain. In this work, we focus on the widely used
PoW consensus protocol as described in the seminal Nakamoto’s
paper [18]. Although this has been developed for one specific
blockchain, i.e., that underlying the cryptocurrency Bitcoin, the
same idea can be found in many others public blockchains.

From the quantitative point of view, these blockchains impose a
maximum block size and an average delay between blocks. These
invariant properties are required for security reasons and determine
the maximum throughput of the system, defined as the maximum
number of transactions that can be added to a block per unit of
time. For example, in BTC, the maximum block size is 1MB (which
approximately correspond to 2, 800 transactions) and the blocks
are generated, on average, every 10 minutes.

3.1 The mining process
We can summarise the PoW consensus protocol as follows. Each
miner, which can be any user, is connected to the others to form
a peer-to-peer network. It maintains a queue with the pending
transactions, i.e., the transactions that have to be added to a block.
This queue is called MemPool in BTC, and we will follow this
nomenclature for simplicity. The miner selects the transactions to
include in the block and computes the hash of the set of transactions
plus several other information among which the nonce plays an
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important role. Indeed, the problem of the PoW is that of finding a
nonce that produces a block hash with certain characteristics, e.g.,
that begins with a string of 0s as in BTC. The network self-adjusts
the requirements on the block hashes so that the total hash-power
of the network can produce on average one block every Δ𝑇 seconds,
where Δ𝑇 = 600s for BTC.

Figure 4 shows a sketch of this process. Notice that, although the
contents of the miners’ MemPools may be different, these differ-
ences are very small and in the model of Section 4 we will consider
them to be identical.

Due to the memoryless nature of the hash computation, the
miners may decide to change the candidate block transactions in
any moment during the mining without affecting the probability of
successfully finding the correct nonce. Moreover, the same property
allows us to conclude that the time between two block consolida-
tions by a miner must be approximately exponentially distributed
and, by the independence of the miners’ mining processes, the delay
between the consolidations of two blocks in the network is also
exponentially distributed with rate 1/600𝑠−1, i.e., with an average
distance of 10minutes. See, e.g., [10] for an experimental validation
of this observation.

The way miners choose the transactions to put in the block
determines the scheduling discipline of the MemPool. At this point,
we have to say that BTC and many other ledgers do not specify any
rule aboutwhich transactions have to be added to the pool andwhen
they have to be dropped due to timeout. As long as a block contains
valid transactions, it will be accepted by the other miners. While
we omit the explanations of the validation process and the solution
of possible forks in the network, it is important to understand the
policy adopted by the miners to choose the transactions from the
MemPool that are going to be consolidated.

Since miners must face a cost for their work (hardware and
energy consumed during the mining process), they are rewarded
whenever they consolidate a block. There are several ways of doing
this in blockchains, but themost common is allowing transactions to
offer a fee for their consolidation.When the blockchain is associated
with a cryptocurrency, this fee is paid with that cryptocurrency.
Given the limited amount of space in the blocks, miners tend to
maximise their profit by including in the block the transactions
that offer the highest fee per byte. This behaviour induces a priority
of transactions with higher fees over the other ones. Moreover,
it is worth of noticing that by the memoryless property of the
hash computation, whenever a transaction with high fee arrives
at a miner, the most convenient choice for him is to replace the
transaction with the lowest fee in his candidate block with the
newly arrived one. We stress on the fact that, in general, this is not
required by the protocols but it is safe to assume that miners will
try to maximise their profit.

Finally, we discuss the dropping policy applied by the miners.
Recall that each miner has a private copy of the MemPool and
he is only required to include valid transactions in the block, no
matter the order of arrival. A similar rule applies to the dropping
policy. When the intensity of the arrival process is higher than the
maximum ledger’s throughput, theMemPool size grows because the
queueing process becomes unstable. In order to avoid this problem,
a dropping policy is adopted by the miners. The strategy may be
either to drop the oldest transactions when the MemPool reaches

a certain size, or to drop the transactions whose residence time in
the MemPool exceeds a certain timeout. In some cases, both the
approaches are used together. However, usually the protocols do not
impose the dropping timeout or the MemPool size for the miners
who are allowed to choose their own configurations. Nevertheless,
there are some recommended values for these parameters which
are used as a default configuration for mining software and hence
used by most of the miners.

4 QUEUEING THEORETICAL ANALYSIS
In this section, we present the queueing model for the mining
process and its solution. The accuracy of these results will be studied
in Section 5.

4.1 The queueing model
We consider a system with 𝐾 job types, numbered 1, 2, . . ., 𝐾 . Jobs
of type 𝑖 arrive according to an independent Poisson process with
rate 𝜆𝑖 , and join a separate First-In-First-Out (FIFO) queue. Another
independent Poisson process, with rate 𝜇, defines a sequence of
‘consolidation’ instants, at which up to 𝐵 jobs at a time are removed
from the system. It is assumed that jobs of type 𝑖 pay higher fees
for service than those of type 𝑗 if 𝑖 < 𝑗 . Consequently, when filling
a consolidation batch, queue 𝑖 is given priority over queue 𝑗 . Thus,
if there are 𝐵 or more jobs in queue 1, then the entire batch is filled
with type 1 jobs; otherwise, the remaining spaces are filled with
type 2 jobs, if available; etc. If, at a consolidation instant, the total
number of jobs in the system does not exceed 𝐵, then all queues
are emptied.

The above assumptions imply that the stability condition for
queue 𝑖 is that the total arrival rate into queues 1, 2, . . ., 𝑖 , Λ𝑖 =
𝜆1 + 𝜆2 + . . . + 𝜆𝑖 , is lower than the maximum consolidation rate:

Λ𝑖 < 𝐵𝜇 . (1)

We are interested in the case where some queues are stable, but
possibly not all. That is, there is an index𝑚, 1 ≤ 𝑚 ≤ 𝐾 , such that
queues 1, 2, . . .,𝑚 are stable, while queues𝑚+1,𝑚+2, . . .,𝐾 , if any,
would be unstable and would grow without bound unless some job
filtering mechanism is employed. Two such mechanisms deserve
consideration.

(a) Random reneging: An incoming job of type 𝑖 > 𝑚 starts an
interval timer distributed exponentially with mean 1/𝛾𝑖 ; if
that timer expires before the job is consolidated, it leaves the
queue and is lost.

(b) Baulking: A bound 𝑁 is imposed on the size of queue 𝑖 > 𝑚;
any type 𝑖 job that finds 𝑁 jobs already present in that queue,
refuses to join and is lost.

The object of the analysis is to determine the average response
times,𝑊1,𝑊2, . . .,𝑊𝐾 , for jobs of different types. When 𝑖 > 𝑚,
the corresponding average is conditioned upon the job joining its
queue, or not reneging. Those performance measures may help
users to decide whether to pay higher fees in order to improve their
response time.

4.2 Exact solution for queues 1, 2, . . .,𝑚
Consider first queue 1. This is known in the literature as an M/M𝐵/1
queue with arrival rate 𝜆1 and bulk services of size 𝐵, occurring at
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rate 𝜇. It was first analysed by Bailey [5] in the context of general
inter-service intervals, and has since been examined in a variety of
other settings. For completeness, we shall present here a new and
simple derivation of the result, while the study of the priority and
reneging polices is novel.

Let 𝑝1,𝑛 be the steady-state probability that there are 𝑛 jobs in
queue 1. Equating the upward and downward flows across queue
level 𝑛, the corresponding balance equations can be written as
follows.

𝜆1𝑝1,𝑛 = 𝜇

𝑛+𝐵∑
𝑗=𝑛+1

𝑝1, 𝑗 ; 𝑛 = 0, 1, . . . . (2)

These equations have a geometric solution of the form

𝑝1,𝑛 = 𝐶𝑧𝑛1 , (3)

where 𝐶 and 𝑧1 are some positive constants. Indeed, substituting
(3) into (2), we find that the equations are satisfied as long as 𝑧1 is
a zero of the polynomial of degree 𝐵

𝑃1 (𝑧) = 𝜆1 − 𝜇
𝐵∑
𝑗=1

𝑧 𝑗 . (4)

In other words, 𝑧1 must be a zero of the polynomial

𝑄1 (𝑧) = 𝜆1 (1 − 𝑧) − 𝜇𝑧 (1 − 𝑧𝐵) . (5)

In addition, in order that we may obtain a probability distribution,
𝑧1 must be in the interior of the unit disk, |𝑧1 | < 1.

Note that 𝑄1 (0) > 0 and 𝑄1 (1) = 0. However, 𝑄 ′
1 (1) = 𝐵𝜇 −

𝜆1 > 0. Therefore, 𝑄1 (1 − 𝜖) < 0 for some sufficiently small 𝜖 .
Hence,𝑄1 (𝑧) has a real zero, 𝑧1, in the interval (0, 1−𝜖). Moreover,
it can be shown that 𝑄1 (𝑧) has no other zeros in the interior of the
unit disk. That follows from Rouche’s theorem.

Thus, the steady-state distribution of the number of jobs in queue
1 is given by

𝑝1,𝑛 = (1 − 𝑧1)𝑧𝑛1 ; 𝑛 = 0, 1, . . . . (6)

Similarly to the M/M/1 queue, the average number of jobs in
queue 1, 𝐿1, is given by

𝐿1 =
𝑧1

1 − 𝑧1
. (7)

The average response time of a type 1 job,𝑊1, is obtained from
Little’s theorem:𝑊1 = 𝐿1/𝜆1.

Now consider queues 1 and 2. We make the following observa-
tion: if, instead of giving priority to type 1 jobs when filling the
service batch, some other policy, e.g. FIFO was employed, the total
average number of jobs in the two queues would not change (pro-
vided, of course, that those two types have priority over all others).
That total average number of jobs, which we shall denote by 𝐿 (2) ,
can therefore be obtained by lumping together type 1 and type 2
jobs into one bulk service queue with arrival rate Λ2 = 𝜆1 +𝜆2, and
applying the above solution. This yields

𝐿 (2) =
𝑧2

1 − 𝑧2
, (8)

where 𝑧2 is the single zero in the interval (0,1) of the polynomial

𝑄2 (𝑧) = Λ2 (1 − 𝑧) − 𝜇𝑧 (1 − 𝑧𝐵) . (9)

Returning to the original priority policy, and noting that the
average number 𝐿1 of type 1 jobs has already been determined, we
can now find the average number 𝐿2 of type 2 jobs present.

𝐿2 = 𝐿 (2) − 𝐿1 . (10)
The average response time for type 2 jobs is𝑊2 = 𝐿2/𝜆2.

In general, if the total average number of jobs in queues 1, 2,
. . ., 𝑖 , 𝐿 (𝑖) , has been computed, the average size of queue 𝑖 + 1 is
obtained by first evaluating the total number of jobs in the 𝑖 + 1

queues, 𝐿 (𝑖+1) , using the zero 𝑧𝑖+1 of the polynomial (9), with Λ2

replaced by Λ𝑖+1. Then

𝐿𝑖+1 = 𝐿 (𝑖+1) − 𝐿 (𝑖) . (11)
The average response time in queue 𝑖 + 1 is𝑊𝑖+1 = 𝐿𝑖+1/𝜆𝑖+1. This
process is valid as long as the corresponding queues are stable.

4.3 Low priority queues
We have assumed that queue𝑚 is stable, but queue𝑚 + 1 is not. In
other words, there is some service capacity left over after serving
the higher priority queues, but it is insufficient to cope with the
offered load of type𝑚 + 1. Hence, some lower priority jobs must be
dropped in order to prevent their numbers from growing without
bound. One possibility would be to devote all spare capacity to
queue𝑚 + 1, control its size by one of the two filtering mechanisms
suggested earlier, and drop all jobs of types 𝑚 + 2, 𝑚 + 3, . . ., 𝐾 .
Alternatively, queues𝑚 + 1,𝑚 + 2, . . ., 𝐾 could be lumped into a
single queue, ℓ , and apply one of the filtering mechanisms.

From the modelling point of view, the only difference between
the above two alternatives is that in the first case the arrival rate
into the lower priority queue is 𝜆𝑚+1, while in the second case it is
Λℓ = 𝜆𝑚+1+𝜆𝑚+2+𝜆𝐾 . We choose to analyse the second alternative
because it offers jobs of all lower priority types the possibility of
being consolidated.

To get a handle on the performance that the lower priority jobs
may expect, we have to make some approximations. The idea is
to model the jobs of type ℓ as being served one at a time, but
choosing their average service time appropriately, to reflect the
service capacity available to them.

Note that the instants at which batches of waiting jobs are re-
moved from the system, form a Poisson process. Therefore, by the
PASTA property, a batch about to be filled sees the steady-state
distribution of the system state. In particular, it sees the steady-
state distribution of the total number of higher priority jobs. The
probability, 𝑝𝑛 , that there is a total of 𝑛 jobs of types 1, 2, . . .,𝑚
present, is given by

𝑝𝑛 = (1 − 𝑧𝑚)𝑧𝑛𝑚 ; 𝑛 = 0, 1, . . . , (12)
where 𝑧𝑚 is the single zero in the interval (0,1) of the polynomial

𝑄𝑚 (𝑧) = Λ𝑚 (1 − 𝑧) − 𝜇𝑧 (1 − 𝑧𝐵) . (13)
This allows us to determine the average number, 𝑏, of spaces

available in the batch for lower priority jobs.

𝑏 =

𝐵−1∑
𝑛=0

(𝐵 − 𝑛)𝑝𝑛 . (14)

Hence, the average service rate available to jobs of type ℓ is 𝜇𝑏.
Our approximation consists in assuming that those jobs are served
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one at a time, and their service times are distributed exponentially
with mean 1/𝜈 = 1/(𝜇𝑏). The performance they observe depends
on the filtering mechanism employed.

4.3.1 Reneging. Queues with reneging have been studied quite
extensively. A survey of related literature can be found in Bocquet
[6]. In particular, the case of a single server with random reneg-
ing appears to have been solved first by Ancker and Gafarian [3].
However, the results that we have seen are not suitable for models
where the arrival and service parameters are large (see comment
below). We provide expressions that lead to numerically stable
computations.

Jobs of type ℓ arrive at rate Λℓ and queue in FIFO order. Services
are i.i.d. random variables distributed exponentially with mean 1/𝜈 .
While waiting, each job reneges at rate 𝛾 . Thus, queue ℓ evolves as
a Birth-and-Death process with birth rate Λℓ and death rate, when
there are 𝑛 jobs present, 𝜈 + 𝑛𝛾 . The steady-state probabilities, 𝜋𝑛 ,
satisfy the balance equations

Λℓ𝜋𝑛 = (𝜈 + (𝑛 + 1)𝛾)𝜋𝑛+1 ; 𝑛 = 0, 1, . . . . (15)
Let 𝑔(𝑧) be the generating function

𝑔(𝑧) =
∞∑
𝑛=0

𝜋𝑛𝑧
𝑛 . (16)

Multiplying equation (15) by 𝑧𝑛 and summing, we obtain

Λℓ𝑔(𝑧) =
𝜈

𝑧
[𝑔(𝑧) − 𝜋0] + 𝛾𝑔′(𝑧) , (17)

which can be rewritten as
𝑔′(𝑧) + [𝜂

𝑧
− 𝜎]𝑔(𝑧) = 𝜂

𝑧
𝜋0 , (18)

where 𝜂 = 𝜈/𝛾 and 𝜎 = Λℓ/𝛾 . This is an ordinary linear differential
equation of first order. Its general solution has the form

𝑔(𝑧) = 𝑧−𝜂𝑒𝜎𝑧
[
𝜋0𝜂

∫ 𝑧

0
𝑦𝜂−1𝑒−𝜎𝑦𝑑𝑦 +𝐶

]
, (19)

where 𝐶 is an arbitrary constant. In our case, we must have 𝐶 = 0,
in order that 𝑔(0) = 𝜋0.

The unknown probability 𝜋0 is determined from the normalizing
equation 𝑔(1) = 1. This yields

𝜋0 = 𝑒−𝜎
[
𝜂

∫ 1

0
𝑦𝜂−1𝑒−𝜎𝑦𝑑𝑦

]−1
. (20)

The integral in the right-hand side is related to the lower incomplete
gamma function. When 𝜎 and 𝜂 are large (e.g., in the thousands), a
straightforward evaluation of that integral can produce numerical
indeterminacies of the type 0 · ∞. A more stable computation is
achieved by rewriting Eq. (20) in a form that replacesmultiplications
by additions:

𝜋0 =

[
𝜂

∫ 1

0
𝑒 (𝜂−1) log(𝑦)+𝜎 (1−𝑦)𝑑𝑦

]−1
. (21)

The average number of type ℓ jobs in the queue, 𝐿ℓ , is given by
𝑔′(1) which, according to (18), is equal to

𝐿ℓ = 𝜎 − 𝜂 (1 − 𝜋0) . (22)
Now we wish to estimate the probability, 𝑞(𝐿), that a job of type

ℓ is consolidated before it reneges, given that there are 𝐿 jobs of
type ℓ ahead of it in the queue. In order to be consolidated, the

tagged job must survive (i.e., not renege) until the next service
epoch. Then, if not consolidated, it must survive until the following
service epoch, and so on, until eventually it is consolidated.

Since both the service and the reneging intervals are distributed
exponentially, with parameters 𝜇 and 𝛾 respectively, the probability
that the tagged job survives until the next service epoch is 𝜇/(𝜇+𝛾).
Given that it does survive, the average interval until that epoch is
distributed exponentially with mean 1/(𝜇 + 𝛾).

While the tagged job is waiting, the number of type ℓ jobs ahead
of it decreases, due to renegings. We shall treat that number as a
deterministic fluid whose rate of decrease is proportional to the
amount present. That is, if there are no services, at time 𝑡 after the
arrival of the tagged job, the number, 𝐿(𝑡) of type ℓ jobs ahead of it
is given by

𝐿(𝑡) = 𝐿𝑒−𝛾𝑡 . (23)
Consequently, at the next service epoch, the average number of

type ℓ jobs ahead of the tagged one would be

𝐿 =

∫ ∞

0
𝐿(𝑡) (𝜇 + 𝛾)𝑒−(𝜇+𝛾 )𝑡𝑑𝑡 = 𝐿(𝜇 + 𝛾)

𝜇 + 2𝛾
. (24)

Remember that in a service batch there are, on the average, 𝑏
spaces available to type ℓ jobs as given by Eq. (14). Consequently,
we shall assume that if 𝐿 < 𝑏, the tagged job only needs to survive
until the next service epoch in order to be consolidated:

𝑞(𝐿) = 𝜇

𝜇 + 𝛾 ; 𝐿 < 𝑏 . (25)

On the other hand, if 𝐿 ≥ 𝑏, after the next batch the tagged job
will face a situation where 𝐿 is reduced by 𝑏. Hence, we may write

𝑞(𝐿) = 𝜇

𝜇 + 𝛾 𝑞(𝐿 − 𝑏) ; 𝐿 ≥ 𝑏 . (26)

Expressions (24) – (26) allow us to compute the desired 𝑞(𝐿ℓ )
recursively. The average response time of successful jobs of type ℓ
is estimated by using Little’s theorem:

𝑊ℓ =
𝐿ℓ

Λℓ𝑞(𝐿ℓ )
. (27)

4.3.2 Bounded queue. Jobs of type ℓ arrive at rate Λℓ and join
the queue if there are fewer than 𝑁 jobs present. Services are i.i.d.
random variables distributed exponentially with mean 1/𝜈 . In other
words, queue ℓ behaves like an M/M/1/N queue. Its steady-state
distribution is given by

𝜋𝑛 =
(1 − 𝜌ℓ )𝜌𝑛ℓ
1 − 𝜌𝑁+1

ℓ

; 𝑛 = 0, 1, . . . , 𝑁 , (28)

where 𝜌ℓ = Λℓ/𝜈 is the offered load. That parameter would, in our
case, be larger than 1. If 𝜌ℓ = 1, then (28) becomes 𝜋𝑛 = 1/𝑁 .

The probability, 𝑞, that an incoming job joins the queue, and is
therefore consolidated, is given by

𝑞 = 1 −
(1 − 𝜌ℓ )𝜌𝑁ℓ
1 − 𝜌𝑁+1

ℓ

. (29)

The average number of type ℓ jobs present, 𝐿ℓ , is computed from

𝐿ℓ =

𝑁∑
𝑛=1

𝑛𝜋𝑛 . (30)
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Finally, the average response time,𝑊ℓ , of a type ℓ job that joins
the queue, can be approximated by Little’s theorem as:

𝑊ℓ =
𝐿ℓ

Λℓ𝑞
. (31)

It should be pointed out that when 𝜌ℓ > 1 and 𝑁 is large, say in
the hundreds of thousands, expressions (28) – (30) are difficult or
impossible to evaluate numerically. In such cases, a stable compu-
tation is achieved by setting 𝜋𝑁 = 1, evaluating 𝜋𝑖 = 𝜋𝑖+1/𝜌ℓ for
all 𝑖 , and normalizing.

5 VALIDATIONWITH BTC BLOCKCHAIN
The queueing model of Section 4 is an abstraction of the mining pro-
cess. Specifically, there are some aspects that have been abstracted
out as well as some approximations that have been introduced to
allow an efficient numerical tractability of its solution.

In this section, we study the accuracy of the model predictions
with respect to the data available in BTC blockchain.

5.1 Methodology
We collect all the transactions consolidated in blocks belonging to
a certain time interval. The time interval contains approximately
40 blocks: longer intervals have the problem of the inhomogeneity
of the arrival process whose intensity varies along the day while
shorter intervals contain too few data to have a robust estimate
of the consolidation time. For each transaction, we search the first
seen timestamp obtained by the nodes of blockchain.com and
bitaps.com and compute the expected consolidation time for each
class. The intensity of the arrival process is measured or obtained
from the historical data of the chain. To reduce the variance of the
consolidation times, we measure the number of blocks required for
the consolidation of a transaction, rather than the time delay. This
is done to remove the variance due to the exponential distribution
describing the inter-arrival times of new blocks, since we cannot
measure much more than 40 blocks while maintaining the same
conditions of the arrival intensity and fee distribution. All the times
that we show in the following sections are expressed in UTC. In
Bitcoin, fees are usually expressed in terms of Satoshi per Byte
(S/B), where 1 BTC corresponds to 108 Satoshi.

5.2 Sources of noise
The implementation of the mining process described in Section 3
introduces some noise in ourmeasurements. For example, we expect
that transaction with very high fees will always be consolidated
within one block, but we will see this is not true and the average is
slightly higher than 1. In what follows, we describe some behaviours
of the BTC network that explain why the measurements are not
exactly what we could expect.

• Transaction may arrive at the system immediately before the
block mining, thus the miners are unable to update the trans-
action list in the candidate block in time for its inclusion.
For example, transaction 𝑡4 is seen by bitaps node at 2020-
10-15 16:39:09 UTC and the successive block (height 652885)
is mined at 2020-10-15 16:39:10 but the transaction is not

4txid: ac64fb1d7b1ee7d82a1a6b3c9ae0fe8c088fb299b68066b82ce2fa5257a5a4f3

included. In our measurements, we observed that this hap-
pens when the block is mined within 30s from the arrival of
a high fee transaction. Moreover, recall that the peer-to-peer
network is designed in such a way that there is a propagation
delay of transactions. The pdf of the propagation delay is
shown in Figure 5 and we may see that most of the transac-
tions propagate in less than 5 seconds.

• Another source of noise is connected with different policies
applied by the miners. For example transaction 𝑡5 is con-
solidated after 12 blocks although is offering a very high
fee that should lead to the consolidation in 1 or at most 2
blocks. A possible explanation is connected to the fact that
the transaction is marked with version 2 while the current
official version for transactions is 1. Thus, some miners may
decide not to add it to their candidate blocks hence delay-
ing its consolidation. However, these cases are very few: we
found 3 cases of transactions offering more than 400 S/B
and marked with version 2 with delay higher than 2 blocks.

• We should consider the effects of the greedy miner attack
on the measurements on the chain. This kind of attack to
the blockchain does not affect the integrity of its content
but the way the fees are distributed among the peers. It
works as follows: when the greedy miner (typically a mining
pool) mines a block, it does not announce it to the network,
and keeps mining the successive block. When one of the
other honest miners announces a new block, the greedy
miner announces its own. The blockchain has a fork which
is solved when the next block will be appended to one of the
two chains. The implications of the greedy miner attack is
that, if this is successful, the node added by the greedy miner
does not contain the high fee transactions arriving during
the time interval between the mining of that block and the
mining of the honest miners’ block [11]. Moreover, internal
selfish behaviours in mining pools may have the same effects
[22]. These behaviours cause more forks to the blockchain
than those expected by the contemporaneity of the mining
announcements by two miners and as a consequence low
fee transactions are favoured more than expected.

• Sometimes, transactions with high fee per byte depend on
transactions with low fees per byte that have not been con-
solidated yet. Thus, miners are forced to include the low fee
transactions to gain the revenue of the high fee one.

5.3 Validation in heavy-load
In the first test, we monitored the system from October/15/2020
16:03:12 to October/15/2020 18:31:20 and measured an arrival inten-
sity of 4.3 jobs per second. We chose to divide the fees in 5 classes
according to Table 1. The maximum block size is set to 2, 800 trans-
actions. The load factor of the system in this experiment was 92%.

5.4 Validation in moderate-load
In the second test, we monitored the system from October/12/2020
07:44:22 to October/12/2020 12:12:49 and measured an arrival inten-
sity of 3.5 jobs per second. The classes are the same of Table 1 but
5txid: e4a3b02bff2479c1b18f4e97e52a224ddb00121e2006d7afb973936955c2f9a8
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Figure 5: Probability density function (pdf) of the transac-
tion propagation delay. Source: [19] for 2020-10-16.

Class Range [S/B] Dist. in high-load Dist. in moderate-load
1 [100,∞) 0.069 0.066
2 [60, 100) 0.235 0.216
3 [40, 60) 0.315 0.152
4 [20, 40) 0.184 0.096
5 [0, 20) 0.196 0.470

Table 1: Classes and frequencies for the heavy-load and
moderate-load test.

clearly the frequencies are different since users tend to offer higher
consolidation fees when the load factor is high. The maximum block
size is the same as before, 2, 800 transactions. The load factor of
the system in this experiment was 75%.

5.5 Discussion
The model and the simulation estimate the expected consolidation
time in an accurate way as shown by Figures 6a and 6b. We note
that both the model and the simulation underestimate the expected
consolidation time for high fee transactions. We believe this is
a consequence of the observations explained in Section 5.2; the
model and the simulation catch very well the fact that very low-fee
transactions tend to be delayed much more than the others. In other
words, especially in moderate-load, there is not much difference in
belonging to class 1, 2 or 3, 4 while class 5 shows a huge increase
of the expected consolidation time. In heavy-load, class 4 offers an
expected consolidation time which is approximately three times
that of the best class while lass 5 is highly slowed down.

In Figure 7, we show the consolidation time distribution obtained
with the stochastic simulation. It is instructive to see that higher
priority classes consolidation time have approximately the same
distribution in high and moderate-load, while lower priority ones
tend to be heavily tailed especially in high-load. These considera-
tions are useful if the application has service level agreements on
deadlines rather than on averages. Our analytical model does not
provide the distributions, but nevertheless the application should

be aware that with lower priority classes the distribution of the
consolidation time becomes heavy-tailed as well as with a higher
expectation.

6 EXPERIMENTS
In this section, we study the model under extreme scenarios.

In Section 6.1 we study the impact of the intensity of the arrival
rate on the expected consolidation times of the classes. However,
we should stress on the fact that the intensity of the arrival process
is correlated with the fees offered by the end users as discussed
in Section 5. However, the importance of this experiment relies
on the observations that we can draw on the behaviour of the
consolidation time for low priority classes.

In Section 6.2, we study blockchains that adopt reneging policies
based on timeouts. In this case, since the queueing model described
in Section 4 is solved by resorting to an approximate method, we
compare the predictions with the estimates obtained with simula-
tion.

Section 6.3 studies the system with transaction droppings caused
by the saturation of the MemPool.

Finally, Section 6.4 gives some details about the simulations
performed.

6.1 Impact of the arrival rate
In this experiment, we consider the distribution of the jobs seen for
the moderate-load validation (see Table 1) and vary the intensity
of the arrival process from 1 to 4.4 transactions/s. Notice that the
queue is stable if the total arrival rate is lower than

2800

600
≃ 4.66 transactions/s ,

Therefore, we are very close to the saturation of the queue. The
frequencies of the classes do not change. Since for this case the
model is exact, we do not compare the results with simulations. Fig-
ure 8a shows the expected consolidation time for the 4 classes with
highest priority, while Figure 8b shows the expected consolidation
time for the lowest priority class. Notice that the vertical axes of
the two plots have different scales. We may see that, as expected,
the increase of the workload has the most evident effects on the
lowest priority class. The first two classes are almost unaffected
by the heavy-load regime. This clearly explains why, in practice,
transaction fees increase during heavy loads, and the importance
of predicting the consolidation time in an automatic way. Figure 8
clearly shows the vertical asymptote associated with the saturation
of open queues.

6.2 Impact of reneging on the lowest priority
class with timeout

In this experiment, we consider the five classes of the moderate-load
case shown in Table 1 and imagine that there is a sixth class with
even lower priority. The arrival rate of each class from 1 to 5 is given
by the product of the moderate-load intensity (3.5 transactions per
second) and the frequency associated with that class. Class 6 arrival
rate ranges from 1.25 to 3 transaction per seconds. Notice that the
new class would make a queue without timeout grow indefinitely
since the arrival rate becomes higher than 4.66 transaction/s. Thus,
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(a) Validation in heavy-load: expected transaction consolidation
time in seconds.
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(b) Validation in moderate-load: expected transaction consolidation
time in seconds.

Figure 6: Validation of model and simulation with BTC blockchain

the reneging mechanism is required to maintain the MemPool with
a finite population with probability 1.

The timeout is exponentially distributed with mean 72 and 486

hours for the first (Figures 9a and 9b) and second (Figures 9c and
9d) test, respectively.

Figures 9a and 9c show the expected occupancy of the MemPool
limited to the jobs of class 6. Clearly, the analysis done in Section 5
is still valid here, and hence we focus only on the class with the
lowest priority. For what concerns the accuracy of the approximated
model analysis, we can see that it is in general very good with the
exception of the case in which the intensity of the arrivals is slightly
above the maximum system service capacity. Indeed, this is the case
in which the approximation of Section 4 is less accurate because of
the replacement of the batch service with single one.

We note that the increase of the occupancy (and hence of𝑊 ) is
apparently linear. This is not really surprising, although we had
not predicted it before performing the experiment. What seems to
be happening is that the usual non-linear increase in the queue size
is compensated by a non-linear increase in reneging. In retrospect,
perhaps we could have come to that conclusion, but even if we had
decided to postulate a linear relationship, an analysis would have
been necessary in order to determine its parameters.

A final, important, observation is that while the dropping proba-
bility is very similar for 72 and 48 hours of expected timeout, the
expected occupancy of the MemPool is lower in the latter case.
Thus, our experiments suggest that blockchains that use a timeout-
based dropping mechanism should carefully evaluate the trade-off
between miners’ resource usage and dropping probability. In this
scenario, 48 hours appear to be a better choice than 72 hours.

6See https://bitcoin.org/en/bitcoin-core/

6.3 Impact of reneging on the lowest priority
class with bounded queue

The last experiment considers the system with reneging based on
the finite capacity of the MemPool. We fix a capacity of 5 · 105
transactions for the lowest priority class. Arrival rate and class fre-
quencies are the same of those presented in Section 6.2. Figure 9e
and 9f show the expected buffer occupancy and the consolidation
probability for class 6 transactions, respectively. For what concerns
the accuracy of the model, we can see that the highest discrep-
ancy can be observed for the lowest arrival rate. Also in this case,
this happens because we approximate the batch service discipline
with a single job one to maintain the analytical tractability. The
figures show that, for higher loads, the buffer tends to be always
full while the consolidation probability is similar to that observed
in the experiments of Section 6.2. Thus, the finite buffer solution
offers approximately the same performance in terms of probability
of consolidation of the other solutions but its expected resource de-
mand is higher. The advantage is that the miner has pre-determined
and well-known resource demand, while with the timeout policy,
he has to face the variance of the MemPool occupancy.

6.4 Note on the simulation methodology
When necessary, we have resorted to discrete event simulators to
validate our analytical results. Since, the system we are studying
is heavily loaded in most of the cases, simulations require long
time to converge and may exhibit numerical problems. For these
reasons the simulations have been cross validated by two simulators,
where the first simulates the Markov process underlying the system
and the second the detailed customer behaviours. It is worth of
notice that to reach the stationary regimes and to have confidence
intervals of 95% within 5% of relative error in the estimates, we
had to simulate the arrival of over 2 · 108 transactions.
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(c) Simulated response time distribution for class 2.
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(d) Simulated response time distribution for class 3.
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(e) Simulated response time distribution for class 4.
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(f) Simulated response time distribution for class 5.

Figure 7: Distribution of the response time obtained with stochastic simulation in log-log scale. The parameters are shown in
Table 1. The scheduling discipline within a class if FIFO.
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Figure 8: Analysis of the expected consolidation time as function of the arrival intensity.

This emphasises the importance of the analytical model that
provides accurate estimates in several orders of magnitude shorter
times than the simulation.

7 CONCLUSION
In this paper, we have studied the relation between the arrival pro-
cess of transactions at a blockchain distributed ledger and their
expected consolidation delay. The consensus algorithm is the pop-
ular PoW. In our setting, transactions are grouped into classes that
are ordered according to the offered consolidation fees.

A priority queueing model and its numerical solution have been
proposed to evaluate the trade-off between the offered fees and the
expected consolidation time. With respect to the state of the art,
our approach does not require to run computationally expensive
simulations which we have observed to converge very slowly. The
efficiency of the solution method allows software systems that in-
teract with blockchains to online evaluate the cheapest transaction
fee that they have to offer to meet their non-functional service
requirements.

Another peculiarity of the model is that it takes into account
two strategies of transaction dropping in case the arrival intensity
exceeds the service capacity of the blockchain. The first is based
on timeouts and the latter on a finite capacity buffer.

Themodel has been validatedwithmeasurements on the blockchain
of Bitcoin and against several simulation experiments.

Future works include the analysis of the correlation between the
arrival intensity of the transactions and the offered fees, and the
study of optimality of the reneging policies.
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(a) Expected number of class 6 transactions in theMemPool. The
expected reneging time is 72 hours.
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(b) Consolidation probability for class 6 transactions. The ex-
pected reneging time is 72 hours.
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(c) Expected number of class 6 transactions in theMemPool. The
expected reneging time is 48 hours.
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(d) Consolidation probability for class 6 transactions. The ex-
pected reneging time is 48 hours.
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(e) Expected number of class 6 transactions in theMemPoolwith
buffer capacity for this class is 5 · 105.
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(f) Consolidation probability for class 6 transactions. The buffer
capacity for this class is 5 · 105.

Figure 9: Occupancy of the MemPool and probability of dropping in case of timeout and finite buffering.
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