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ABSTRACT
In the last years, performance modeling approaches have been pro-
posed to tackle new concepts for modern In-Memory Database Sys-
tems (IMDB). While these approaches model specific performance-
relevant aspects, workload representation during performance mod-
eling is considered only marginally. Furthermore, the manual inte-
gration of workload into modeling approaches comes along with
high effort and requires deep domain-specific knowledge.

This paper presents our experience in representing workload
within performancemodels for IMDB. In particular, we use aMarkov
chain-based approach to extract and reflect probabilistic user behav-
ior during performance modeling. An automatic model generation
process is integrated to simplify and reduce the effort for transfer-
ring workload characteristics from traces to performance models.

In an experimental series running analytical and transactional
workloads on an IMDB, we compare this approach with two other
methods which rely on less granular data to reflect database work-
load within performance models, namely reproducing the relative
invocation frequency of queries and using the same query execu-
tion probability. The results reveal a trade-off between accuracy and
speed when simulating database workload. Markov chains are the
most accurate independent from workload characteristics, but the
relative invocation frequency approach is appropriate for scenarios
where simulation speed is important.
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1 INTRODUCTION
Modeling performance on In-Memory Database Systems (IMDB)
has been a research topic for the last years. Models exist to evaluate
performance when scenarios can not be tested on real database
systems. While existing approaches mainly focus on reproducing
specific aspects (e.g., thread-level operations or memory consump-
tion), authors consider workload extraction and representation only
marginally in their modeling approaches. However, the validation
of modeling approaches requires numerous experiments changing
workload and parameterize. To support this, a key challenge is
to reproduce real user behavior sufficiently for varying workload.
This is especially true for modern IMDB where performance highly
depends on workload composition and intensity impacting the com-
petition for central processing unit (CPU) resources [16]. At the
same time, concepts for IMDB enable to runworkload with different
characteristics on the same database system [9, 15]. Challenges are
intensified by cloud services such as database-as-a-service (DAAS)
where database administrators have not insight into the overlying
application logic as driver of the workload [21]. However, the rep-
resentation of workload containing hundred or thousand database
requests requires deep domain knowledge and high effort due to
many manual activities during performance modeling.

In order to address these challenges, we use an automatic model
creation process in this paper to predict performance for database
workload on IMDB. It simplifies and reduces the effort for integrat-
ing database workload specifications into performance models. Fig-
ure 1 shows an overview of our approach. Modeling and simulating
performance on IMDB builds on our previous work [3]. Proprietary
database traces are translated to OPEN.xtrace [2, 14] to receive run
time data in a tool-independent format. The data in OPEN.xtrace
are used to generate architecture-level performance models based
on the Palladio Component Model (PCM). In this paper, we extend
the resulting resource-oriented models by automatically extracting
and transforming workload specifications during model generation.
In doing so, we use a Markov chain-based approach to extract and
reflect probabilistic user behavior. It builds on existing approaches
[22–25] for specifying and extracting workload for session-based
application systems. We adapt them in this work to be applicable
for database systems.
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Figure 1: Overview of the automatic performance model gen-
eration approach

In an experimental study using analytical and transactional work-
load on SAP HANA [19], we compare this approach with two other
methods which represent database workload at a lower level of
detail and therefore require less granular data from traces. The first
method reflects database workload by using the relative invocation
frequency of statements. The second method executes the queries
with the same probability. During evaluation, measurements and
simulation results are compared with respect to the accuracy for
predicting performance, namely throughput. Besides, we include an
analysis of the accuracy in reflecting the invocation frequencies of
statements and consider up scaling scenarios, as workload compo-
sition and intensity impact the overall performance on IMDB [16].
Furthermore, we look at the time needed to solve the generated
models.

The remainder of this paper is organized as follows. Section 2
describes related work. Our modeling and simulation approach is
outlined in Section 3. In Section 4, we evaluate the accuracy of the
different workload representation techniques. Finally, we conclude
our work and describe future work in Section 5.

2 RELATEDWORK
The related work in this paper can be separated into two groups.

The first group focuses on modeling workload using Markov
chains to represent real user behavior. For application systems,
several approaches specify user behavior in Markov chains while
adding probability and think times to represent user interactions.
First, Menascé et al. [10] present an approach extracting Customer
Behavior Model Graphs (CBMGs) from HTTP-logs. Ruffo et al. [17]
automatically create behavior models from log files captured for
a web application. These approaches do not reflect dependencies
between requests. To close this gap, extended finite state machines
(EFSMs) are used by Shams et al. [20] to describe a valid sequence of
user requests within a session. As part of the WESSBAS approach,
authors [23, 25] combine the concepts of CBMGs and EFSMs in a
single workload model to extract probabilistic user behavior from
session logs of an application system. The concept of Guards and
Actions (GaA) is used to ensure valid sequences of user requests.
The authors integrate Markov chains into performance modeling
in order to reproduce probabilistic user behavior during simulation
[25]. In particular, extracted workload specifications including the
behavior models specified as Markov chains are translated to PCM

in order to receive performance models representing workload
for application systems. In doing so, workload specifications are
extracted from session logs to reproduce real user workload. While
the authors concentrate on application systems, we extend their
original approach extracting workload specifications and creating
performance model for database systems in this paper.

For database systems, Sapia [18] uses Markov chains to reflect
query sequences in order to enhance predictive caching techniques
on analytical database systems. The work focuses on analytical
tasks based on multidimensional operations, why a high-level ab-
straction of queries is used considering dimensions, query measures
and result granularity. The author uses two different Markov mod-
els to forecasts future query processing. The first Markov model
(structural prediction model) reflects changes between dimensions
for subsequent queries of an analysis process. The second Markov
model (value based prediction model) represents navigation paths
within a dimension. In contrast to our modeling approach, this
work strongly focuses on analytical tasks performed on a multi-
dimensional cube schema, which limits it applicability for other
scenarios. Further, Tran et al. [21] present a general approach us-
ing Markov chains to model workload on database systems. The
approach extracts workload models from the workload capture
service Oracle Database Replay. The model reflects the main char-
acteristics of a workload, which allows database administrators and
application developers to analyze real database workload and iden-
tify frequent sequences. Both works do not consider integrating
workload behavior in performance modeling for database systems.

The second group concentrates on performance model genera-
tion for IMDB. In this group, Kraft et al. [8] use queuing network
models to predict performance (i.e., response time, throughput and
CPU utilization) on IMDB. The model reflects thread-level paral-
lelism caused by concurrent jobs processed during query execution.
The authors apply measured traces to receive think times, popu-
lation sizes and fork sizes for queries. The performance model is
used to evaluate different admission control strategies. In doing so,
the authors assign a subset of the 22 TPC benchmark H (TPC-H)
queries to three classes reflecting different utilization of parallel
database operators (i.e., low, medium and heavy). The execution
probability for the classes is defined manually in a probability vec-
tor. This approach is reused by Molka et al. [13] to model tenant
interference on IMDB. Another work is presented by Molka and
Casale [11] comparing simulation techniques with response sur-
face models to predict performance for multi-tenant scenarios on
IMDB. During evaluation, the authors again use the 22 analytical
queries of the TPC-H benchmark. Workload is reflected in the per-
formance model using a class-switching approach to reproduce the
recurrent submitting of a permuted sequence of all 22 query classes
of the TPC-H workload. The approach focuses on the reflection
of this repeating submission of the 22 queries. It excludes basic
concepts for transforming and integrating complex user behavior
of arbitrary workload. Molka and Casale [12] extend this perfor-
mance modeling approach to predict main memory consumption
on IMDB. For evaluation, the TPC-H workload is applied again.
For modeling the workload, a throughput formula is predefined
for each query. It is based on the number of concurrent users that
execute the query, response times and think times. Another work
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in this group is presented by Wust et al. [26]. They use a queu-
ing network model to reflect the impact of intra-query parallelism,
i.e., concurrent operations to boost query processing, on another
query’s run time. However, the applied performance model only
reflects the execution of two parallel queries.

3 MODELING APPROACH
The performance modeling approach in this work builds on our
previous work [3] for modeling and simulating the performance on
IMDB. We reuse concepts for modeling IMDB from this previous
work [3], but integrate approaches to extract and transform work-
load characteristics from workload traces. As the modeling process
is based on PCM for generating architecture-level performance
models, Section 3.1 outlines first the concepts of PCM. To make
this work self-contained, a brief overview of the model generation
process presented in our previous work [3] is given in Section 3.2.
We outline changes more in detail. Finally, Section 3.3 describes
the three approaches for representing database workload in perfor-
mance models used in this work.

3.1 The Palladio Component Model
PCM is a modeling language which supports to predict performance
(e.g., response time and throughput) in the domain of software sys-
tems [4]. The representation of a software system is divided into five
models. Interfaces and components are represented in the repos-
itory model. Relationships between components are reflected by
providing and requiring interfaces. For a provided relationship, the
component implements signatures of interfaces (i.e, operations).
Signatures are modeled as service effect specifications (SEFF) in
the repository model. It allows to specify resource demands and
external calls of other components’ operations. The system model
assembles the components. The resource environment model speci-
fies containers representing associated resources (i.e., hardware or
network). Assembled components are linked to resource containers
in the allocation model. The usage model allows to reflect user
behavior.

3.2 Modeling In-Memory Database Systems
In our previous work [3], we present a performance modeling
approach for IMDB consisting of three steps (fig. 1): (1) data collec-
tion, (2) data transformation and (3) model generation. We reuse
concepts of this approach for generating the system-specific parts
of the database system. First, the run time data needed to create
the performance models is collected during the execution of the
queries. Adapters are used to transform these proprietary traces
to OPEN.xtrace [2, 14] to receive run time data in a common rep-
resentation. While we use query execution plans to reflect the
internal query processing in our previous work, we only use query
response times in this paper to evaluate the workload representa-
tion approaches. In the model generation step, the run time data
represented in OPEN.xtrace is used to create the system-specific
performance models based on the PCM meta model.

The database system is represented in the repository model us-
ing a single basic component and the corresponding interface. An
operation is added to this database component for each distinct

statement extracted from the trace. As stated above, only a state-
ment’s response time is reflected in this work. Therefore, each SEFF
of a component’s operation begins with an StartAction. It is followed
by an InternalAction element containing a single delay resource
demand reflecting a statement’s response time. The delay’s value is
calculated using the mean response time for all executions of this
statement captured in the trace. Each SEFF ends with an StopAction.

The other PCM models are generated automatically. The system
model is created using the above described repository model. The
resource environment specifies the delay demand used in the SEFF.
The resource demands in the resource environment are mapped
within the allocation model to the system model.

3.3 Modeling Database Workload
This section presents the three approaches which are used in this pa-
per to extract and represent database workload during performance
modeling. Each method differs in the level of detail in reflecting the
real user behavior. Section 3.3.1 describes the Markov chain-based
approach to reproduce probabilistic user behavior. In Section 3.3.2,
the relative invocation frequency-based approach is presented. The
third technique is described in Section 3.3.3 executing statements
with the same probability.

3.3.1 Markov Chain-based Approach. The first approach is based
on Markov chains to reproduce probabilistic user behavior within
database workload. It builds on previous works [22–25] specify-
ing and extracting workload for session-based application systems
(WESSBAS). This workload modeling formalism defines several
components to reflect real workload for application systems [25].
The number of concurrent users is captured by the workload in-
tensity. The sequence of service invocations is specified as a two-
layered hierarchical finite state machine (FSM) in the application
model. It consists of a session and protocol layer [23]. Behavior
models are specified as Markov chains to provide a probabilistic
representation of invoked services and think times between ser-
vices. The domain specific language WESSBAS-DSL models these
workload specifications [25]. It is used in the approach of Vögele
et al. [25] to transform workload specifications of WESBASS to
PCM performance models. It is extended in this paper by trans-
forming it to the area of database systems. We exclude the concept
called GaA, which allows to reflect results-driven dependencies be-
tween requests, because the necessary information is not available
in database traces.

To support database systems, we extend the application model
of WESSBAS. The element SQLRequest is added to enable modeling
of database requests. In addition, the class SQLProtocolLayerEFSM-
Generator is integrated to generate Protocol Layer FSMs for such
database requests. As WESSBAS extracts workload specifications
from session logs captured on application systems, we need to trans-
late the OPEN.xtrace data to session logs to integrate our approach.
Further, WESSBAS uses clustering methods to create separate be-
havior models for each transaction identified in the session logs.
For database systems, we exclude clustering as database workload
can be represented in a single behavior model.

In the next step, behavior models of WESSBAS-DSL are trans-
ferred to performance models. Due to restrictions of the PCM’s sim-
ulation engine Simulation for Component-Based Systems (SimuCom)
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(a) Original Markov chain (b) Modified Markov chain

Figure 2: Modifications to behavior models

to solve performance models representing Markov chains with ac-
tivity cycles [1], the behavior models need to be adapted for data-
base workload. An exemplary Markov chain is shown in Figure
2a where an activity cycle exists. The cycle is created following
the backward transition from Markov state B to A. To enable the
simulation of such performance models as described in our previ-
ous paper [1], the original behavior model needs to be modified
(figure 2b). First, the Markov state with the highest probability for
being entered by the initial state $ is determined as unique starting
node of the behavior model, i.e., state A in our example. Next, an
artificial Markov state $’ is inserted into the behavior model. It is
linked to the final state $ of the model with a probability of 100
%. Afterwards, backward transitions to our newly defined unique
entering state (i.e., state A) are replaced by an edge to $’. When
we now enter the original start node (i.e., state B) of the backward
transition, we immediately leave the Markov chain following the
path from state $’ to $. Afterwards, it is instantly re-entered at the
original start node (e.g., state A) of our backward transition.

Next, the workload specifications (including the behavior mod-
els) are attached to the system-specific performance model (section
3.2). Again we reuse concepts of Vögele et al. [25], but adapt ele-
ments to support database workload. The authors utilize the PCM
repository model to reflect the Markov chains. This approach vi-
olates the separation of PCM models [4]. However, it is valid as
the PCM usage model does not support representing incoming and
outgoing edges [25]. For each behavior model, a basic component
with the corresponding interface is added to the repository model.
We add just one basic component to the repository model as we use
a single behavior model to reflect database workload. An operation
as SEFF is added to the component for each Markov state within
the behavior model. A probabilistic branch in each SEFF represents
transitions between Markov states. A branch incorporates three
elements. The transition’s think time is modeled as InternalAction
with a delay resource using the mean value. It is followed by an Ex-
ternalActionCall linked to the SEFF of the basic component (i.e., the
database system) in the system-specific performance model. This
integrates the workload representation into the system-specific
PCM models (Section 3.2). A second ExternalActionCall reflects the
transition to another Markov state. In the behavior model two artifi-
cial states tag the initial I and final state $ of the Markov chain. The
transition to the final state $ is reflected by another branch in the
SEFF. It contains a StartAction and StopAction. The initial state I is
represented as a separate operation INITIAL in the basic component
of the behavior model. It’s SEFF consists of an ExternalActionCall
linked to the start node of the Markov chain (i.e., Markov state A in
our example). A closed workload defined in the PCM usage model
calls the operator INITIAL. This initiates the workload execution.

Figure 3: Repository model containing components to repre-
sent the database system and behavior model

As stated above, repository models representing backward tran-
sitions in Markov chains can not be solved by PCM’s simulation
engine. Therefore, we modified the behavior model during work-
load extraction as described above. During performance model
creation, we also need to adapt the repository model as described
in our previous work [1]. An operation named ARTIFICIAL is added
to the behavior model’s basic component. It represents the artificial
state $’ in the behavior model. Additionally, ExternalActionCalls
reflecting the transition to another Markov state are surrounded
by ForkedBehaviors. This allows writing concurrent measurements
when running through an activity cycle during simulation. An ex-
emplary repository model is illustrated in figure 3. It results from
performing the described approach for the behavior model pre-
sented in figure 2b. Additionally, figure 4 shows the SEFF state_B
representing Markov state B.

3.3.2 Relative Frequency-based Approach. Our second approach
uses the relative invocation frequency of statements to reflect the
user behavior on IMDB. The invocation frequency is calculated
based on the query execution counts stored in OPEN.xtrace. The
workload is represented in the PCM usage model. It reflects a closed
workload without any think time. The workload’s population, i.e.,
the number of concurrent database users, is derived from the session
numbers extracted from OPEN.xtrace. The usage model contains
a single probabilistic branch with one transition for each distinct
statement. This enables selecting statements on a probabilistic basis,
e.g., StatementA is processed in 20 % of all cases, while StatementB
is called for 80 % of the cases. A statement’s invocation frequency
defines the probability for entering the corresponding transition
during simulation. The execution of a statement is reflected by an
EntryLevelSystemCall in the corresponding branch transition. A link
between the EntryLevelSystemCall element and the corresponding
query’s signature in the repository model connects the workload
representation with the system-specific parts of the performance
model (Section 3.2).

3.3.3 Equal Probability-based Approach. The third approach sim-
ply picks statements with the same probability from a predefined
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Figure 4: SEFF model representing Markov state B

query set. As with the relative frequency-based approach, the PCM
usage model reflects user behavior based on a closed-loop workload.
The population is derived from the OPEN.xtrace data based on the
number of different sessions. A single probabilistic branch is added
containing a transition for each distinct statement in the trace. In
contrast to the relative frequency-based technique, the probability
for entering a specific transition is the same. This approach reflects
an equal distribution of all statements. The execution of a statement
is represented by EntryLevelSystemCalls in the branch linked to the
statement’s SEFF in the system-specific PCM repository model.

4 EVALUATION
To evaluate the accuracy of the workload representation techniques,
we apply our performance model generation approach to the CH-
benCHmark [5]. In Section 4.1, the research questions and method-
ology is described. Section 4.2 presents the system under test (SUT).
Section 4.3 details the utilized database workload. Finally, we com-
pare measured to simulated results in Section 4.4.

4.1 Research Questions and Methodology
We address the following research questions during evaluation:

RQ1: How accurately do Markov chains predict work-
load performance on IMDB compared to the relative
frequency- and the equal probability-based approach?
Our first question aims at comparing the accuracy for pre-
dicting the performance on IMDB while varying the level of
detail when reproducing real user behavior. The accuracy

is evaluated using a performance-based metric, namely the
throughput.

RQ2: Does the prediction accuracy depend on workload
characteristics? Workload on database systems is tradition-
ally categorized as being analytical or transactional. Both
types differ in characteristics. For evaluating the accuracy
using different workload types, we analyze the simulated
throughput for analytical and transactional workload.

RQ3: How representative is workload simulated by the
Markov chain-based approach compared with the rela-
tive frequency- and equal probability-based method?
The composition of a workload impacts the performance
on IMDB [16]. In worst case scenarios, blocking situations
prevent queries from being executed in time. Therefore, the
simulated query mixture is analyzed using a session-based
metric, namely the invocation frequency of database requests.

RQ4: What is the impact of workload intensity on the
prediction accuracy? The parallel processing of database
requests influence the overall performance on IMDB [16].
Consequently, we include the evaluation of the prediction
accuracy for up scaling scenarios.

RQ5: What impact does the level of detail used in repre-
senting real user behavior has on the simulation dura-
tion? The fifth question aims at exposing time costs, which
result from using a higher level of detail when reproducing
real user behavior within database workload. For this pur-
pose, we look at the time needed to solve the performance
models for the different workload representation techniques.

During evaluation, we compare measurements on our test envi-
ronment with simulation results for using the different workload
representation approaches. Our evaluation consists of an experi-
ment series running the CH-benCHmark against SAP HANA. The
benchmark driver stores information about sessions, queries and re-
sponse times for each run. This allows modeling database workload
as it provides query response times incorporating the processing
time on the database and time for fetching the results. The CH-
benCHmark is parameterized using 150 warehouses, a warm-up
time of 5 minutes and a test phase of 10 minutes. We run the bench-
mark separately for analytical and transactional workload increas-
ing the number of users from 1 (single session) to 8 respectively 16.
We repeat the benchmark execution 5 times for each scenario. To
compare throughput for analytical and transactional workload, we
use the number of successfully completed queries per hour (Qph)
(equation 1).

𝑄𝑝ℎ =
Successfully CompletedQueries

Test Phase Duration (s) ∗ 3600 (1)

Our performance model generation approach is implemented
by a software prototype. It creates performance models based on
the collected data. Separate models are created for each workload
representation technique. The generated performance models are
automatically solved by the prototype applying PCM’s simulation
engine SimuCom. The simulation environment is based on hard-
ware containing an Intel Core i5-7300U CPU with 2.71 GHz and
8 GB random access memory (RAM). Model generation and simu-
lation are repeated 10 times for each measurement and workload
representation method.
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4.2 System Under Test
The SUT and the benchmark driver are deployed on separate virtual
machines. The corresponding hardware environment consists of an
IBM Power E870 server with four sockets and 40 physical CPU cores
at 4.19 GHz, eight-thread SMT mode (SMT-8) as well as 4 TB RAM
in total. For virtualization, the SUT and the benchmark driver are
deployed on logical partitions (LPAR). The SUT is equipped with
2 cores and 250 GB RAM. It runs a SAP HANA 2.0 with Support
Package Stack (SPS) 2 and a tenant database. The benchmark is
executed on a virtual machine with 1 core and 8 GB RAM.

4.3 Workload Description
We use the CH-benCHmark [5] to generate analytical and transac-
tional workload on SAP HANA. The benchmark consolidates the
two industry-standard TPC benchmark C (TPC-C) [7] and TPC-H
[6] and provides an unified data structure based on the TPC-C
entities and relationships. To generate analytical workload, the
benchmark executes adapted versions of the 22 read-only TPC-H
queries. Following the TPC specifications, each user runs a random
permutation of all 22 analytical queries against the database system.
The five TPC-C transactions New-Order, Payment, Order-Status,
Delivery and Stock-Level are used by the CH-benCHmark without
modifications [5]. The two transactions New-Order and Payment
are executed with a probability of 44 %. A relative frequency of
4 % is set for the other transactions. Each transaction executes a
subset of queries to perform specific tasks. In total, the transactional
workload consists of 41 queries performing read- or write-tasks.

For our experiments, we use the CH-benCHmark implementa-
tion provided by Psaroudakis et al. [16]. This C++ program uses an
ODBC interface to access the DBMS. It creates a data set, initializes
the database for a given number of warehouses and executes both
workloads. By using the CH-benCHmark the experiments become
reproducible. The original software implementation executes the
22 TPC-H queries in a sequential manner. To fit with the TPC-H
specification, we change this behavior using a random permutation
of all 22 statements for each user. Because we are interested in the
number of successfully executed queries and the query response
times, we modified the original implementation by writing this
information to the file system. The workload traces contain query
start and end time as well as the corresponding session.

4.4 Results
This section presents the results of our evaluation. In Section 4.4.1,
we investigate research question RQ1 and RQ2. Sections 4.4.2 deals
with RQ3. Section 4.4.3 answers RQ4 and Section 4.4.4 inquires
RQ5.

4.4.1 Performance Prediction Accuracy. First, we analyze the im-
pact of workload representation on the performance predicting ac-
curacy (RQ1). Furthermore, results for analytical and transactional
workload are compared (RQ2). The resulting relative prediction
errors are presented in figure 5. When simulating analytical work-
load, we obtain a median value of 8.41 % (mean: 11.23 %) for the
equal probability-based (EP) method, 12.57 % (mean: 10.04 %) for
the relative frequency-based (RF) method and 0.43 % (mean: 2.59 %)
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Figure 5: Relative prediction errors for throughput compar-
ing measurements and simulation results (single session sce-
nario)
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Figure 6: Throughput in measurements and simulation re-
sults (single session scenario)

for the Markov chain-based (MC) method. The simulation of trans-
actional scenarios results in prediction errors (median) of 30.02 %
(mean: 29.99 %) for EP, 9.58 % (mean: 9.97 %) for RF and 3.33 %
(mean: 3.80 %) for MC. As shown in figure 6, all representation tech-
niques overestimate analytical throughput. We observe the same
behavior for RF in transactional scenarios. In contrast, MC tends to
estimate throughput very similar to measurements. RP underesti-
mates throughput to a high degree. In conclusion, the simulation
results show that Markov chains reproduce user behavior most pre-
cisely for both workload types in single session scenarios. It returns
relative prediction errors below 4 %. Besides, all methods return
acceptable prediction errors below 13 % for simulating analytical
workload. Very large error rates can be observed for EP applied in
transactional scenarios.

4.4.2 Workload Representativeness. In this section, we investigate
research question RQ3 analyzing the simulated invocation fre-
quency of statements. Looking only at the findings for throughput
in section. 4.4.1, one may conclude that all approaches reproduce
analytical workload adequately. However, we notice evident differ-
ences in simulating the frequencies of statement executions (fig.
7a). Simulation results for MC are quite similar to measurements
and run almost in parallel. We observe a higher fluctuation for RF
and EP. A parallel trend is not obvious. For transactional workload
containing a higher number of requests, the fluctuation almost dis-
appears. As presented in figure 7b, results for transaction workload
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Figure 7: Measured and simulated query invocation frequen-
cies (single session scenario)
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Figure 8: Relative prediction errors simulating throughput
in up scaling scenarios (8 and 16 sessions)

appear almost congruent when using the methods MC and RF. As
we expected, using equal probability for executing the statements
results in the same invocation frequency for all queries. Therefore,
we conclude that Markov chains reflect the workload composition
most accurately for both workload types in single session scenar-
ios. In general, RF and MC show better results for transactional
workload.

4.4.3 Changing Workload Intensity. Next, we analyze the impact of
session concurrency on the prediction accuracy (RQ4). In particular,
we compare measurement to simulation results for running 8 and
16 users in parallel. The resulting prediction errors are presented
in figure 8. Simulating analytical throughput with 8 users (fig. 8a)
returns amedian value of 15.08 % (mean: 15.6 %) for EP, 8.13 % (mean:
11.46 %) for RF and 8.66 % (mean: 10.29 %) for MC. Increasing the
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Figure 9: Measured and simulated query invocation frequen-
cies (16 parallel sessions)

number of parallel sessions to 16 results in median error rates of 8.13
% (mean: 11.46 %) for EP, 15.1 % (mean: 15.6 %) for RF and 10.29 %
(16.0 %) for MC. For transactional scenarios with 8 users, we observe
error rates of 25.49 % (mean: 24.84 %) for EP, 9.02 % (mean: 10.25 %)
for RF and 1.89 % (mean: 7.89 %) for MC. Running 16 parallel users
provides prediction errors of 19.8 % (mean: 23.26 %) for EP, 8.42 %
(mean: 24.05 %) for RF and 4.49 % (mean: 16.38 %) for MC. Besides,
the results showmedian error rates between 8 % and 16 % for EP and
RF when changing the workload intensity in analytical scenarios.
It confirms our observations for single session scenarios in section
4.4.1. MC seems to loose accuracy when increasing the number
of parallel users and we receive higher error rates over 10 % for
16 sessions. For transactional workload, MC still outperforms the
other approaches (errors below 5 %). Nevertheless, RF also provides
acceptable accuracy for 8 and 16 sessions with error rates around 9
%. In contrast, EP returns less precise results starting at about 20 %.

When looking at the workload composition, we notice a bet-
ter accuracy for RF in up scaling scenarios. The fluctuation of the
data disappears and the invocation frequency is reflected quite
acceptable for both workload types (fig. 9). In contrast, EP moves to-
ward an equal distribution for all statements. There are no changes
in the prediction behavior for MC. Invocation frequencies in the
simulation results are still very similar to measurements.

The results allow the conclusion that MC simulates single and up
scaling scenarios very accurately independent from workload char-
acteristics. It reflects the workload composition most precisely. RF
also predicts transactional and analytical throughput acceptable re-
turning low prediction errors. The simulated workload composition
becomes more accurate for high load when using RF.

4.4.4 Simulation Duration. Finally, we analyze the impact of detail
level on simulation times (RQ5). Figure 10 shows the times needed
to solve the generated performance models depending on work-
load type and representation technique. For simulating analytical
workload, we observe comparable mean times of 9.36 seconds for
RF, 9.62 seconds for EP and 11.42 seconds for MC in single ses-
sion scenarios. We note similar ranges for up scaling scenarios.
Solving models which represent transactional workload come with
higher run times. This is due to different workload characteristics.
Analytical workload consists of long running requests in contrast
to mostly short running queries in transactional workload. This
results in higher number of query executions as shown in figures
7 and 9, which increases the effort for model simulation. Further
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Figure 10: Simulation duration depending on workload type
and representation approach

effort is created by a higher level of detail in reproducing real user
behavior. MC reflects probabilistic behavior within transactional
workload, which brings complexity into the corresponding models
resulting in longer run times. In contrast, models based on RF and
EP are solved faster for transactional workload. A growing number
of sessions reinforces this. At the same time, our results (sections
4.4.1, 4.4.2 and 4.4.3) reveal lower accuracy for EP and RF compared
to MC. Simply put, accuracy and simulation of higher load come at
the expense of speed. However, unlike EP, the results for simulating
throughput and workload composition are still in an acceptable
range when using RF. Therefore, we consider RF appropriate for
scenarios where simulation speed is important.

5 CONCLUSION AND FUTUREWORK
In this paper, we compare three approaches to represent database
workload during performance modeling for IMDB. In addition, we
propose an automatic performance model generation process for
extracting workload characteristics and creating performance mod-
els for these representation techniques. It simplifies and reduces the
effort creating component-based performance models for changing
workloads. The evaluation of the workload representation tech-
niques allows to understand what technique performs best for
specific tasks. The results show that Markov chains are a very ac-
curate technique to simulate analytical and transaction workload
on IMDB (prediction errors below 5 % for single session scenarios).
This makes Markov chains the best choice for areas where high
prediction accuracy is mandatory. However, solving the resulting
performance models can take a long time when high loads are to be
simulated. The approach based on the relative invocation frequency
of statements is an adequate alternative. It returns acceptable predic-
tion errors between 8 % and 16 % for both workload types on IMDB.
The generated models are solved faster which makes it the better
choice when speed is important, e.g., almost real time performance
prediction for IMDB.

Future work includes extensions to our performance model cre-
ation approach reflecting resource consumption, e.g., CPU. In addi-
tion, we plan to evaluate the representation techniques for other
workloads.
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