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ABSTRACT
Context: Software Performance Antipatterns (SPAs) research has

focused on algorithms for the characterization, detection, and so-

lution of antipatterns. However, existing algorithms are based on

the analysis of runtime behavior to detect trends on several moni-

tored variables (e.g., response time, CPU utilization, and number of

threads) using pre-defined thresholds.

Objective: In this paper, we introduce a new approach for SPA
characterization and detection designed to support continuous in-

tegration/delivery/deployment (CI/CDD) pipelines, with the goal

of addressing the lack of computationally efficient algorithms.

Method: Our approach includes SPA statistical characterization

using a multivariate analysis approach of load testing experimen-

tal results to identify the services that have the largest impact on

system scalability. More specifically, we introduce a layered decom-

position approach that implements statistical analysis based on

response time to characterize load testing experimental results. A

distance function is used to match experimental results to SPAs.
Results: We have instantiated the introduced methodology by

applying it to a large complex telecom system. We were able to

automatically identify the top five services that are scalability choke

points. In addition, we were able to automatically identify one SPA.
We have validated the engineering aspects of our methodology and

the expected benefits by means of a domain experts’ survey.

Conclusion:We contribute to the state-of-the-art by introducing a

novel approach to support computationally efficient SPA character-

ization and detection in large complex systems using performance

testing results. We have compared the computational efficiency of

the proposed approach with state-of-the-art heuristics. We have

found that the approach introduced in this paper grows linearly,

which is a significant improvement over existing techniques.
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1 INTRODUCTION
The performance assessment and improvement of large distributed

systems is challenging, because of the need to systematically assess

a complex dynamic ecosystem [1]. The identification of scalability

choke points is often expensive and it involves load testing and

complex analysis by performance experts.

The extensive body of knowledge has addressed several aspects

of Software Performance Antipatterns (SPAs), as for example SPA
classification and solution [2], early detection/solution at the de-

sign phase [3], methodologies to rank SPAs occurring in design

models [4], detection/solution during the testing or operational

phases [5], load testing and profiling to detect SPAs in Java applica-

tions [6], and an automated approach for detection in load testing

and production [7].

The state-of-the-art algorithms [3, 6–8] used to detect SPAs em-

ploy a search over the candidate SPAs and all the monitored per-

formance data. The existing approaches use searching for several

SPAs for each load test result. In addition, for every evaluated SPA, a
heuristic is executed to evaluate the load test data. Therefore, if there

are 𝑁 load tests, 𝑀 SPAs to be evaluated, and given a worst-case

heuristic cost of 𝐻𝑀 among the evaluated SPAs, the computational

complexity of the state-of-the-art algorithms is O(𝐻𝑀 · 𝑁 ). Even
though polynomial, the computational effort required for each load

test could be expensive. Therefore, the lack of computationally effi-

cient methods for SPA characterization limits the adoption of SPA
detection in continuous integration/delivery/deployment (CI/CDD)

pipelines of large and complex systems [9].
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In summary, the research gap addressed in this paper is the need

to integrate automated SPA characterization into CI/CDD pipelines.

These approaches need to be computationally efficient, because

CI/CDD pipelines are expected to be executed several times per

day. In addition, the automated characterization and detection of

SPAs need to provide useful support to software engineers working
on software refactoring in large complex systems.

To deal with this issue, we introduce a novel approach that

leverages on the Partial Order Scalogram Analysis by Coordinates

(POSAC) [10] approach to partition the SPA domain into regions,

using the structure induced by the measured variables. Then, we

use a multivariate coordinate system [11] for classification and

detection of SPAs. We characterize SPAs using queuing models that

were parameterized with measurements from a large telecommu-

nication system. In addition, we apply the response time based

scalability approach introduced in our previous work [9], to define

the multivariate coordinate system that is used for SPA character-

ization. Our approach reduces the state-of-the-art complexity to

linear time, i.e., O(Φ𝑛 · 𝑁 ), where Φ𝑛 is a value that represents the

length of the time series to be processed per load test, and 𝑁 is

the number of load levels to be evaluated per load test, which can

usually be bound by a small constant.

In this work, we consider the following SPAs: Application Hiccups
(i.e., repeated violations of the baseline response time requirement);

Continuous Violated Requirements (i.e., continuous violations of
the baseline response time requirement, for every evaluated load);

Traffic Jam (i.e., high variability in the externally observed system

response times); The Stifle (i.e., a software service or component

that issues many short database calls); Expensive Database Call (i.e.,
few long database calls); Empty Semi Trucks (i.e., a transaction that

issues many short messages); The Blob (i.e., a component or service

that acts as a central processor).

In this paper, we pose the following research questions to eval-

uate the feasibility and usefulness of the proposed approach in

CI/CDD pipelines:

RQ1: How to develop an approach to characterize and detect

SPAs that can be integrated into CI/CDD pipelines?

RQ2: What is the computational complexity of the proposed ap-

proach?

RQ3: What is the perceived usefulness of the developed approach?

Our approach has been empirically evaluated by means of an

industrial case study conducted at Ericsson. The case is a large real-

time telecommunication system that is expected to serve millions

of users per second.

The main contributions of this paper can be summarized as

follows:

• A new approach for the characterization of SPAs using mul-

tivariate coordinates.

• A computationally efficient SPA detection layered approach

that leverages on the multivariate characterization.

• An illustration of the proposed approach using performance

data from a large complex telecommunication system.

• A static validation based on expert opinion that quantifies

pros and cons of our approach, and highlights the actual

needs of developers.

The remainder of the paper is organized as follows: Section 2 pro-

vides relevant background and related literature. Section 3 presents

the research design and describes the telecommunication system

case study used to illustrate and evaluate our approach. Section 4

presents the detailed SPA characterization and the empirical results

of the application of the SPA detection approach to the telecommu-

nication system. Section 5 contains the evaluation of the proposed

approach, while Section 6 discusses threats to validity, followed by

Section 7, which presents our conclusions and challenges ahead.

2 BACKGROUND AND RELATEDWORK
In this section, we present relevant background and an overview

of the reviewed work, describing SPA detection at different stages

of the software development process.

2.1 Multivariate Classification Approaches
A partially ordered set (or simply poset) consists of a set along with a

binary relation indicating that, for certain pairs of elements, one of

the elements is greater than the other one in the ordering. Namely,

we say that two elements are numerically ordered, i.e., 𝑒1 > 𝑒2 if

each variable value in 𝑒1 is greater than the correspondent variable

value in 𝑒2.

A Hasse diagram [12] is a graph structure used to represent

a poset. A Hasse diagram represents a convenient visualization

method when the multiple values associated with the nodes in

the poset can be numerically ordered. In this paper, we use Hasse

diagrams based on two variable values that are numerically ordered

to prioritize the software components’ impact on the software

scalability of the system under study.

The theory of scalogram algebra and associated heuristics known

as Multiple Scaling by Partial Order Scalogram Analysis by Coordi-

nates (POSAC) was introduced in [10] to generalize the concept of

the one-dimension Gutman scale [13] to several dimensions. When

a one-dimension variable can be numerically ordered, it is called

a Guttman scale [13]. In this paper, we apply concepts derived

from the POSAC [10] methodology to partition the performance

antipattern domain into regions using the structure induced by the

measurement variables.

2.2 Literature Review
Logic-based Description of SPAs. Performance antipatterns have

been defined in the literature as bad practices leading to perfor-

mance flaws [2, 14]. The detection and solution of performance

antipatterns can be performed at different stages of the software

development process, and approaches can be reviewed accordingly.

In the case of early detection/solution, i.e., during the design

phase: (i) in [3] a first-order logic representation of performance an-

tipatterns is provided, specifically a set of rules express the system

properties under which antipatterns occur; (ii) in [4] a methodol-

ogy to rank performance antipatterns occurring in Palladio-based

design models [15] is proposed and applied to optimize (i.e., by

reducing the number of design alternatives to be analyzed) the

solution process.

In the case of late detection/solution, i.e., during the testing or

operational phases: (i) in [5] a performance antipatterns detection

approach is presented, more specifically a decision tree specifying
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the performance problems hierarchy is used to capture the root

causes of the identified performance problems; (ii) in [6] load testing

and profiling data is exploited to detect performance antipatterns

in Java applications, and an industrial case study demonstrates

the usefulness of detecting and solving antipatterns for system

performance improvement.

SPA Detection in Real-time Systems. In [9, 16] a methodology for the

quantitative assessment of micro-service architecture deployment

alternatives by automated performance testing was introduced.

The methodology was developed to be integrated with CI/CDD

pipelines, as it assesses scalability by incrementally incorporating

results from individual tests that are run for a fixed short time-frame,

as for example, 30 minutes.

In [7], response time requirements, measured response time,

CPU, network and database utilization were used to detect SPAs. A
set of algorithms was also introduced in [7] to detect SPAs by analyz-
ing the trends of the monitored performance signatures. In contrast,

in [3] a logic-based representation of SPAs is presented and a more

detailed set of performance signatures is used for monitoring. More-

over, the performance signatures being monitored are compared

with predefined thresholds. The set of performance signatures that

are proposed to be monitored in [3] extends the set proposed in [7]

and also includes the number of objects created/deleted, number of

connections, number of messages, and other related variables.

In [6, 8], the logic-based representation of performance antipat-

terns was applied to a large complex Java-based system. The ap-

proach presented in [3] was applied to the following SPAs: Exten-
sive Processing, Circuitous Treasure Hunt, and Wrong Cache. The
approach served as the basis for the implementation of a tool named

PADProf. The authors have concluded that the logic-based approach
was effective to automatically detect SPAs in the large complex sys-

tem studied. However, additional research and testing was required

to generalize the application to other systems.

In [17], the feasibility of injecting SPAs in a system under study

was evaluated. It provided an example of the implementation of

a proposed performance antipattern framework, where the Ramp
and the One Lane Bridge implementation were demonstrated. The

authors introduced an SPA injection framework that was designed

to inject problems related to response time and memory use.

Summary of Related Research. The vision of integrating automated

detection of SPAs into CI/CDD pipelines [9] poses several chal-

lenges, as CI/CDD pipelines might be executed several times a day,

for many components, and they have a specific performance budget

for completion time.

The state of the art on automated detection of SPAs [3, 6–8]
contains algorithms that analyze detailed monitoring data to detect

trends on several monitored variables (e.g., response time, CPU

utilization, number of threads) and using pre-defined thresholds.

The research gap addressed in this paper is the lack of a compu-

tationally efficient approach to integrate SPA characterization and

detection into CI/CDD pipelines. We address the aforementioned

research gap by introducing a new approach to characterize and

detect SPAs using multivariate analysis.

3 RESEARCH DESIGN
To address our research questions, we conducted an industrial case

study. In this section, we describe the case and the research design

of our investigation.

3.1 The Case and Unit of Analysis
The case and unit of analysis of our case study is a large and com-

plex real-time telecommunication system developed by Ericsson.

The system is composed by more than 20 subsystems, which are

developed using a Service-Oriented Architecture (SOA). The sys-

tem is developed by many distributed teams using agile software

development practices.

The system has hard performance requirements and is expected

to handle millions of users per second. Furthermore, the system

shows many performance indicators. Therefore, it is challenging

to monitor the system’s performance through a manual approach.

The scale of operation makes the system particularly interesting

for our investigation. Furthermore, it represents a relevant and

representative example of a performance-critical application.

The main hardware and software performance-critical compo-

nents of our target system are: network, network interface sub-

system, processor subsystem, and database. The system receives

requests from a network, which are received by a load balancer

and then forwarded to the two subsystems of interest. The net-

work interface subsystem provides services that are invoked by

the network. The processor subsystem processes requests that are

forwarded by the network interface subsystem.

3.2 Data Collection
We collected two types of data to answer our research questions:

• Performance data – Data associated with the performance

of the investigated system. This data was used to answer

RQ1 and RQ2.

• Questionnaire data – Data related to the perceived useful-

ness of our approach from the point of view of Ericsson

experts. This data was used to answer RQ3.

The performance data was the result from a 21-hour long load

testing session of the system investigated in this paper. During

the testing session, the load varied between 40% and 100% (where

100% represents a load of 16k transactions per second), in steps of

10%. Based on the operational data, the frequency of occurrence

of such workload intensity values is as follows: 40% = 0.24, 50% =

0.05, 60% = 0.14, 70% = 0.10, 80% = 0.14, 90% = 0.24, and 100% =

0.10. The data was collected in December 2019 during a load testing

session. It includes data associated with 12 services provided by the

case software system.

4 THE PROPOSED APPROACH
In this section, we describe our approach that addressesRQ1 (namely,

how to develop an approach to characterize and detect SPAs that
can be integrated into CI/CD pipelines?). Figure 1 shows a high-

level schema of the proposed approach for SPA characterization

and detection. The shaded boxes represent our contributions. The

major boxes are briefly described below.
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(1)
(2) (3) (4)

(5)

Figure 1: Proposed approach

(1) Extract operational data. This stepwas described in our previ-

ous research [9, 18]. It aims at creating a model of operational

usage based on the most-likely usage scenarios.

(2) What. Calculate pass/fail criteria based on automatically

computed baseline requirements from load test response

time measured under small workload.

(3) Where. Define a multivariate approach that can be used to

create a partially ordered set (poset) of the evaluated services.

Identify a set of services, in the poset, that have the largest

impact on system scalability.

(4) How. Match multivariate analysis results to performance

anti-patterns. Multivariate analysis is used to characterize

and detect SPAs.
(5) Model and Simulation. Conduct simulation activities to vali-

date modeling assumptions. This is left as future research.

Our approach uses a multi-layer decomposition approach based

on performance modeling and multivariate characterization of SPAs.
In doing so, it decouples the performance cost of SPA characteri-

zation, which can be done offline, from the cost of executing the

(SPA) detection procedure, which needs to be efficient enough to

be integrated into the CI/CDD pipelines. In particular, the cost of

SPA detection in our approach consists of the execution of the mul-

tivariate characterization of load test results; it is not a function of

the number of evaluated SPAs.
The induced partition of the studied domain creates a profile based

on the two-coordinate values: (1) slope of the fitted linear regression
line of the maximum response time measurement for each of the

evaluated loads in the y-axis vs. load level in the x-axis; and (2)

normalized distance between the maximum response time and the

baseline performance/scalability requirement.

Intuitively, the slope of the maximum response time regression

line is an indication of the performance degradation as a function

of the offered load. The normalized distance is an indication of

the system’s ability to meet the scalability requirements and is

related to the customer perception of system performance. In other

terms, we rely on the slope that aims to express the severity of the

performance degradation experienced when evaluating a specific

load. The normalized distance is instead meant to quantify how

much the performance indices deviate from the expectation that is

fixed through requirements, such as the system response time.

The normalized distance, 𝑛𝑑 , is evaluated through Equation 1,

where𝑀 is the measurement and 𝐵 the baseline.

𝑛𝑑 = 2 · 𝑀

𝑀 + 𝐵 (1)

The normalized distance is evaluated to 1when the measurement

is equal to the baseline, < 1 when the measurement is lower than

the baseline, and > 1 when the measurement is larger than the

baseline.

The remainder of this section is composed of four parts. Sec-

tion 4.1 presents the performance modeling approach used to char-

acterize SPAs. Section 4.2 describes the approach used for perfor-

mance modeling parameterization using measurements from the

case telecom software, as described in Section 3.1. Section 4.3 de-

scribes the application of the POSAC procedure to characterize

SPAs, to define a two-dimensional space to create a framework for

the system of observations, and to determine the empirical struc-

ture of the modeled universe. Finally, Section 4.4 illustrates the

approach using the data from the investigated system.

4.1 SPA Characterization
In this section, we describe how the single server 𝑀/𝐺/1 model,

and its analytical P-K (Pollaczek–Khinchine) [19] solution, can be

used to characterize the impact of SPAs on the system under study

performance, as defined by the average response time and variance.

In the single server 𝑀/𝐺/1 queueing model, 𝑀 represents the

Poisson process arrivals assumption and 𝐺 stands for general, i.e.,

any service time distribution of the single server [19].𝑀/𝐺/1 is the
appropriate model to represent SPAs, because the most common

impact of SPAs is to introduce single service bottlenecks [20].

Session 3: Modeling and Optimization  ICPE ’21, April 19–23, 2021, Virtual Event, France

64



Table 1: SPA modeling parametrization approach

SPA model service used calibration approach X X2

Application hiccups 𝑀/𝐺/1 with vac. control add vacation variability per control 5.01 88.1

Continuous violated req. 𝑀/𝐷/1 interrogation + 𝑐 add c=5 to baseline 26.95 0

Traffic jam 𝑀/𝐺/1 control double variability 5.01 177.6

The stifle 𝑀/𝐸𝑘/1 interrogation use 10 stages 99.5 1089.4

Expensive DB call 𝑀/𝐺/1 enquiry double 𝑋 7.2 327.6

Empty semi-trucks 𝑀/𝐸𝑘/1 control use 10 stages 50.1 276.1

The Blob 𝑀/𝐺/1 database management double 𝑋 6.6 71.98

The𝑀/𝐺/1 P-K (Pollaczek–Khinchine) formula [19] for average

waiting time in the system,𝑊 , and residence time, 𝑇 , as a function

of the first and second moments of the service time distribution

(average and variance), 𝑋 , and 𝑋 2
, and system arrival rate, 𝜆 is

given by [19]:

𝑊 =
𝜆𝑋 2

2(1 − 𝜆𝑋 )
(2)

and 𝑇 = 𝑋 +𝑊 .

We propose to use a model with Poisson Arrivals (𝑀) and general

service distributions (𝐺) for several reasons. First, it allows us to

model service variability by the parameterization of𝐺 , as shown in

Table 1. Second, the Poisson arrivals assumption has been shown to

be a reasonable approximation for the arrivals process, in several

domains [21], where the independence assumption for the user

arrival process can be modeled [19]. Finally, 𝑀/𝐺/1 is the most

general model for which we have a simple closed form analytical

solution for the average waiting time (W) [19].

In the following, we describe how the 𝑀/𝐺/1 model can be

used to characterize the performance of the SPAs considered in this

paper.

4.1.1 Application Hiccups. The Application Hiccups [7] is charac-
terized by repeated violations of the scalability requirement. These

violations may occur as a consequence of different events, such

as transitions from idle to busy state, processing of preemptive

tasks (e.g., garbage collection), or database backups. These tasks

might reduce available system capacity, therefore impacting system

performance. There are several approaches for modeling the appli-
cation hiccups, such as, 𝑀/𝐺/1 queues with vacations that occur

when the system transitions to the idle state, and using queues with

preemptive or non-preemptive priorities. In this section, we model

Application Hiccups by using the𝑀/𝐺/1 with vacations model, de-

scribed below. Using the same notation as in Equation (2), and using

as the first and second moments of the vacation time distribution,

𝑉 , and 𝑉 2
, the𝑀/𝐺/1 with vacations average waiting time in the

system is given by [19] and shown in Equation 3:

𝑊 =
𝜆𝑋 2

2(1 − 𝜆𝑋 )
+ 𝑉

2

2𝑉
(3)

4.1.2 Continuous Violated Requirements. The Continuous Violated
Requirements [7] is characterized by the continuous violations of

the scalability requirement, for every evaluated load. The approach

used in this section, for modeling the Continuous Violated Require-

ments is to use an𝑀/𝐷/1 queue, with an average service time larger

than the computed baseline requirement.𝐷 stands for deterministic

and represents a constant service time.

4.1.3 Traffic Jam. The Traffic Jam software antipattern represents

high variability in the externally observed system response times

that is caused by queuing at software resources. In this section, we

model the Traffic Jam SPA by using the 𝑀/𝐺/1 queuing system,

and modeling the increase in the system variability in the departure

process function 𝐺 .

4.1.4 The Stifle. The Stifle software antipattern [7] represents a

software component that issues many short database calls to imple-

ment a service. In this section, the Stifle SPA is modeled by using

the𝑀/𝐺/1 queueing system, where 𝐺 is modeled by an Erlangian

distribution with 𝑘 − 𝑠𝑡𝑎𝑔𝑒𝑠 [19], 𝑀/𝐸𝑘/1. Each of the 𝑘 states in

the Erlangian distribution is used to model the Stifle fan-out of one

call to 𝑘 serial database calls.

4.1.5 Expensive Database Call. The Expensive Database Call soft-
ware antipattern [7] represents few long database calls and can

be modeled by using an 𝑀/𝐺/1 queuing system with a long tail

distribution for service times.

4.1.6 Empty Semi Trucks. The Empty Semi Trucks software an-

tipattern [7] represents a transaction that issues many short mes-

sages in series to implement the transaction. Therefore, this an-

tipattern can be modeled similarly to the Stifle antipattern, by using
a 𝑀/𝐺/1 queueing system, where 𝐺 is modeled by an Erlangian

distribution with 𝑘 − 𝑠𝑡𝑎𝑔𝑒𝑠 [19],𝑀/𝐸𝑘/1.

4.1.7 The Blob. The Blob antipattern [7] represents a component

that manages most of the overall messages in the system. As a

consequence of being the focus of messages, message processing

performance degradation is observed. Therefore, the Blob software

antipattern can bemodeled similarly to the Expensive Database Call

software antipattern. In Section 4.2 we describe the approach that

was used for the parameterization of the SPA models just described,

by using measurements derived from the large telecom software,

as described in Section 3.1.

4.2 Analytical Model Parametrization
In this section, we present an illustration of one possible calibration
that was used for the parameterization of the SPAs performance

models.

The SPA model parametrization approach shown in Table 1

presents the model used, the service from the case software se-

lected for calibration, the calibration approach, and the first and

second moments selected to represent the SPA.
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Table 2: Partition induced by slope and normalized distance
by the SPAs, for the load 90%

normalized
distance slope

Application hiccups 1.74 130.42

Continuous Violated Requirements 1.08 0.00

Traffic Jam 1.72 260.84

The Stifle 1.60 80.54

Expensive Database Call 1.59 334.51

Empty Semi-trucks 1.47 40.55

The Blob 1.51 79.56

Figure 2: Partition induced by slope andnormalized distance
by the SPAs analyzed, for the different loads set to 40%, 50%,
60%, 70%, 80%, 90%

The results obtained for each SPA multivariate characteriza-

tion are presented in Table 2 and Figure 2. They show the two-

dimensional (𝑥,𝑦) coordinates, i.e., the normalized distance and

slope, for each of the evaluated SPAs. Table 2 shows the multivariate

pair for the 90% load experiment, while Figure 2 shows the multi-

variate pairs associated with the evaluated SPAs, for loads varying
from 40% to 90%.

It is worth considering the slope and normalized distance co-

ordinates for the analyzed SPA in Figure 3. The figure includes

some antipatterns that can be clearly identifed (e.g., expensive DB

calls), while other points appear to be quite close to each other in

the solution space (e.g., the Blob and the Stiffle). The strength of

the proposed approach is the computational efficiency of detecting

SPA using multivariate analysis. There is a need for extending our

approach by evaluating accuracy of detection and near neighbours

SPA detection. One option for further research is to consider SPA
detection probability.

4.3 SPA Detection
In [11], a step-by-step procedure is presented to illustrate the appli-

cation of Multiple Scaling by Partial Order Scalogram Analysis by

Coordinates (POSAC) in the behavioral sciences domain. POSAC

Continuous Violated
Requirements

Empty Semi-Trucks

The Blob

The Stiffle

Application
Hiccups

Traffic Jam

Expensive
DB Calls

Figure 3: Partition induced by slope andnormalized distance
by the SPAs analyzed, for loads = 90%

induces a partition of the studied space, because profiles are distin-

guished by high/low values of the 𝑥,𝑦 coordinates. In the applica-

tion of POSAC described in [22] the interpretation of the POSAC

coordinates represents the subjective concern in the target research

community. For example, in the assessment of quality of life, a

two-dimensional space representing intelligence and well-being

was used.

In this section, we present the application of POSAC to the SPA
detection domain. The 𝑥 coordinate, the normalized distance of

the performance requirement, represents the impact of response

time requirement violation to the user, or user well-being [22]. In

addition, the 𝑦 coordinate, the slope of the linear regression of

response time as load levels increase, represents the risk that the

user will be impacted by the response time degradation, or system

intelligence [22].

The notion of POSAC can be used to partition the SPA domain

by means of the following steps:

(1) Define a mapping sentence to create a framework for the

system of observations.

(2) Determine the empirical structure of the content universe.

(3) Execute the POSAC algorithm using the (𝑥,𝑦) coordinates
of the location of their profile in space.

(4) Interpret the POSAC coordinates to understand the induced

partition on the POSAC space.

To interpret the POSAC coordinates and to map the induced

partition on the POSAC domain from measurements of load testing

results to the associated SPAs, we define the multivariate mapping

using as (𝑥,𝑦) coordinates the normalized distance and slope of the

response time.

In the following, we instantiate the Antipattern Characterization
and Detection approach by outlining the specific methods proposed

for SPA characterization and detection in the context of our re-

search:
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Adjustment
Low Impact, Low Risk

Offline
High Impact, Low Risk

Status Update
High Impact, High  Risk

Resources Update
Low Impact, High  Risk

Status Updates

Figure 4: System services for load = 90%

(1) Define a scalability requirement baseline, as introduced in [9,

16] that is used to provide an automated scalability assess-

ment, i.e., the pass/fail criteria of load tests. Figure 4 illus-

trates the pass/fail assessment of the load tests analyzed in

the case study.

(2) Define a multivariate approach, based on the load test re-

sponse timemeasurements that can be used to create a partial

order of the evaluated services.

In this paper, we have used as the multivariate system of

coordinates: (1) the slope of the linear regression of response

Status-Updates Offline

Resources-Update DB-Data-Manage Recompose

Control Online

Enquiry Interrogation

Resources-Read

Internal-Communication

Adjustment
Low

High

Figure 5: Hasse Diagram using performance testing results
for a specific load, i.e., equal to 90%

Table 3: Multivariate data for each system service for a spe-
cific load equal to 90%

service normalized distance slope
Adjustment 0.38 -1.88

Enquiry 1.30 0.43

Interrogation 1.14 0.88

Resources Read 0.91 0.45

Resources Update 0.85 14.56

Status Updates 1.57 35.95

Control 1.30 0.90

DB Data Management 1.46 1.28

Internal Communication 0.82 0.13

Offline 1.73 0.01

Online 0.94 0.92

Recompose 1.22 1.35

times per load, 𝑠𝑙 , and, (2) the normalized distance, 𝑛𝑑 , be-

tween the measured response time and the defined baseline

requirement, as shown in Equation 1.

(3) Define a function 𝑓 (𝑠𝑙, 𝑛𝑑) to charaterize SPAs by using the

defined multivariate approach. An example of the multi-

variate characterization of the considered SPAs is shown in

Figure 3.

(4) Identify a set of services, 𝑠𝑖 (𝑠𝑙, 𝑛𝑑), in the poset, that have

the largest impact on system scalability. The set 𝑠𝑖 (𝑠𝑙, 𝑛𝑑)
can be found among the members of the top two rows in Fig-

ure 5. The detailed values used to create the Hasse diagram

are shown in Table 3. For instance, we can notice that the

Status Updates service shows the largest slope (i.e., 35.95),
indicating that it is the service experiencing the highest per-

formance degradation rate. The members of the example set,

𝑠𝑖 (𝑠𝑙, 𝑛𝑑), for the telecom application are: Status-updates,

Offline, Resources-update, DB-Data-Management, and, Re-

compose.

(5) Define a detection function:

𝐷 (𝑓 (𝑠𝑙, 𝑛𝑑), (𝑠𝑖 (𝑠𝑙, 𝑛𝑑))) (4)

to detect SPAs characterized by 𝑓 (𝑠𝑙, 𝑛𝑑) that occur in the

set 𝑠𝑖 (𝑠𝑙, 𝑛𝑑). An example of the evaluation of the detection

function, for the telecom example shown in Figure 6, is the

euclidean distance, where Status Updates is detected to be-

long to the Expensive Database Call SPA.
(6) SPA detection is implemented by evaluating the function 𝐷

in Equation 4.

4.4 Illustration of the Proposed Approach
We use the data obtained from the investigated system to illustrate

our approach. The computation of the pass/fail criteria

(performance/scalability requirement) uses the approach proposed

in [16], which calculates the pass/fail criteria as the

average + 3 · standard deviations of the no-load response time mea-

surement. Figure 4 shows a plot with slope (y axis) and normalized

distance (x axis) for the load = 90%.
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Figure 6: Partition induced by the normalized slope and nor-
malized distance coordinates, for a specific load, i.e., equal
to 90%

Using a risk assessment approach, we can observe that services

of the investigated system can be grouped into four risk partitions

(see Figure 7 for an example of risk assessment for the 90% load in

the case software):

(1) Low risk / Low Impact — Performance requirements met

and no scalability degradation detected. The services that lie

in the lower left quadrant have a slope less than 0.1 and a

normalized distance less than 1.

(2) High risk / Low Impact — Performance requirements met

and scalability degradation detected. The services that lie in

the upper left quadrant have a slope greater than 0.1 and a

normalized distance less than 1.

(3) High risk / High Impact — Performance requirements not

met and scalability degradation detected. The services that

lie in the upper right quadrant have a slope greater than 0.1

and normalized distance greater than 1.

(4) Low risk / High Impact — Performance requirements not

met and no scalability degradation detected. The services

that lie in the lower right quadrant have slope less than 0.1

and normalized distance greater than 1.

SPA detection — Figure 6 shows how the load testing induced

partition shown in Figure 7 can be overlayed over the partition

induced by the SPAs, as shown in Figure 3. SPA detection is im-

plemented by using slope normalization, and the definition of a

distance function between the load test (𝑥1, 𝑦1) coordinates, and
the SPA characterization (𝑥2, 𝑦2) coordinates.

5 EVALUATION
In this section, we present the adopted evaluation method and the

evaluation results.

5.1 Evaluation Method
We evaluated our approach using data from the system described

in Section 3.1. The evaluation has two parts:

(1) We have compared the computational efficiency of the pro-

posed approach with some of the algorithms presented in

[7] (RQ2). This step used the performance data.

Figure 7: Partition induced by slope andnormalized distance
on the investigated system services for load = 90%

(2) We have presented our approach to experts in Ericsson,

along with the results of employing it in the investigated

system to answer RQ3. Then, we asked the participants to

answer a questionnaire that aimed at identifying the use-

fulness of the proposed approach from the point of view of

potential users. This step used both the performance and the

questionnaire data.

Next we show more details about each of the evaluation steps.

Computational Efficiency. The analysis of algorithms approach (big-

O) used in this paper [23], estimates an upper bound on the required

number of computations that are executed by the evaluated algo-

rithm, when presented with a large enough number of data inputs.

The big-O methodology consists of expressing an upper bound on

the algorithm complexity growth function. More formally [24],

Definition of big-O: If 𝑎(𝑛) and 𝑏 (𝑛) are two positive valued

functions, we define that 𝑎(𝑛) = O(𝑏 (𝑛)), if there exists a constant,
𝐾 , which satisfies the condition 𝑎(𝑛) ≤ 𝐾𝑏 (𝑛) for all, but a finite
number of instances of n.

In Section 5.2.1, we present results of the application of the

big-O [23] methodology summarized above to compare the com-

putational efficiency of the proposed approach with some of the

algorithms presented in [7].

The notation used in the computation efficiency assessment is

presented in Table 4.

Perceived Usefulness —Questionnaire. We have developed a ques-

tionnaire to obtain the perceived usefulness of our approach from

the point of view of potential users. First, we conducted a work-

shop in June 2020 to present our approach and associated results

to experts in Ericsson. Thirty participants attended the workshop

(e.g., testers and developers). Second, we asked the participants to

answer a questionnaire and obtained answers from eight different

respondents. The questionnaire has 10 questions. Eight questions

are related to demographics and the opinion of the respondents

regarding performance antipattern detection and characterization

in general. We asked these questions to have a better understanding

of the respondents’ demographics and contexts. The remaining two

questions are about the usefulness of our approach.
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Table 4: Computation efficiency notation

Notation Meaning
𝑁 Number of load levels evaluated, one per load test

Φ𝑛 Length of response time series to be processed by SPA heuristics, per load test

𝜎𝑛 Length of sql response time series to be processed by SPA heuristics, per load test

𝛿𝑛 Length of messaging dataset to be processed by SPA heuristics, per load test

𝜏𝑛 Length of message tracing dataset to be processed by SPA heuristics, per load test

𝑀 number of SPA to be evaluated

O(𝑠) big-O upper bound on the algorithm complexity of function 𝑠

O(HM ) the upper bound on the algorithm complexity of the worst-case SPA heuristic

5.2 Evaluation Results
In this section, we present the results associated with the evaluation

of the proposed approach, where each evaluation is grouped by the

corresponding research question.

5.2.1 Computational Efficiency (RQ2). In this subsection, we com-

pare the computational efficiency of the algorithmic approach pre-

sented in previous work [7] with the computational efficiency of

the statistical approach introduced in this paper. This subsection ad-

dresses RQ2: What is the computational complexity of the proposed
approach?

The methodology for detection of SPAs is composed of two parts:

1) an offline training phase, and, 2) an online prediction phase.

In the analyzed literature, the training phase consists mostly of

threshold definitions for each of the analyzed SPAs [3, 6–8], and
the prediction phase employs specific algorithms defined for each

of the candidate SPAs. Therefore, the ultimate online detection of

the specified SPAs requires the execution of the specified prediction

algorithms to detect one or more SPA.
In the novel approach introduced in this paper, the training

phase consists of SPA parametrization using analytical modeling to

identify the partitions of the SPA domain that are induced by the

measurement variables. This training phase methodology is illus-

trated in Figure 3, where the partitions induced by the normalized

slope, and, the performance requirements normalized distance, for

load = 90% are shown. In the statistical approach, the online de-

tection methodology consists of mapping load test results into the

specified SPA partitions, as illustrated by the blue dots in Figure 6.

Algorithmic approach from previous research. The offline training of

the heuristics presented in [7] consists of determining the parame-

ters to be used in the SPA prediction heuristics, and is out of scope

of this section, because the focus of this analysis is on determining

the computational complexity of online prediction. The state of the

art approaches presented in [7] execute heuristics to detect SPAs,
for each load test result. Therefore, if there are 𝑁 load tests,𝑀 SPAs
to be evaluated, and given that the computational complexity of

the worst-case heuristic is defined as O(𝐻𝑀 ), the computational

complexity of the state of the art algorithms is O(𝐻𝑀 · 𝑁 ). In this

section we present a summary of the results obtained from the

analysis of the heuristics presented in [7].

Online prediction. We illustrate the approach for the compu-

tational complexity evaluation of the online prediction heuristics

presented in [7], by using as example, the application hiccups and

Table 5: SPAHeuristics Computational Complexity [7] sum-
mary

SPA Heuristic O Justification
Application hiccups Φ2

𝑛 two nested loops

Continuous violated req. Φ2

𝑛 two nested loops

Traffic jam Φ2

𝑛 outer loop on response

time series and inner

loop for linear regres-

sion

The stifle 𝜎𝑛 · Φ𝑛 two nested loops on re-

sponse time and SQL re-

sponse time series

Expensive DB call 𝜎𝑛 · Φ𝑛 two nested loops on re-

sponse time and SQL re-

sponse time series

Empty semi-trucks 𝜏𝑛 loop onmessage tracing

dataset

The blob 𝛿𝑛 loop on messaging

dataset

continuous violated requirement SPAs. These SPA prediction heuris-

tics are organized as two nested loops. Therefore, the computational

complexity of these two anti-patterns is estimated as O(Φ2

𝑛). The
outer loop scans the response time series of length Φ𝑛 , ordered
by timestamp, and passes a starting pointer to the inner loops to

execute a linear search on the series, and perform calculations to

detect SPAs. We present in Table 5 the justifications for the esti-

mated worst-case computational complexity for each of the SPA
prediction heuristics introduced in [7]. Adding all the computa-

tional complexities in Table 5, we get:

3Φ2

𝑛 + 2𝜎𝑛 · Φ𝑛 + 𝜏𝑛 + 𝛿𝑛 (5)

Therefore, we have found that

O(HM ) = Φ2

𝑛 + 𝜎𝑛 · Φ𝑛 + 𝜏𝑛 + 𝛿𝑛 (6)

Statistical approach introduced in this paper. In this section, we

evaluate the computational complexity of SPA detection for the

approach introduced in this paper.

Offline training. The number of SPAs to be evaluated in offline

training is𝑀 . The approach introduced in this paper calls for ana-

lytical modeling, parametrization, and solution of the𝑀 SPAs for 𝑁
load levels. Therefore, the computational complexity of the offline

Session 3: Modeling and Optimization  ICPE ’21, April 19–23, 2021, Virtual Event, France

69



training approach introduced in this paper, can be computed using

the following steps:

(1) Parametrization and solution of Equation 3, for each SPA

and each evaluated load level. Therefore, the computational

complexity of this step is O(𝑀 · 𝑁 ).
(2) Computation of normalized distance, for each SPA, for the

evaluated load level. For example, in Figure 6, we used the

load level of 90%. Therefore, the computational complexity

of this step is O(𝑀).
(3) The computational complexity of linear regression of one

variable, slope in this case, is linear O(𝑁 ) [25]. Therefore,
the computational complexity of obtaining the slope of the

response vs. load curve using linear regression, for each SPA
is O(𝑀 · 𝑁 ).

In summary, the computational complexity of the offline training

approach introduced in this paper, can be computed as O(𝑀 · 𝑁 ),
which is O(𝐾𝑀) = O(𝑀), because, for SPA detection, we can

assume 𝑁 is O(𝐾), where 𝐾 is a small constant. The number of

SPAs to be evaluated is likely to grow, but the number of load levels

evaluated is usually a number less than 10.

Online prediction. The computational complexity of the on-

line training approach introduced in this paper, can be computed

as O(Φ𝑛 · 𝑁 ), using the following steps:

(1) Compute the normalized distance for the evaluated load

level. Therefore, the computational complexity of this step

is O(Φ𝑛 · 𝑁 ).
(2) Compute the slope of the response time vs. load level plot

using linear regression of the load testing results. Similarly

to the offline computation, the computational complexity of

linear regression of one variable, slope in this case, is linear

O(Φ𝑛 · 𝑁 ).
As a result of these steps, load test results can be mapped into the

specified SPA partitions, as illustrated by the blue dots in Figure 6.

5.2.2 Perceived Usefulness (RQ3). This subsection addresses RQ3:
What is the perceived usefulness of the developed approach?

The results associated with the demographics/context questions

are presented next. Figure 8 shows that the majority (38%) of the

questionnaire respondents are testers.

Figure 9 shows that the majority of the respondents (63%) has

more than 10 years of IT experience, while Figure 10 shows that

most of themhave between one to five years of experience regarding

software performance testing.

Most of the respondents answered that they manually set the

pass/fail criteria used in their performance testing efforts (63%,

Figure 11), while there is an almost equal number of respondents

that believe that the raw log (37%) and the service (38%) levels are

the minimum required granularity level to identify performance

problems and enable reengineering activities (Figure 12).

The perceived usefulness questionnaire results are presented in

Table 6. We have also asked about the main challenges faced by the

respondents when carrying out performance testing. Table 7 shows

that the main challenges faced by the majority of the respondents

are Analyzing the Performance Test Outcomes (16%), Defining a

Testing Strategy (15%), and End of Project Life cycle (15%).

Figure 8: Role of the respondents

Figure 9: Years of experience of the respondents in IT

Figure 10: Years of experience of the respondents in perfor-
mance testing

Figure 11: How the respondents set pass/fail criteria
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Table 6: Perceived Usefulness

Strongly Agree Agree Neutral Disagree Strongly Disagree
Reduce performance testing cost 25% 62% 0 13% 0

Reduce deployment cost 38% 37% 13% 12% 0

Reduce time to deploy 38% 37% 25% 0 0

Increase software quality 75% 12% 0 13% 0

Increase software power consumption efficiency 13% 62% 25% 0 0

Increase software reliability 63% 25% 0 12% 0

Figure 12: The minimum required granularity level for soft-
ware performance problemdetection to improve reengineer-
ing activities

Table 7: The biggest challenges faced by the respondents re-
garding software performance testing

Challenge Percentage
Analyzing the Performance Test Outcomes 16%

Defining a Testing Strategy 15%

End of Project Life cycle (Testing is done at the end, when it’s late) 15%

Lack of Available Human Resources 9%

Lack of Domain Competence 9%

Lack of Recognition of the value of performance testing 9%

Limited Time and Budget 6%

Model Scenario and Assertions 6%

System Complexity 6%

Test Coverage 6%

To do performance testing on a system that are in functional development 3%

Table 8: Impact of the investigated SPAs

Small Moderate Large Don’t know
The Blob 0 75% 0 25%

Empty Semi-Trucks 0 38% 12% 50%

Expensive DB Calls 0 0 75% 25%

The Stifle 0 25% 50% 25%

Traffic Jam 0 0 75% 25%

Consistent Violated Requirements 0 13% 50% 37%

Application Hiccups 0 25% 50% 25%

Finally, Table 8 shows the opinion of the respondents on the

investigated performance antipatterns. The antipatterns that were

considered by the majority of the respondents (75%) as having a

large impact are Traffic Jam and Expensive DB Calls. These results

are summarized in our conclusions, see Section 7.

6 THREATS TO VALIDITY
In this section, we discuss the threats to the validity of our inves-

tigation using the categories reliability, internal, construct, and

external validity described by Runeson and Höst [26].

We mitigated reliability threats by involving several researchers

in the design and execution of our investigation. Moreover, our

results were verified with the help of Ericsson experts to avoid

false interpretations. However, the approach we used to assess the

usefulness of our approach was highly dependent on the question-

naire respondents, i.e., it might be difficult to obtain the same values

with other respondents.

Regarding internal validity, the performance of the investigated

system may be impacted by factors that were not present in the

performance data used to illustrate our approach and to conduct

part of the evaluation. This is a limitation that might have affected

the related evaluation steps. We plan to mitigate this threat by

applying the methodology to additional projects and by creating a

PCM-based simulation model.

Regarding the questionnaire-based evaluation, the main internal

validity threats is respondent bias. Tomitigate this threat, we invited

people with different roles in Ericsson (data triangulation).

The main threat to construct validity is that we used only one

method to measure a construct. To mitigate this threat in the case

study, we collected data from different sources to evaluate our

approach (data triangulation).

Regarding external validity, although our method was developed

using an analytical approach and is expected to be quite generic,

the evaluation used data from just one system from one company.

Furthermore, only experts from Ericsson were asked to give their

opinion about the usefulness of our approach. As a consequence,

the evaluation results are strongly bound by the context of our

investigation. In addition, the investigated case involved only one

product in one company. To mitigate this threat, we made an at-

tempt to describe the context of our study in as much detail as

possible. This makes it easier to relate the present case to similar

cases, facilitating the use of our approach in other contexts.

7 CONCLUSION AND FUTUREWORK
In this paper, we have introduced a new approach for the character-

ization and the detection of SPAs that was designed to be integrated
into CI/CDD pipelines, since its implementation is computationally

efficient.

We have compared the computational efficiency of the proposed

approach with state-of-the-art heuristics, and we have found that

the approach introduced in this paper grows linearly as O(Φ𝑛),
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while the computational complexity of the state-of-the-art heuris-

tics grows as O(Φ2

𝑛). Moreover, because the methodology charac-

terizes each SPA using a multivariate approach that is based on

the response time measurement, it can be efficiently implemented

and deployed in industry, as response time measurements are nor-

mally logged in load testing experiments. In contrast, existing SPA
approaches may require additional datasets for SPA analysis that

might not be readily available. The approach has been successfully

applied to a large and complex project at Ericsson.

The introduced approach can be applied to continuous devel-

opment ecosystems that collect response time measurements logs,

and are required to meet performance and scalability requirements.

The application domains of interest are related to critical infras-

tructures [27], such as telecommunication and banking.

We have performed an analysis of the perceived usefulness of

the proposed approach using a questionnaire that was responded

by practitioners with significant development experience. Most of

the responses are in the agree and strong-agree columns. In fact, the

questions related to increase software quality, reduce performance

testing cost, and increase software reliability, received an over 87%

cumulative score of agree and strongly agree.

We are currently planning to extend this research in several

ways. Our research agenda includes the following points:

• Accuracy analysis – We plan to assess accuracy by applying

the approach to additional projects at Ericsson to obtain

additional feedback from experienced software engineers.

Specifically, we would like to investigate the sensitivity of

the methodology to different approaches to further assess

SPA model calibration.

• Integration – We plan to integrate the introduced approach

for automated SPA detection into automated performance

testing and analysis tools [9].

• Modeling and Simulation – We plan to validate the assump-

tions used in the SPA modeling presented in Section 4.1 by

model-based simulation of the system’s performance prop-

erties. Specifically, we plan to use Palladio [15] to model

the case study presented in this paper and to assess the per-

formance impact of SPAs. The Palladio Component Model

(PCM) is a domain-specific language targeted at specifying

and documenting software architectural knowledge. Further-

more, the simulation-based approach allows us to validate

recall and precision of our approach by injecting arbitrary

anti-patterns in the simulated models.

We expect the new methodology introduced in this paper to

trigger research and development on new methods and tools to

automatically characterize SPAs using the introduced multivariate

characterization approach.
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