Session 1: Testing, Measurement and Profiling

ICPE 21, April 19-23, 2021, Virtual Event, France

Multivariate Time Series Synthesis Using Generative Adversarial

Networks
Mark Leznik Patrick Michalsky Peter Willis
Institute of Information Resource Institute of Information Resource BT Applied Research
Management Management Ipswich, UK
Ulm University Ulm University, Germany peter.j.willis@bt.com

mark.leznik@uni-ulm.de

patrick.michalsky@uni-ulm.de

Benjamin Schanzel Per-Olov Ostberg Jorg Domaschka
Institute of Information Resource Department of Computing Science Institute of Information Resource
Management Umeé University, Sweden Management

Ulm University p-o@cs.umu.se Ulm University, Germany

benjamin.schanzel@uni-ulm.de

joerg.domaschka@uni-ulm.de

o

v

W o -

e

Figure 1: From left to right, top to bottom, the training process of our GAN network is depicted. The generated data is plotted
as a density chart throughout the training process, showing how the network learns to reflect the fidelity of the original data.

ABSTRACT

Collection and analysis of distributed (cloud) computing workloads
allows for a deeper understanding of user and system behavior
and is necessary for efficient operation of infrastructures and ap-
plications. The availability of such workload data is however often
limited as most cloud infrastructures are commercially operated
and monitoring data is considered proprietary or falls under GPDR
regulations. This work investigates the generation of synthetic
workloads using Generative Adversarial Networks and addresses
a current need for more data and better tools for workload gener-
ation. Resource utilization measurements such as the utilization
rates of Content Delivery Network (CDN) caches are generated and
a comparative evaluation pipeline using descriptive statistics and
time-series analysis is developed to assess the statistical similarity
of generated and measured workloads. We use CDN data open
sourced by us in a data generation pipeline as well as back-end ISP

@00

This work is licensed under a Creative Commons Attribution-NonCommercial
International 4.0 License.

ICPE ’21, April 19-23, 2021, Virtual Event, France.
ACM ISBN 978-1-4503-8194-9/21/04.
https://doi.org/10.1145/3427921.3450257

43

workload data to demonstrate the multivariate synthesis capabil-
ity of our approach. The work contributes a generation method
for multivariate time series workload generation that can provide
arbitrary amounts of statistically similar data sets based on small
subsets of real data. The presented technique shows promising re-
sults, in particular for heterogeneous workloads not too irregular
in temporal behavior.

CCS CONCEPTS

« Computing methodologies — Neural networks; Modeling
methodologies; « Information systems — Traffic analysis; «
Networks — Network measurement; Network simulations; « Se-
curity and privacy — Privacy protections.

KEYWORDS

time series synthesis; workload generation; server workload; syn-
thetic data; generative adversarial networks

ACM Reference Format:

Mark Leznik, Patrick Michalsky, Peter Willis, Benjamin Schanzel, Per-
Olov Ostberg, and Jérg Domaschka. 2021. Multivariate Time Series Syn-
thesis Using Generative Adversarial Networks. In Proceedings of the 2021
ACMY/SPEC International Conference on Performance Engineering (ICPE °21),
April 19-23, 2021, Virtual Event, France. ACM, New York, NY, USA, 8 pages.
https://doi.org/10.1145/3427921.3450257

https://doi.org/10.1145/3427921.3450257
https://doi.org/10.1145/3427921.3450257
https://creativecommons.org/licenses/by-nc/4.0/

Session 1: Testing, Measurement and Profiling

1 INTRODUCTION

The rise of automated infrastructure monitoring solutions and sys-
tem surveillance tools, as well as the boom of the Internet of Things
(IoT) technologies have provide vast amounts of data over the last
decade. Nevertheless, for development, evaluation and profiling
purposes, researchers still rely on artificial data [16]. In the research
field around cloud and edge computing, monitoring data for vir-
tual and physical infrastructures is crucial for load balancing, load
prediction and smart provisioning algorithms [28].

However, while some public data sets have been contributed and
enable research around this area [7] !, the vast majority of all data
produced in these environments (i.e. by commercial cloud service
providers) are generally regarded confidential for reasons of either
protecting proprietary intellectual property or compliance with
data regulations such as the General Data Protection Regulation
(GDPR).

Synthetically generated data offers the ability to supplement or
generate missing data. For these reasons, algorithm evaluations and
analysis often rely on artificial data to test systems in the scale and
scenarios intended.

For example, imputation, the replacement of missing values in
observations, relies on generating substitution measurements, ide-
ally while retaining the original characteristics of the data at hand.

Additionally, what-if analysis of systems, offering a larger amount
of measurements than are available can be performed. Simply put,
the question of how a workload would look with double the amount
of users or machines can be answered by artificially generated data.

Equally important, researchers working in the field of cloud and
telecommunication rely on real or realistic data, which, as men-
tioned above is very scarce due to regulations and corporate secrecy.
None of these challenges and issues regarding data availability in
the cloud computing context in regards to data center design, multi-
tenancy configurations and resource provisioning are new, as can
be seen by work stemming back to 2011 [35]. While the cloud and
resource sharing paradigm currently makes up a multi-billion dol-
lar industry [21], the open source data problem in it is yet to be
addressed properly.

In this work, we propose an approach for generating arbitrary
amounts of multivariate time series workload data using a Gener-
ative Adversarial Network (GAN). We demonstrate our solution
on real world production data of content delivery network (CDN)
workloads and corresponding back-end traffic utilization. We fur-
ther evaluate our approach using statistical parameters and time
series analysis comparison of the original and generated data.

The workload definition should be briefly discussed here. In our
case, we consider the workload arisen on a particular system from
an applied workload to it by e.g., a user. Hence, if not specifically
stated otherwise, the further use of the workload term refers to
workload arisen in a given system.

Our main contributions lie in: (i) providing an approach for
synthesizing arbitrary amounts of multivariate time series data; (ii)
open sourcing a large amount of previously unavailable CDN data
from a production environment; (iii) providing the comparative
means for assessing similarity between multivariate time series

http://ai.googleblog.com/2011/11/more-google- cluster-data.html

44

ICPE 21, April 19-23, 2021, Virtual Event, France

data; (iv) an exemplary scenario of synthetic data use for time
series prediction.

The remainder of this work is structured as follows: Section 2
provides an overview of research related to the subject, Section 3
introduces our approach. Section 4 depicts the descriptive statistics
and time series analysis applied to the data for a ground-truth to
synthetic data comparison. Section 5 presents and discusses our
results, showing how the generated data closely mimics the under-
lying ground-truth data. We conclude this work with a summary
and an outlook in Section 6.

2 RELATED WORK

Time series data generation is as an established discipline when it
comes to approaches purely based statistics. Extrapolation, miss-
ing data interpolation and to some extent simulation can also be
regarded as synthetic data generation. These three approaches
can be further subdivided into model-based and imputation based
techniques. Model-based algorithms perform model fitting for the
missing data based on likelihood and are more suited for multivari-
ate data, while direct imputation, being the simpler approach are
used with univariate time series [3].

2.1 Simulation

Simulating the observed user or system behaviour to generate
workload is mostly done for the purpose of performance analysis of
hardware and software systems under certain workload scenarios.
The commonality hereby is a preliminary workload model derived
from the observed workload, reflecting characteristics of the user’s
behavior.

These characteristics can include descriptive statistical measures
and probability distributions as well as measures of the burstiness
and self-similarity of the workloads. An algorithm is then fitted to
simulate tasks or requests in such a way that these characteristics
are preserved. Several out-of-the-box tools are available for work-
load generation with a focus on interactive web applications (e.g.
httperf [27], ProWGen [6]. A comprehensive survey of such work-
load generation tools can be found in [8]. While these publications
and tools focus on interactive web-based applications, there are also
publications focusing on data-intensive applications, e.g., MapRe-
duce [11].

Contrary to these task-focused approaches, our work does not
search to simulate the behavior of users directly, but the resource
utilization metrics that result from input workloads.

2.2 Workload Generation using Neural
Networks

The generation of synthetic time-series using Artificial Neural Net-
works (ANN) is subject to several publications [1, 5, 30]. In the
following, we discuss approaches that are closely related to ours, be
it technology-wise (the architecture of the ANN) or scope-wise (the
application domain).

Generative adversarial networks (GANs), being a subdomain
of ANNSs, have been used in financial applications [36] to gener-
ate large amounts of univariate time series data while capturing
long term temporal dependencies within the measurements. In the

http://ai.googleblog.com/2011/11/more-google-cluster-data.html

Session 1: Testing, Measurement and Profiling

medical domain, they have been used to generate sinusoidal elec-
trocardiogram and photoplethysmogram single channel time series
data as images [10]. The Philips database [29], consisting of medical
measurements taken at intensive care units from around 200,000
patients, is also used [9] as a baseline for synthesising medical data
to overcome the bottleneck of publicly available data, while also
presenting a thorough evaluation framework, which is not only suit-
able for the specific case of medical data but could also be a suitable
method for evaluating GANs in general. Lin et al. [22] have pro-
posed the Doppelganger approach, utilizing so-called Wasserstein
GANS s to synthesize time-series data. The fidelity of the generated
data is also evaluated in this work in terms of capturing short term
and long term temporal correlations in the time series. Recurrent
Neural Networks (RNNs) have been used for synthesizing clas-
sical music [24], which when can be transcribed as multivariate
time-series.

2.3 Data Validation

Validation is a crucial aspect of workload and time series synthesis,
as it defines the success of an approach. The literature here presents
many different approaches dependent on the application domain
and goals. Visual examination of generated samples is found [29]
just as the measurement of the distribution of the generated data,
for instance via the squared Maximum Mean Discrepancy (MMD)
between generated and real samples [29]. Further metrics include
short term and long term temporal correlations in the time se-
ries [22]. A domain-specific comparison for music generation ap-
plies metrics such as the polyphony, measuring how often at least
two tones are played simultaneously [24]. In earlier work [19] we
have used the entropy, approximate entropy and correlation in the
evaluation part.

2.4 Summary

The majority of ANN-based work on this topic is very recent. It
is motivated by the success of GANS in the field of image genera-
tion [4]. Yet, while showing promising results, many approaches are
often limited either in the output length or the dimensionality of
the data. Further, the lack of guidelines in respect to validation and
evaluation of the results must be noted as a hindrance for both re-
producibility and more importantly, generalizability. This research
question is also present in the image generation field, where metrics
such as the Inception Score and Frechet Inception Distance have
been introduced to tackle the issue [4].

3 METHODOLOGY & APPROACH

A GAN consists of two artificial neural networks: a discriminator
and a generator, competing in min-max game [13]. A discriminative
network D is trained to distinguish real from fake data by being
alternately presented with sequences from both classes and thereby
fitted to assign labels for real and fake data. The competing genera-
tor network G produces fake sequences by drawing from a uniform
or normal distribution and generating synthetic data. This process
is visible in Fig. 1, where the initial results of the generator are just
noise, but after several epochs the distribution of the training data
is more and more apparent. It then tries to fool D in each training
step by presenting fake data together with the real class label. By

45

ICPE 21, April 19-23, 2021, Virtual Event, France

this means, the generator learns, over the course of training, to
generate sequences that D is not able to distinguish from real data.
Fitting the described networks in an adversarial setting allows to
generate an arbitrary amount of time series data that is statistically
similar to real data.

The training goal of a GAN is to estimate the probability dis-
tribution of the training data and to generate synthetic samples
drawn from that distribution. Hence, the goal of our GAN is to
learn the probability distribution of the real production workload
and be able to generate statistically similar time series data. The
ability of the GAN which in our case is specifically modeled to
operate on time series data is to learn and reflect important features
of real data highly depends on the quality of the training samples.
A GAN is considered successful if the generator is able to capture
the distribution of the training data but is not explicitly trained on
this goal [13].

If the empirical probability distributions of the training samples
are too diverse, the training can fail, so that the GAN only learns to
generate samples from a single probability distribution, neglecting
the other distributions. This failure scenario is called mode col-
lapse wherein the GAN fails to capture the diversity of the training
data [31].

We solve the problem of mode collapse by training separate
GAN:Ss for sequences of different distributions. While this implies a
higher computational overhead, we tackle this by introducing an
automated containerized workflow.

We use a reproducible training approach we have devised in [32],
by utilizing container wrappers for both code and data. This en-
hances the reproducibility and reusability of the codebase and al-
lows for cross platform training as well as versioning of the data
sets used. By extent, since our approach is domain agnostic, this
also increases the generality.

There are several other viable solutions to circumventing the
mode collapse in GANs. Lin et al. [22] have opted for the use of a
Wasserstein GAN [2] to solve this problem, we have seen a very
large training time per network even when compared to our sepa-
ration approach. Additionally, mode collapse can also be tackled by
so-called unrolled GANs, as shown in [23].

The GAN developed we use in our work is derived from existing
architectures found in publications with similar goals. Specifically,
as discussed in Section 2, [9] and [24] present promising architec-
tures for the generation of continuous time series data. In both
of these publications, RNNs are incorporated to capture temporal
dependencies in the training data and reflect these in the generated
sequences.

Preparation of real data sets to effectively serve as training sam-
ples is the first step in our approach. In the following the process of
synthesizing multivariate time series data is described, beginning
with the preprocessing of the data at hand, followed by the GAN
used for the data generation.

3.1 Preprocessing

Typical preprocessing steps include the transformation of raw data
into the desired format, filtering of incomplete samples, and scaling
of features to a defined range.

Session 1: Testing, Measurement and Profiling

LSTM /[\ \ |
100 units | mxn | /
LeakyReLu "t‘ R "‘7—1
Sigmoid Activation 1
N ,//
Loss: Binary LSTM
Crossentropy 100 units
i; LeakyReLu
Batchsize: 32 v

Sigmoid Activation

Dense Layer |
1 LSTM Unit \

Figure 2: Generator G

Data normalization is applied to fit samples into a [0, 1] range.
This is a crucial preparation step for many applications of ANNs
and significantly accelerates the gradient descent process [34]. The
length of the input sequences is a fixed parameter of our developed
GAN model, hence, the training data need to consist of samples
with an equal number of time-steps. In the case of too long input
samples, several options are available, the input can be either chun-
ked into smaller portions, or if feasible without any loss of data
quality, a sampling rate reduction can also be performed. These
preprocessing steps are incorporated as an essential part of the
overall approach to generate synthetic workload traces. This pro-
cess does not significantly increase overall computation time as
it is only being performed if the input data changes (we present
runtime numbers in Section 5).

3.2 A Generative Adversarial Network for
Multivariate Time Series Synthesis

In the following, we outline the GAN architecture and the structure
of its input and output data. The discriminator (shown in detail
in Figure 3) used in this approach consists of two layers of Long
Short-Term Memory (LSTM) units, followed by an output layer of
one LSTM unit for the final classification, resulting in a single scalar
value y € [0; 1].

The output of the last hidden recurrent layer is directly fed into
the single-unit output layer of the discriminator. Both LSTM layers

LSTM \ |)
100 unit: MXn |
‘ LeakyReLu R /e
\ Tanh Activation /
Loss: Binary LST™M
Crossentropy 100 units

LeakyReLu
Tanh Activation

Batchsize: 32

1 LSTM Unit

| yelo;1] }4— Dense Layer

Figure 3: Discriminator D

ICPE 21, April 19-23, 2021, Virtual Event, France

consist of a n by m (where the former is the number of time-steps
and the latter the number of features) input shape.

Likewise, the generator, depicted in Figure 2, consists of two
recurrent layers. It is initialised with Gaussian noise. One fully-
connected output layer follows the last recurrent layer with one unit
per time step. Having two recurrent layers and an additional fully-
connected output layer shows better results in our experiments.
The network consists of two bidrectional LSTM layers with the
same n by m shape as the generator, a global average pooling over
the m features, followed by a dense output layer.

The input and correspondingly output length of the GAN is
limited only by the utilized hardware, and currently allows for the
input of ca. 15000 steps for univariate time-steps. The addition of
another dimension to the data divides the number of time-steps by
the dimension accordingly.

The length of approximately 20,000 time-steps of the data set,
as outlined in Section 5 ,imposes very high computational require-
ments for the execution of the GAN training. In our setup, one
neuron per layer is used for each time-step of the sequences (cf.
Figures 2 and 3). By that means, the discriminator and genera-
tor networks would need to be 20,000 units in width. With such
a large network, the training process could not be executed in a
time-efficient manner, if at all. Therefore, the training samples are
downsampled in a preprocessing step to a feasible length.

4 COMPARING SYNTHETIC AND REAL TIME
SERIES DATA

The focus of our work lies on the generation of multivariate time se-
ries data. Sequences of resource utilization metrics are synthesized
which have similar statistical characteristics when compared to real
sequences. The measurement of such statistical similarity is cov-
ered in the following. It outlines which statistics are computed and
explains their semantics. Features from the field of descriptive sta-
tistics and time-series analysis used in the literature [12, 17, 18, 37]
are described.

4.1 Descriptive Statistics

Summarizing the values of variables in the sense of descriptive sta-
tistics allows inferring insights about their distribution and tenden-
cies. We use the mean and the standard deviation for this purpose.

It should be noted that the analyzed time series are samples
from an unknown distribution and the means are calculated on
these samples, it is the sample mean that is evaluated, and thus
is an approximation of the true mean value of the unspecified
distribution (i.e. the population mean) [25].

To gain a better understanding of possible outliers in the data
and get a measure of how far values spread from the average in
general, the standard deviation o is calculated.

4.2 Time-Series Analysis

Time series data cannot be assumed to be independently distributed.
It must instead be assumed that values, observed at any point in
time, depend to some degree on previously observed values [33].
This characteristic of time-series data leads to statistical measures
that explore temporal dependencies in and across sequences.

Session 1: Testing, Measurement and Profiling

0.7
056
05
©
©
L4
[}
=
To3 A
[
02 |
|
o J\ }J J /!
l
JW\/\‘ AVLp\W WJJ\ ,MJ”/JJJ ,//J ,U/
o 200 400 600 800 1000 1200 1400 1600 1800 2000

timesteps

Figure 4: 2,000 downsampled timestamps of the original
cache served measurements for 3 inner-core sites at BT’s net-
work.

To test whether synthetic workload traces capture not only the
distribution but also reflect temporal dependencies of real data, the
correlation is calculated. For univariate time series, the auto corre-
lation function may also be of assistance, however, given the focus
on multivariate calculations, we opt for the correlation between the
multivariate data samples. This allows to evaluate the capability
of the GAN to capture dependencies between the time series and
reflect those in the generated data.

To assess the common trends between the ground truth and the
synthesized data, we additionally use cointegration tests, namely
the Engle-Granger test [14] and the Johansen test [15]. The Engle-
Granger tests for individual cointegration relationships, while the
Johansen test assesses multiple relationships. Ideally, for both these
tests, a p-value lower than 0.05 should reject the null hypothesis
and indicate common trends between two time series. This is an
essential calculation, since time series moving in different directions
and following different trends, could still have a similar mean and
entropy value and hence only feign similarity. Cointegration in this
case helps to identify if two time series would drift apart or exhibit
common behaviour.

Whether the generation approach is able to produce realistic
samples is justified by the comparative evaluation of the statistical
characterization. Furthermore, the described workflow is imple-
mented with a focus on automation and reproducibility and is also
containerized in a way that generator results can directly be evalu-
ated.

In the following we first describe the data used in our approach,
succeeded by the results and their evaluation using the metrics
outlined in Section 4.

5 EVALUATION

5.1 CDN and Back-end Utilization Data

We open source the CDN data used in our approach as a publicly
available artifact on Zenodo [20] 2. The data includes the traffic
of a Content Delivery Network from British Telecom (BT) in the
United Kingdom (UK) and is described in the following.

2We released the data as part of an 8GB large artificial and real data compendium of
cloud related data sets, the CDN data is denoted data set D1

47

ICPE 21, April 19-23, 2021, Virtual Event, France

0.08

030

relative load

015

timesteps

Figure 5: A density plot of 160 time-steps of 100 time series
plotted together to illustrate our model capturing the sea-
sonality of the cache serving patterns in the data. Darker
colour indicates more data points. Superimposed in red, is
an original measurement of the training data as a compari-
son.

The data comes from three caches located in inner-core nodes
of the BT network in London, UK. The time series consists of three
dimensions per measurement point, namely the load at a specific
inner-core node, all measured in bits per second. The data set was
sampled with an interval of 20 minutes in a time span from 2016
to 2017 leading to almost 20 thousand measurement points.

Due to its proprietary nature, only portions of data traces from
2016 to 2017 are publicly open. In the open sourced sample, times-
tamps are omitted and data points are divided by a peak value to
give a relative traffic measure hiding the absolute traffic level. The
range of this relative traffic level is between 0 and 1. The measure-
ments, downsampled to 2,000 time-steps can be seen in Figure 4.
This downsampling was performed for the purposes of visualization.
For data synthesis a higher sampling rate was used.

To demonstrate the capability of our approach to capture tem-
poral correlation between different time series, we additionally
introduce the overall back-end utilization for the three inner-core
nodes where the CDNs are located, namely inbound and outbound
traffic measurements. The timestamps and unit of measurement
are the same and also in the form of relative traffic. While this data
is not openly available, this demonstrates our usecase scenario,
since it offers the possibility of generating data which represents
system behaviour without exposing sensitive information. Using
this data we generate a three dimensional time series with ca. 4, 800
time-steps in each dimension, and synthesize 100 instances of such
time series, totalling 1.5 million data points. How the generation
method is able to produce samples that statistically and visually fit
into the real server workloads is assessed in the following section.

5.2 Results and Evaluation of Synthetic
Workloads
The GAN is trained with the same parameters for 500 epochs. We

first perform a visual assessment of the data using both regular plots
and density plots introduced in [26], which allow us to evaluate a

Session 1: Testing, Measurement and Profiling

large amount of time series simultaneously. We further look at the
statistical evaluation of the data described in Section 4.

A look at the density chart displaying a zoomed in portion of
the data in Figure 5 shows how our trained model is able to capture
the seasonal patterns in the cache served data while simultane-
ously producing data which is similar in its characteristics but not
identical. Superimposed in red is a ground truth measurement of
the original training data, aiding in the comparison. The original
measurement fits well within the distribution of the synthesized
data. The yellow points clustered around the major blue signifi-
cant hotspots show minor deviations and noise introduced by the
generator. This however, does not mean this variance worsens the
statistical properties of the data, as shown below.

Figure 6 depicts one of the generated series in its entire length for
all three dimensions. Here, again not only the seasonal behaviour
of the data is captured, but also the dependency between the time
series. Higher cache serving increases outgoing traffic which is
reflected in the measurements generated by our model.

The mean and the corresponding average mean values in Table 1
of the original data versus the generated data shows deviations
of max. 2% between them, thus suggesting similar data points.
Additionally, the standard deviation also shows no major deviations
between the original data and the synthesized values, with the
outgoing traffic being one exception: the higher value could indicate
the introduction of some outliers and noise into the measurement,
this is also supported by the slightly higher mean value.

The entropy values suggest a higher information count in the
generated time series, which again, can also be attributed to noise.
This is where the calculation of the approximate entropy comes in.
The decrease in the approximate entropy corresponds to a decrease
in the irregularity of the time series, which proves the assumption
of the increased entropy being a noise component, but also speaks
for a more stable data pattern as a whole.

07

relative load

0 500 1000 1500 2000 2500

timesteps

3000 3500 4000 4500 5000

Figure 6: Synthesized cache served measurements, as well
as back-end outgoing and incoming measurements for one
three-dimensional time series consisting of 4,800 steps.
Here again, the ability of the model to reflect the seasonal
behaviour as well as the interdependency of the workload
can be seen. The blue line shows the outgoing traffic, the
red one the incoming and the yellow one at the bottom the
cache serving,.

48

ICPE 21, April 19-23, 2021, Virtual Event, France

The cointegration analysis also depicted in Table 1, shows the
statistical significance of the Engle-Granger test with a p-value of
0.001 across all three time series. The same goes for the Johanson
Test, which shows a lower then 0.05 p-value across all ranks. This
shows that the pairs of real and synthetic data move in the same
trend direction and hence, share an underlying common stochastic
trend.

To further shows the viability of the data, we take a look at
the correlation of the original multivariate measurements and the
synthesized time series in Table 2. The correlation is calculated
between the outgoing, inbound traffic and cache served traffic. The
relation of the original underlying data should be kept here, e.g.
that an increase in inbound traffic shall be followed by an increase
in outbound traffic. This is specifically important and useful when
looking at the behaviour of CDN systems and their optimizations.
Here, the values are nearly identical for all measurements, namely
strong positive correlation between the data.

Finally, we test the applicability of our approach with an exem-
plary real world use case. We use an off-the-shelf LSTM forecasting
network 3 to perform predictions on the synthesized and origi-
nal data. The model is first trained using an excerpt of the data,
in production it then tries to predict future measurements taking
into account already known (past) measurements. First, we train
the network for 100 epochs using a part of the original ground
truth data as training data, and then perform forecasting opera-
tions on ground truth testing data. Here the Root Mean Squared
Error (RMSE) of the prediction is 0.1727. This is a measure of how
far off on average the prediction was from the actually observed
value, where a lower RMSE is better. We then use the generated
synthetic data to train the network and perform the forecasting
on the ground truth original testing data, the results of which are
depicted in Figure 7. Due to the larger available amount of training
data when used with the synthetical time series, the Root Mean
Squared Error (RMSE) of the prediction is at 0.15893. This speaks
for the statistical similarity of the synthetical data, as the predic-
tion not only worked, but improved slightly. This demonstrates a
use-case of our approach for pretraining models before production
deployment using synthetic or evening out under-balanced classes
with a scarce number of measurements in data sets.

5.3 Efficiency

We have evaluated and measured # the runtime performance of our
model using two types of data. First the training and generation of
the data was performed using 5000 data points of the CDN data set.
Additionally, we have used randomly generated 5000 data points of
time series data, which was subjected to the same tests. This was
done in order to exclude the data characteristics and complexity
as a factor. We have generated 5000 time-steps of univariate and
multivariate three-dimensional data accordingly. The code was exe-
cuted 20 times, the average measurements of all runs are presented
in Table 3. On average, the training and generation of 5000 time-
steps using the actual CDN data takes roughly 20-30 seconds longer.

3https://de.mathworks.com/help/deeplearning/ug/time-series-forecasting-using-
deep-learning.html

4The measurements were performed on the Special Nodes of the Justus2 Clus-
ter. https://wiki.bwhpc.de/e/Hardware_and_Architecture_(bwForCluster JUSTUS_
2)#Node_Specifications

https://de.mathworks.com/help/deeplearning/ug/time-series-forecasting-using-deep-learning.html
https://de.mathworks.com/help/deeplearning/ug/time-series-forecasting-using-deep-learning.html
https://wiki.bwhpc.de/e/Hardware_and_Architecture_(bwForCluster_JUSTUS_2)##Node_Specifications
https://wiki.bwhpc.de/e/Hardware_and_Architecture_(bwForCluster_JUSTUS_2)##Node_Specifications

Session 1: Testing, Measurement and Profiling

ICPE 21, April 19-23, 2021, Virtual Event, France

Table 1: Mean and (average for 100 generated time series) standard deviation as well as (average) entropy and approximate

entropy and the cointegration tests of the original and generated

(indicated by _G) time series.

Outgoing Outgoing_G Incoming Incoming_ G Cache served Cache served_G
Mean 0.4420 0.4618 0.1363 0.1541 0.0184 0.0174
(Avg.) Std. deviation 0.1987 0.2410 0.0754 0.0882 0.0088 0.0105
(Avg.) Entropy 7.4737 7.7003 7.6527 7.7854 7.5395 7.7628
(Avg.) Approximate Entropy 0.4331 0.2767 0.2665 0.2661 0.3443 0.2766
Engle-Granger Test (after 500 epochs) — p =0.001 - p =0.001 — p =0.001
Johansen Test (after 500 epochs) [ro,p =0.001 r1,p=0.0015] [ro,p=0.001 r1,p=0.001] [ro,p=0.001 r1,p=0.0015]
07 Forecast
T T
——Observed
06— . r:orecasl
3 05— B) ‘ -
g 0.4 -
5 03— =
02 - - |
0.1 1 1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90 100
Timesteps

0.4

03— ¢

Error

RMSE = 0.15893
I

04 | | | | |

40 50

60 70 80 90 100

Timesteps

Figure 7: An exemplary forecasting application for 100 time-steps

into the future, illustrated using the observed and predicted

values (top), as well as the error margin measured by the RMSE (bottom).

Table 2: The correlation (left table) and average (for 100 gen-
erated time series) correlation (right table) of the original
and generated (indicated by _G) time series.

1. 2. 3. 1G G 3G
1. Outgoing, G 1 0.9810 0.9701 1 0.9839 0.9802
2. Incoming, G 1 0.9891 1 0.9882
3. Cache served, G 1 1

Table 3: The averaged runtime measurements of the data
training and generation for the CDN and random data for
univariate 5000 datapoints and 3 dimensional multivariate
5000 datapoints.

5000/1 points 5000/3 points
Random data 26min 55s 27min 52s
CDN data 27min 31s 28min 11s

49

Hence, no significant change in the runtime can be attributed to the
complexity of the data. Additionally, the measurements show that
a dimensionality increase in the data only increases the runtime by
ca. 2% (between 40-60 seconds longer).

6 CONCLUSION

The results of our work show that the GAN-based generation
method for synthetic workloads is able to produce samples that
are statistically similar to real workloads. A GAN is able to learn
and reflect the characteristics of utilization workloads and generate
similar samples where the similarity is measured in terms of de-
scriptive statistics and temporal dependencies. By this standard, the
synthetic data can be considered a plausible realistic representation
of the original data. We also show an exemplary application of our
approach to a forecasting application. The possibility of also using
such a GAN solely for data obfuscation is equally viable.

The realism of synthetic workloads depends on the underlying
processes that produce the considered resource utilization. Such
an underlying process is the interplay of the behavior of the users

Session 1: Testing, Measurement and Profiling

of a system and the specific resource demands of the involved ap-
plications and services. The performed statistical comparisons do
not state, e.g., whether single peaks and troughs in utilizations are
realistic from the behavioral point of view of a specific application
or service that causes these utilizations. They do, however, measure
their overall statistical similarity and show how synthetic and real
samples arrange. Solving the problem of noisy and heterogeneous
training data is an important direction of the GAN-based genera-
tion method. Additionally, other time series can be evaluated using
the developed GAN and evaluation pipeline to test whether the cho-
sen model parameters are suitable for data from entirely different
domains. Other generation approaches can also be benchmarked
using the developed method for data evaluation by replacing the
GAN-based generator. The performance of the GAN can then be
compared to other methods in a fixed framework.

ACKNOWLEDGMENTS

This work was supported by the Vector Stiftung. The authors thank
NVIDIA for its generous donation of a TITAN V GPU. The authors
acknowledge support by the state of Baden-Wiirttemberg through
bwHPC and the German Research Foundation (DFG) through grant
no INST 40/575-1 FUGG (JUSTUS 2 cluster). The authors acknowl-
edge the financial support by the Federal Ministry of Education
and Research of Germany (grant nr. 011518068, SORRIR).

REFERENCES

[1] Moustafa Alzantot, Supriyo Chakraborty, and Mani Srivastava. 2017. Sensegen:
A deep learning architecture for synthetic sensor data generation. In 2017 IEEE
International Conference on Pervasive Computing and Communications Workshops
(PerCom Workshops). IEEE, 188-193.

[2] Martin Arjovsky, Soumith Chintala, and Léon Bottou. 2017. Wasserstein genera-
tive adversarial networks. In International conference on machine learning. PMLR,
214-223.

[3] Neeraj Bokde, Marcus W Beck, Francisco Martinez Alvarez, and Kishore Kulat.
2018. A novel imputation methodology for time series based on pattern sequence
forecasting. Pattern recognition letters 116 (2018), 88—96.

[4] Andrew Brock, Jeff Donahue, and Karen Simonyan. 2018. Large scale GAN
training for high fidelity natural image synthesis. arXiv preprint arXiv:1809.11096
(2018).

[5] Eoin Brophy, Zhengwei Wang, and Tomas E Ward. 2019. Quick and easy
time series generation with established image-based gans. arXiv preprint
arXiv:1902.05624 (2019).

[6] Mudashiru Busari and Carey Williamson. 2002. ProWGen: a synthetic work-
load generation tool for simulation evaluation of web proxy caches. Computer
Networks 38, 6 (2002), 779-794.

[7] Eli Cortez, Anand Bonde, Alexandre Muzio, Mark Russinovich, Marcus Fontoura,
and Ricardo Bianchini. 2017. Resource central: Understanding and predicting
workloads for improved resource management in large cloud platforms. In Pro-
ceedings of the 26th Symposium on Operating Systems Principles. 153-167.

[8] Mariela Curiel and Ana Pont. 2018. Workload generators for web-based systems:

Characteristics, current status, and challenges. IEEE Communications Surveys &

Tutorials 20, 2 (2018), 1526—-1546.

Cristobal Esteban, Stephanie L Hyland, and Gunnar Rétsch. 2017. Real-valued

(medical) time series generation with recurrent conditional gans. arXiv preprint

arXiv:1706.02633 (2017).

Vincent Fortuin, Gunnar Rétsch, and Stephan Mandt. 2019. Multivariate time

series imputation with variational autoencoders. arXiv preprint arXiv:1907.04155

(2019), 67-73.

[11] Archana Ganapathi, Yanpei Chen, Armando Fox, Randy Katz, and David Patterson.
2010. Statistics-driven workload modeling for the cloud. In 2010 IEEE 26th
International Conference on Data Engineering Workshops (ICDEW 2010). IEEE,
87-92.

[12] Daniel Gmach, Jerry Rolia, Ludmila Cherkasova, and Alfons Kemper. 2007. Work-

load analysis and demand prediction of enterprise data center applications. In

2007 IEEE 10th International Symposium on Workload Characterization. IEEE,

171-180.

Tan] Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,

Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2014. Generative adversarial

=

[10

(13

ICPE 21, April 19-23, 2021, Virtual Event, France

networks. arXiv preprint arXiv:1406.2661 (2014).

Svend Hylleberg, Robert F Engle, Clive W] Granger, and Byung Sam Yoo. 1990.
Seasonal integration and cointegration. Journal of econometrics 44, 1-2 (1990),
215-238.

Seren Johansen. 1992. Cointegration in partial systems and the efficiency of
single-equation analysis. Journal of econometrics 52, 3 (1992), 389-402.

Amlan Kar, Aayush Prakash, Ming-Yu Liu, Eric Cameracci, Justin Yuan, Matt
Rusiniak, David Acuna, Antonio Torralba, and Sanja Fidler. 2019. Meta-sim: Learn-
ing to generate synthetic datasets. In Proceedings of the IEEE/CVF International
Conference on Computer Vision. 4551-4560.

Arijit Khan, Xifeng Yan, Shu Tao, and Nikos Anerousis. 2012. Workload charac-
terization and prediction in the cloud: A multiple time series approach. In 2012
IEEE Network Operations and Management Symposium. IEEE, 1287-1294.
Andrzej Kochut and Kirk Beaty. 2007. On strategies for dynamic resource manage-
ment in virtualized server environments. In 2007 15th International Symposium on
Modeling, Analysis, and Simulation of Computer and Telecommunication Systems.
IEEE, 193-200.

Thang Le Duc, Mark Leznik, Jérg Domaschka, and Per-Olov Ostberg. 2020. Work-
load Diffusion Modeling for Distributed Applications in Fog/Edge Computing
Environments. In Proceedings of the ACM/SPEC International Conference on Per-
formance Engineering. 218-229.

Mark Leznik, Rafael Garcia Leiva, Thang Le Duc, Sergej Svorobej, Linus Narva,
Manuel Noya Marifio, Peter Willis, Konstantinos M. Giannoutakis, Radhika
Loomba, Héctor Humanes, Miguel Angel Lépez, P-O Ostberg, Paolo Casari, and
Jorg Domaschka. 2019. RECAP Artificial Data Traces. https://doi.org/10.5281/
zenodo.3458559

Mark Leznik, Simon Volpert, Frank Griesinger, Daniel Seybold, and Jérg Do-
maschka. 2018. Done yet? A critical introspective of the cloud management
toolbox. In 2018 IEEE International Conference on Engineering, Technology and
Innovation (ICE/ITMC). IEEE, 1-8.

Zinan Lin, Alankar Jain, Chen Wang, Giulia Fanti, and Vyas Sekar. 2019. Gen-
erating high-fidelity, synthetic time series datasets with doppelganger. arXiv
preprint arXiv:1909.13403 (2019).

Luke Metz, Ben Poole, David Pfau, and Jascha Sohl-Dickstein. 2016. Unrolled
generative adversarial networks. arXiv preprint arXiv:1611.02163 (2016).

Olof Mogren. 2016. C-RNN-GAN: Continuous recurrent neural networks with
adversarial training. arXiv preprint arXiv:1611.09904 (2016).

Jodo Moreira, André Carlos Ponce de Leon Ferreira, and Tomas Horvath. 2019.
A general introduction to data analytics. Wiley Online Library.

Dominik Moritz and Danyel Fisher. 2018. Visualizing a Million Time Series with
the Density Line Chart. arXiv preprint arXiv:1808.06019 (2018).

David Mosberger and Tai Jin. 1998. httperf—a tool for measuring web server
performance. ACM SIGMETRICS Performance Evaluation Review 26, 3 (1998),
31-37.

Per-Olov Ostberg, James Byrne, Paolo Casari, Philip Eardley, Antonio Fernan-
dez Anta, Johan Forsman, John Kennedy, Thang Le Duc, Manuel Noya Marino,
Radhika Loomba, et al. 2017. Reliable capacity provisioning for distributed
cloud/edge/fog computing applications. In 2017 European conference on networks
and communications (EuCNC). IEEE, 1-6.

Tom] Pollard, Alistair EW Johnson, Jesse D Raffa, Leo A Celi, Roger G Mark, and
Omar Badawi. 2018. The eICU Collaborative Research Database, a freely available
multi-center database for critical care research. Scientific data 5, 1 (2018), 1-13.
Giorgia Ramponi, Pavlos Protopapas, Marco Brambilla, and Ryan Janssen. [n.d.].
T-CGAN: Conditional Generative Adversarial Network for Data Augmentation
in Noisy Time Series with Irregular Sampling. ([n. d.]). arXiv:1811.08295 [cs, stat]
Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford,
and Xi Chen. 2016. Improved techniques for training gans. arXiv preprint
arXiv:1606.03498 (2016).

Benjamin Schanzel, Mark Leznik, Simon Volpert, Jérg Domaschka, and Stefan
Wesner. [n.d.]. Unified Container Environments for Scientific Cluster Scenarios.
In Proceedings of the 5th bwHPC Symposium (Freiburg, 2019). https://doi.org/10.
15496/publikation-29052

Robert H Shumway and David S Stoffer. 2000. Characteristics of time series. In
Time Series Analysis and Its Applications. Springer, 1-88.

Jorge Sola and Joaquin Sevilla. 1997. Importance of input data normalization
for the application of neural networks to complex industrial problems. IEEE
Transactions on nuclear science 44, 3 (1997), 1464-1468.

Guanying Wang, Ali R Butt, Henry Monti, and Karan Gupta. 2011. Towards
synthesizing realistic workload traces for studying the hadoop ecosystem. In 2011
IEEE 19th Annual International Symposium on Modelling, Analysis, and Simulation
of Computer and Telecommunication Systems. IEEE, 400-408.

Magnus Wiese, Robert Knobloch, Ralf Korn, and Peter Kretschmer. 2020. Quant
gans: Deep generation of financial time series. Quantitative Finance 20, 9 (2020),
1419-1440.

Richard Wolski and John Brevik. 2013. Using parametric models to represent
private cloud workloads. IEEE Transactions on Services Computing 7, 4 (2013),
714-725.

https://doi.org/10.5281/zenodo.3458559
https://doi.org/10.5281/zenodo.3458559
https://arxiv.org/abs/1811.08295
https://doi.org/10.15496/publikation-29052
https://doi.org/10.15496/publikation-29052

	Abstract
	1 Introduction
	2 Related Work
	2.1 Simulation
	2.2 Workload Generation using Neural Networks
	2.3 Data Validation
	2.4 Summary

	3 Methodology & Approach
	3.1 Preprocessing
	3.2 A Generative Adversarial Network for Multivariate Time Series Synthesis

	4 Comparing Synthetic and Real Time Series Data
	4.1 Descriptive Statistics
	4.2 Time-Series Analysis

	5 Evaluation
	5.1 CDN and Back-end Utilization Data
	5.2 Results and Evaluation of Synthetic Workloads
	5.3 Efficiency

	6 Conclusion
	Acknowledgments
	References

 HistoryItem_V1
 AddMaskingTape

 Range: all pages
 Mask co-ordinates: Horizontal, vertical offset 44.94, 719.07 Width 530.83 Height 18.66 points
 Origin: bottom left

 1
 0
 BL

 1
 AllDoc
 1

 CurrentAVDoc

 44.9423 719.0749 530.8276 18.6553

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 7
 8
 7
 8

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 1 to page 1
 Mask co-ordinates: Horizontal, vertical offset 48.33, 80.56 Width 250.15 Height 85.64 points
 Origin: bottom left

 1
 0
 BL

 1
 SubDoc
 1

 CurrentAVDoc

 48.3341 80.5555 250.1504 85.6447

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 0
 8
 0
 1

 1

 HistoryList_V1
 qi2base

