
Creating a Virtuous Cycle in Performance Testing at MongoDB
David Daly
MongoDB Inc

david.daly@mongodb.com

ABSTRACT
It is important to detect changes in software performance during
development in order to avoid performance decreasing release to
release or dealing with costly delays at release time. Performance
testing is part of the development process at MongoDB, and inte-
grated into our continuous integration system. We describe a set
of changes to that performance testing environment designed to
improve testing effectiveness. These changes help improve cover-
age, provide faster and more accurate signaling for performance
changes, and help us better understand the state of performance.
In addition to each component performing better, we believe that
we have created and exploited a virtuous cycle: performance test
improvements drive impact, which drives more use, which drives
further impact and investment in improvements. Overall, Mon-
goDB is getting faster and we avoid shipping major performance
regressions to our customers because of this infrastructure.

CCS CONCEPTS
• General and reference → Performance; • Information sys-
tems→Database performance evaluation; •Mathematics of
computing → Time series analysis.

KEYWORDS
change point detection, performance, testing, continuous integra-
tion, variability
ACM Reference Format:
David Daly. 2021. Creating a Virtuous Cycle in Performance Testing at
MongoDB. In Proceedings of the 2021 ACM/SPEC International Conference on
Performance Engineering (ICPE ’21), April 19–23, 2021, Virtual Event, France.
ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/3427921.3450234

1 INTRODUCTION
Over the last several years we have focused on improving our
performance testing infrastructure at MongoDB. The performance
testing infrastructure is a key component in ensuring the overall
quality of the software we develop, run, and support. It allows us to
detect changes in performance as we develop the software, enabling
prompt isolation and resolution of regressions and bugs. It keeps
performance regressions from being included in the software we
release to customers. It also allows us to recognize, confirm, and lock
in performance improvements. As a business, performance testing
impacts our top and bottom lines: the more performant the server,

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ICPE ’21, April 19–23, 2021, Virtual Event, France
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8194-9/21/04.
https://doi.org/10.1145/3427921.3450234

the more our customers will use our services; the more effective
our performance testing infrastructure, the more productive are
our developers. Testing performance and detecting performance
changes is a hard problem in practice, as performance tests and
test platforms inherently contain some degree of noise. The use of
change point detection [10] was a large improvement in our ability
to detect performance changes in the presence of noise.

After putting our change point detection system into production,
we explicitly focused on 4 challenges: how to deal with the large
number of results and process all the changes; how to better deal
with and isolate noise due to the testbed system itself; how to easily
compare the results from arbitrary test runs; and how to capture
and how to more flexibly handle more result types. The first two
are familiar challenges, having been an explicit focus of the change
point detection work, while the second two challenges become
more serious problems once we achieved a basic ability to process
our existing results.

The cumulative impact of these changes and our previous work
has been to enable a virtuous cycle for performance at MongoDB.
As the system is used more, we catch and address more performance
changes, leading to us using the system more.

The rest of this paper is organized as follows. In Section 2 we
review our previous work on which this paper builds. In Section 3
we discuss changes that have happened naturally as we have used
the system more, leading to more load on the system. We then
dive into four changes that we have tried in order to improve our
infrastructure: Section 4 for improving our processing of results,
Section 5 for handlingmore result types, Section 6 to address system
noise, and Section 7 to improve the comparison of arbitrary test runs.
Those sections are followed by a dive into the practical impact of all
these changes in Section 8, before reviewing future work, related
work, and conclusions in Sections 9, 10, and 12.

2 REVIEW
We built our performance testing infrastructure to be completely
automated, and integrated with our continuous integration system
Evergreen [3]. From past experience we had concluded that it was
essential to automate the execution and analysis of our performance
tests, and regularly run those tests as our developers worked on
the next release. Previously we had done ad-hoc testing and man-
ual testing at the end of the release cycle. In both cases we were
continually challenged by test results that would not reproduce, as
well as a huge diagnosis effort to identify which component and
changes to that component caused the performance changes. The
combination of those challenges led to a large effort late in each re-
lease cycle to try to identify and fix performance regressions, often
resulting in release delays or performance regressions shipping to
customers. Creating the infrastructure [16] to test performance in
our CI system let us identify and address regressions earlier, and
made it much easier to isolate performance changes.

 

This work is licensed under a Creative Commons Attribution International  
4.0 License. 

ICPE ’21, April 19-23, 2021, Virtual Event, France. 
ACM ISBN 978-1-4503-8194-9/21/04. 
https://doi.org/10.1145/3427921.3450234  

Session 1: Testing, Measurement and Profiling  ICPE ’21, April 19–23, 2021, Virtual Event, France

33

https://doi.org/10.1145/3427921.3450234
https://doi.org/10.1145/3427921.3450234
https://creativecommons.org/licenses/by/4.0/


ICPE ’21, April 19–23, 2021, Virtual Event, France David Daly

2018 2019 2020

Number of Configurations 8 17 24
Number of Tasks 86 181 356
Number of Tests 960 1849 3122
Number of Results 2393 3865 5787

Table 1: The number of total possible test results we can cre-
ate per source code revision has increased significantly over
the past two years. This is due to increases in the number
of tests and the number of configurations in which we run
those tests.

Automation does not inherently make the tests reproducible, but
it does make it clearer that there is noise in the results. Further
work went into lowering the noise in the test results [14]. That work
lowered, but did not eliminate the noise in the performance results.
It was still challenging to detect changes in performance. Originally
we tested for performance changes above some threshold (usually
10%), but this had a number of problems, leading us to use change
point detection [10]. Change point detection attempts to determine
when there are statistical changes in a time-series, which is precisely
the problem we want to solve. After the transition to change point
detection, we had a system with completely automated, low noise
tests that we could successfully triage and process.

3 ORGANIC CHANGES
There are a number of organic changes to our performance test
environment that have occurred over the last couple of years. These
changes were not planned, but they were still important changes.
The performance testing system works, detecting that the perfor-
mance has changed and correctly identifying when those perfor-
mance changes occurred. The development engineers have seen
that it works and so they use the performance test infrastructure
more. One key aspect of that increase in use is that the develop-
ment engineers have added more tests. We have also added new
test configurations to further increase test coverage. Development
engineers and performance engineers both add performance tests
and configurations.

Table 1 shows the number of system under test configurations,
tasks (collections of tests), tests, and number of raw results from
running the performance tests for any version of the software. The
data covers that past three years and is collected from tests run in
September of each year. The table specifically filters out canary1
results and anything that we would not actively triage. In some
cases, the line between configurations, tasks, tests, and results may
be arbitrary, but it is how our system is organized and users interact
with each of those levels.

You can see the huge increase in every dimension. We run our
change point detection algorithm on the time-series for every result,
and someonemust triage all of that data. The total number of results
went up 50% year over year, and 142% over two years.

Additionally, the development organization has grown leading
to more commits to our source repository. Overall the number of

1Canary tests are discussed in Section 6.

12 months ending 2018-09-01 2019-09-01 2020-09-01

Commits 4394 4702 5538
Commits per day 12.0 12.9 15.2

Table 2: The number of commits per day to our source repos-
itory has been increasing as the development organization
has grown.

engineers working on our core server has gone up approximately
30% year over year for the past two years. Table 2 shows the number
of commits and commits per day over the last 3 years. There has a
been a steady increase in commits, going up 18% in the past year and
27% over the past two years. Each commit can potentially influence
performance. If you combine the increased commit velocity with
the increase in results per revision, you get a 76% increase in total
results year over year, and an over 3x increase in total possible
results to generate and analyze over two years.

The net result of these changes (more commits + engineers using
the system more) is many more possible results that may introduce
performance changes and need to be isolated. During this time we
have not increased the people dedicated to processing these results.
All the problems we needed to address in the past are increased.
Our processes to find and isolate changes need to scale or they will
break down under the weight of new results.

4 BETTER PROCESSING OF PERFORMANCE
CHANGES

In our previous paper [10] we described the role of “build baron”: the
“build baron” is a dedicated role to triage all performance changes,
producing JIRA tickets and assigning them to the appropriate teams
to address the changes. Originally the build baron role rotated
through the members of the team that built the performance infras-
tructure. On the positive side, these people knew the system very
well. However, that was balanced by the feeling that the work was
a distraction from their primary work. Build baroning was a large
transition from regular day to day work, and required both rebuild-
ing mental state when becoming build baron and when returning
to normal work. Everyone tried to dedicate the proper time to the
work, but it is easy to want to do a little bit more of the development
work you had been doing. Additionally, it’s likely that the skills for
a build baron differ from the skills of a software developer.

As such, we built a new team dedicated to build baroning. This
new team originally covered correctness build failures, but has since
expanded to the performance tests as well. The roles still rotate
with the build baron team, but the team is always doing triage (not
triage and development). The team members are better able to build
up intuition and mental state about the system, and can more easily
get help from each other. Possibly more importantly for members
of this new team, triaging failures is their job, not an interruption
from their job. While we added this new team, we did not allocate
more people to doing the build baroning, rather we shifted who
was doing the work.

The dedicated team is also able to better articulate the chal-
lenges of build baroning, and what changes would make them more
productive. Over time the team developed a set of heuristics to

Session 1: Testing, Measurement and Profiling  ICPE ’21, April 19–23, 2021, Virtual Event, France

34



Virtuous Cycle in Performance Testing ICPE ’21, April 19–23, 2021, Virtual Event, France

deal with all the change points they had to process and shared
knowledge. Part of this was adding filters to the existing boards
and new ways of looking at the data. Where feasible we reviewed
these heuristics and integrated them into the displays by default.
Examples include better filtering of canary workloads (recall we do
not want to triage changes in canaries, but rather rerun them) and
sorting capabilities.

The impact of these changes show up in our overall statistics
which are discussed in Section 8. The summary is that they allowed
us to evaluate more tests and commits to find more changes, while
also increasing the overall quality of the generated tickets without
any additional human time.

5 MAKING THE SYSTEM MORE
DESCRIPTIVE

Our performance testing environment was originally designed for
tests that measured throughput, as throughput based tests are the
easiest to create and analyze (just run an operation in a loop for a
period of time, possibly with multiple threads). This assumption got
built into the system. We knew it was a limitation in our system and
have been striving to get around it. We developed conventions to
add some latency results to our system, but it was inelegant. Worse,
it largely assumed only one result per test. Ideally we could measure
many performance results per test, such as throughput, median
latency, tail latencies, and resource utilizations. Before change point
detection, we could not add significantly more metrics since we
could not keep up with the simpler tests we already had. Now that
we had change point detection, we wanted to be able to track and
process these additional metrics.

There were fundamentally two ways we could add these new
metrics: 1. Have tests measure the metrics of interest and then
compute and report the relevant statistics to the results system. 2.
Have tests measure the metrics of interest and report all of those
results to the result system. In the second case the test would report
the metric for every operation — much more data — and let the
results system calculate the statistics. After some review, we decided
we preferred case 2, but that we also had to support case 1.

We preferred the more data intensive case 2 because of what it
enables. If we run a test that executes 10k operations, the system
will report the latency for each of those 10k operations. First, having
all the data allows us to change and recompute the statistics in the
future. For example, if we decide we need the 99.99% latency in
addition to the existing statistics, we can add it and recompute.
If the test itself was computing the statistics we would have to
rerun the test. Additionally, it allows us to view performance over
test time, within a test and from the test’s perspective (client side).
This gives us a much more dynamic view of the performance of
the system. We chose our preferred case, and it was paired with
work on our open-source performance workload generation tool
Genny [7]. We created a new service called Cedar [5] to store the
results and calculate the statistics, and a tool called Poplar [6] to
help report the results from the testbed to Cedar. Both are open
source and part of our continuous integration system ecosystem [4].

While we chose the detailed case, we decided we also had to
support the case in which tests computed their own statistics. The
reason for this was simple: in addition to workloads written in

Genny, we also run third party industry standard benchmarks in
our regression environment (e.g., YCSB [8, 9]). Those tests already
generate their own statistics, and it is not reasonable to adapt each
such workload to report the metrics for every operation. The system
we built handles both the case of getting all the raw results and the
case of receiving the pre-aggregated data.

The new system was just that, a new system. We needed to
integrate it into our production systems without breaking anything.
The test result history is important both to the result display as
well as the change point analysis, so we could not just turn off the
old system and turn on the new. Instead we needed to make the
old system and the new work together in the UI. We also needed
to make it possible to handle the increase in information without
completely overwhelming the build baron team2.

Figure 1 shows a snapshot of the existing build baron triage
page and Figure 2 shows a snapshot of the new triage board. These
pages are setup to enable the build barons to triage detected change
points, create JIRA tickets, and assign those tickets to teams. We
aggregate all change points for a given commit revision into one
line by default to simplify processing. Each group of change points
can be expanded to show all the impacted tests and configurations,
as is done for one group in Figure 2.

For now we have placed all the new data on a new tab called
“Change Points - Expanded Metrics”. Adding a new tab is not opti-
mal, but it does allow us to update and experiment with the new
system with no fear of breaking our existing system and the pro-
cessing of the legacy “Change Points” tab. Eventually we expect
that the two tabs will merge together. The new tab has the addi-
tional column “Measurement”. The argument in the field is a regular
expression allowing tight control and filtering for the build baron.
For now, the system is setup to display three such metrics (50th,
95th, and 99th percentile latencies). We expect to add more metrics
to be triaged, as well as migrating the legacy metrics to this page
in the future. The page also shows for each change the date the
change was committed (Date) as well as the date on which the
change point was calculated (Calculated On). The first is useful for
understanding the development of the software, while the latter is
useful for insight into the change point detection process. A change
point that has been calculated recently is the result of more recent
test executions. Both dates replace the somewhat ambiguous “create
time” on the original page.

We also display trend graphs for each test, showing the evolution
for a performance result over time, as the software is developed. The
graphs are included on the page summarizing results for each task.
As in the case of the triage page, we worried about overwhelming
the users with additional results, so we added a pull down enabling
the user to select which metric to display. Figure 3 shows a particu-
larly interesting example of the value of these additional metrics
and graphs. We detected a small change in average throughput, but
further investigation showed a clearer change in the 90th percentile
latency, while there was no change in the median latency. This
information makes it easier to debug the issue, as it clearly is not
the common path that is slower, but rather something making a
small fraction of the operations significantly slower.

2The results discussed in this section are in addition to the increase in results discussed
in Section 3

Session 1: Testing, Measurement and Profiling  ICPE ’21, April 19–23, 2021, Virtual Event, France

35



ICPE ’21, April 19–23, 2021, Virtual Event, France David Daly

Figure 1: The existing build baron triage page is used by the build barons to triage change points on the existing data.

Figure 2: The new build baron triage page is used by the build barons to triage change points detected on the new, expanded
metrics.

6 LOWERING THE PERFORMANCE IMPACT
OF SYSTEM ISSUES

We run many of our performance tests in the Cloud and have done
work to reduce the noise and increase the reproducibility of that
system [14]. Sometimes there are performance problems on the
testbed itself. We use “canary tests” to detect that. A “canary test” is
a test that tests the testbed instead of software under test. In normal
operation we expect the results for our canary tests not to change
over time.

The canary tests are tests just like any other test, but treating
them the same leads to some challenges. First, anyone looking at
the result needs to know what is a canary test and what is not.
We do not want server engineers spending any time diagnosing
canary test failures. At the same time, we also do not want a server
engineer diagnosing a performance change on a non-canary test
when a canary test has also failed. Ideally, we would discard that
result because it is suspect, and rerun those performance tests. If

we were able to completely discard every (or even most) case of
significant noise due to the system, it makes the job of the change
point detection algorithm that much easier.

We set out to lower the impact of system noise by leveraging
the data from our change point detection algorithm. We recognized
that while changes in server performance manifested as changes
in the distribution on our performance test results, system noise
was different. The common problem was a bad run with results
that did not match recent history. This is a problem of finding
statistical outliers, not of finding change points. As NIST defines it,
“An outlier is an observation that appears to deviate markedly from
other observations in the sample.” [1].

There are a number of existing outlier detection algorithms. We
implemented the Generalized ESD Test (GESD) [2, 27] algorithm.
The code is included in our open source signal processing reposi-
tory (https://github.com/10gen/signal-processing). Specifically, we
wanted to use the outlier detection to detect outliers on canary

Session 1: Testing, Measurement and Profiling  ICPE ’21, April 19–23, 2021, Virtual Event, France

36



Virtuous Cycle in Performance Testing ICPE ’21, April 19–23, 2021, Virtual Event, France

Figure 3: Three trend views of the same test, showing a per-
formance regression. All three show performance over time.
The top graph shows throughput, the middle shows median
latency, and the bottom graph shows 90th percentile latency.
The regression is visible on the throughput and 90th per-
centile latency graphs, but not for the median latency.

Figure 4: Performance for one of our canary workloads over
time. It shows a real, if short lived, change in testbed perfor-
mance, causing the outlier detection based system to rerun
many tests.

tests. An outlier on a canary test would indicate something strange
happened on the testbed. We want to not use the data from such
a run, and ideally rerun those experiments. When an outlier is de-
tected on a canary test, we would automatically suppress the test
results for that task and reschedule the task.

While reasonable in theory, we ran into some challenges. Figure 4
shows an example of one such challenge: We had a short period of
time in which the underlying system got faster. This may have been
a temporary configuration change. Essentially every task that ran
after that change was flagged as an outlier and re-run. In fact, they
were all run 3 or more times. This cost a lot of money and (worse)
slowed our ability to get results. Also, as it was a real change in
the underlying testbed performance, the results did not noticeably
change with any of the re-runs. In this case we spent a lot of money
for no improvement. We added a system to “mute” such changes,
but it required active intervention to avoid the worst cases. This
change did not last long, but it was long enough to cause more
outliers and re-runs when the performance returned to normal.

In other cases the system would rightly detect a transient change
in testbed performance, but the underlying issue lasted for some

period of time. The tests would immediately rerun, but still get
the bad results. Only after waiting some period of time would the
performance return to normal on a rerun.

At the end of the day we disabled the system. It was not solving
our problem, but it was costing us money. We have kept the com-
putation running, so we have built up a wealth of data when we
come back to this area or decide to use outlier detection for other
challenges.

7 IMPROVED COMPARISON OF ARBITRARY
RESULTS

Our previous work on change point detection [10] only addressed
identifying when performance changed. It did nothing for compar-
ing two arbitrary builds to see if performance changed. There are
two common cases in which we want to compare arbitrary test
runs:

(1) Comparing performance from recent commits to the last
stable release.

(2) Comparing performance from a “patch” build (proposed
change). Does that patch change performance?

In the first case we want to determine the net performance
change over a period of time. Very commonly this is how we check
how our proposed release compares to the previous release. We
would like to know what is faster, what is slower, and what is more
or less stable now compared to then. There may be multiple changes
in performance for a given test across a release cycle. Change point
detection helps us understand each of those changes, but at the end
of the day we need to let our customers know what to expect if they
switch to the newer version. This check also provides a backstop to
change point detection to make sure nothing significant has slipped
through the triage process.

In the second case the engineer needs to know what impact their
changes will have on performance. We have tools to compare the
results from two arbitrary test executions, but it does not have
any sense of the noise distribution for the test. It makes it hard
to tell which differences are “real” and which are just artifacts of
the noise of those particular runs. A common pattern to deal with
this is to compare all the data, sort by percentage change, and
inspect the tests with he largest changes. Invariably the largest
reported changes are due to noise, usually from tests that report a
low absolute result value (e.g., latency of something fast), leading
to large percentage changes. An advanced user may learn which
tests to ignore over time, while a less experienced user may either
use brute force, or enlist an experienced user. Neither solution is a
good use of time.

The change point detection system does not directly improve our
ability to compare performance across releases, however, its results
do enable smarter comparisons. All of the data from the change
point detection algorithms is available in an internal database. That
data includes the location of change points, as well as sample mean
and variances for periods between change points. The sample mean
averages out some of the noise, and the sample variance gives us a
sense of how much noise there is. We can use that data a number of
ways to improve the comparison. The simplest may be to compare
means instead of points, and use the variance data to understand
how big the change is relative to regular noise.

Session 1: Testing, Measurement and Profiling  ICPE ’21, April 19–23, 2021, Virtual Event, France

37



ICPE ’21, April 19–23, 2021, Virtual Event, France David Daly

After a few iterations we had the following system:
• Select two revisions to compare.
• Query the database for all the raw results for each revisions.
• For each result query the database for the most recent change
point before the given revision. Save the sample mean and
variance for the region after the change point.

• Compute a number of new metrics based on those results.
The new computed values were:
• Ratio of the sample means
• Percentage change of the sample means
• Change in means in terms of standard deviation

Note that there are better statistical tests we could use (see future
work in Sec 9). Comparing means and standard deviations is not
technically correct for determining the probability that a change is
statistically significant. However, it is both easy to do and proved
useful for a prototype.

We exported the data as a CSV file and operated on it in a spread-
sheet for a first proof of concept. Our first instinct was to sort all
the results by how many standard deviations a change represented,
however, that did not work well. It turned out that some of our
tests reported very low variances. The top results ended up being
very small changes in absolute terms, but huge changes in terms
standard deviation. With that in mind, we shifted to a more complex
strategy: we filtered out all results that were less than a 2 standard
deviation change, and then sorted by percentage change. We felt
comfortable doing that since we did not need to catch every change
for the current use, only the most significant (in a business sense,
not a statistical one) changes. A change that was less than two
standard deviations was unlikely to be the performance change
that the engineering organization had to know about. Once we
filtered on number of standard deviations and sorted on percentage
change, the signal greatly improved. The most important changes
rose to the top and were reviewed first.

We regularly need the ability to compare two commits as part of
a monthly update on performance. Once a month we checkpoint the
current status of performance for the development branch against
the previous month, and against the last stable release. This gives
us the big picture on the state of performance, in addition to the
detailed results from change point detection. Figure 5 shows a
spreadsheet we created using this process for a recent monthly
checkpoint on the state of performance. The figure shows the two
standard deviation filter applied (“Deviation” column), and then
sorted on the “Percent Change” column. This view enabled us to
quickly review all the real changes and avoid changes that were
due to noisy tests. For example, the top test is 250% faster across
the comparison. While we have shown performance improvements
in the figure, we review both improvements and regressions to get
a complete view of the state of performance.

In practical terms, this POC has lowered the cost of reviewing
the monthly build from multiple hours, to somewhere between 30
and 60 minutes. Additionally, all of that time is now productive time
looking at real issues. If there are more issues, it takes more time,
and if there are fewer, it takes less time. We expect to transition
this view from the CSV and proof of concept stage, into another
page in our production system available to all engineers. We also
expect to implement more rigorous statistical tests.

Release Cycle 4.2.0 4.4.0

Total Tickets 273 393
Resolved Tickets 252 346
Percent Resolved 92.3% 88.0%
Resolved by Release 205 330
Percent Resolved by Release 75.1% 84.0%
Release Duration 412 352
Tickets per Day 0.66 1.12

Table 3: Statistics on performance related JIRA tickets over
the previous two release cycles.

Release Cycle 4.2.0 4.4.0

Code related 28.57% 43.06%
Test related 8.73% 7.80%
Configuration related 0.00% 0.58%
System related 28.17% 24.86%
Noise related 7.94% 6.94%
Duplicate ticket 11.11% 14.45%
Not labeled 16.67% 2.31%

Table 4: Breakdown of root causes for performance JIRA
tickets.

8 IMPACT
The combination of the changes described above has had notice-
able impact on our performance testing infrastructure and on our
engineering organization. The basic way we track a performance
change is a JIRA tickets. We compiled statistics from our JIRA tick-
ets to quantify part of that impact. The statistics are aligned with
our release cycle, which is nominally a year long.

We had considerably more performance related BF tickets in
4.4.0 than 4.2.0, over a shorter release cycle. Tickets per day went
from 0.66 to 1.12, a 70% increase. We had a large increase in tickets,
but simultaneously increased the percentage of tickets resolved by
the release. Those are both positive signs, especially since we spent
the same amount of time triaging those changes, but it is only truly
positive if the ticket quality has stayed the same or improved.

Table 4 shows quality information about our performance tickets.
We label every ticket based on its cause. The best case is for the
change to be code related: that indicates that the ticket captures a
performance change based on changes in the code under test. These
are tickets telling us something useful about our software. There
are many other causes for tickets however. Performance changes
can be created due to changes in the test (test related) or the testbed
configuration (configuration related), the system itself can directly
cause an error (system related), or noise in the system can create
a false alert (noise related). Sometimes we create multiple tickets
which we eventually determine are the same cause (duplicate ticket).
Finally, some tickets are not labeled at all because they do not have
a clear cause.

The fraction of code related tickets has gone up, even as the ticket
volume has also gone up. We can conclude that we are generating
more tickets, with the same amount of time dedicated to triage, and

Session 1: Testing, Measurement and Profiling  ICPE ’21, April 19–23, 2021, Virtual Event, France

38



Virtuous Cycle in Performance Testing ICPE ’21, April 19–23, 2021, Virtual Event, France

Figure 5: Spreadsheet view of performance comparing performance of two commits, taking advantage of the statistics gener-
ated by the change point detection algorithm.

Release Cycle 4.2.0 4.4.0

Performance improvements 21 40
Percentage of tickets that are improvements 7.69% 10.18%
Days per performance improvement 19.62 8.80
Performance regressions 15 13
Percentage of tickets that are regressions 5.49% 3.31%
Days per performance regression 27.47 27.08

Table 5: Breakdown on the number and rate of performance
JIRA tickets closed as improvements and regressions over
the past two release cycles.

the tickets are of higher quality than last year. In other words, we
are doing our job better than last year. While we are happy with
that improvement, we also recognize that less than half our tickets
are about changes in the software under test. We would like to
continue to drive that percentage higher.

Interestingly, the category with the largest drop are tickets that
are not labeled. This is due to us doing a better job of diagnosing
tickets and making them actionable. It is not the case that we were
just missing code related tickets with the labels in the past. The
number of duplicates is the only non-code related category to go up
noticeably. We attribute this to the increase load of change points
and tickets on the build barons.

The last measure of goodness is how many tickets were fixed
(or not), and how many things improved. Table 5 shows those
statistics. Before discussing the numbers we note that we count any
net improvement as an improvement and any net regression closed
without fixing as a regression, regardless of its practical significance.
We had comparable number of accepted regressions year over year,
while nearly doubling the number of improvements. So, even with
the large increase in tickets, we still only get a regression that
is not fixed about once a month, and we went from getting an
improvement every 20 days to one every 9 days.

Clearly our system is working better. We have more tickets and
they are higher quality. In addition to each component performing
better, we believe that we have enabled a virtuous cycle. Perfor-
mance issues get diagnosed faster, making them easier to fix, so

more issues get fixed. Development engineers get used to receiving
performance tickets and know they are high quality and opera-
tional. Since the system provides useful information, engineers are
more likely to look to fix their regressions and to add more perfor-
mance tests. As we add more performance tests, we are more likely
to catch performance changes. One last improvement is that with
increased trust, engineers are more likely to test their key changes
before merging, so we can avoid some performance regressions
ever being committed to the development mainline.

9 FUTUREWORK AND CONTINUING
CHALLENGES

Our current performance testing system enables us to detect per-
formance changes during the development cycle, and to enable our
developers to understand the impact of their code changes. While
we have made great progress, there is still much that we would like
to improve in the system.We expect that everything (commits, tests,
results, changes) will continue to increase, putting more load on
our system. Additionally, we are increasing our release frequency
to quarterly [21], which will further increase the load on the system.
In the near term we are working to improve the ability to compare
arbitrary versions, building on the work described in Section 7.
This will involve both using better statistical tests, such as Welch’s
t-test [28] (assuming normality) or Mann-Whitney U-test [19] in
place of the simple variance based calculation, as well as building
the view into our production system. This will help us to compare
performance between releases, as well as help developers determine
if their proposed changes impact performance.

There is still much we can do on the change point detection itself.
In order to simplify the implementation, all tests and configurations
are treated as separate and independent time series by the change
point detection algorithm. We think there is a large opportunity to
consider correlations between tests and configurations. It is very
infrequent that one test and configuration changes separately from
all others. We should be able to exploit correlated changes to better
diagnose and describe real performance changes, and exclude noise.

There is still too much noise in the system, including some
cases of particularly nasty noise. Two examples include tests that
show bimodal behavior and unrelated system noise. Some tests will
return one of two different results, and may stay with one of those

Session 1: Testing, Measurement and Profiling  ICPE ’21, April 19–23, 2021, Virtual Event, France

39



ICPE ’21, April 19–23, 2021, Virtual Event, France David Daly

results for a period of time before reverting to the other (e.g., 5
tests runs at 20 followed by 4 tests runs at 10). The change point
detection algorithm has a very hard time with bimodal behavior
as it looks like a statistical change. Today, a human has to filter
these changes out. There are also cases of system noise that are real
performance changes due to compiler changes. Sometimes these are
due to code layout issues letting a critical code segment fit within or
not fit within a performance-critical hardware cache. These issues
manifest as deterministic changes in performance, but there is not
much we can do about them except filter them out by hand.

Ultimately, the goal of all of this work can be described as a multi-
dimensional optimization problem. We want to simultaneously:

• Maximize the useful signal on performance versus noise and
distractions.

• Maximize the test and configuration coverage.
• Minimize the cost of performance testing.
• Minimize the time from creation of a performance change to
its detection, diagnosis, and fix. (the limit of this is catching
a regression before commit).

We have work to do on all of these points. Often, in the past, we
have found ourselves with bad options, which explicitly trade off
one point for another. We hope to develop techniques that improve
one or more items above at the same time, without hurting the
others.

10 RELATEDWORK
Related work has looked at testing performance in continuous inte-
gration systems. Rehman et al. [26] describe the system developed
for testing SAP HANA and stressed the need for complete automa-
tion. The system compared results to a user specified limit in order
to determine a pass fail criterion. The authors also discuss chal-
lenges in reproducibility, isolation, and getting developers to accept
responsibility for issues.

Continuous integration tests need to be fast, but standard bench-
marks require extended periods of time to run. Laaber and Leit-
ner [17] looked at using microbenchmarks for performance testing
in continuous integration to deal with this problem. They found
some, but not all microbenchmarks are suitable for this purpose.

Once performance tests are included in a CI system, the next
challenge is to efficiently isolate the changes. Muhlbauer et al. [22]
describe sampling performance histories to build a Gaussian Pro-
cess model of those histories. The system decides which versions
should be tested in order to efficiently build up an accurate model of
performance over time and to isolate abrupt performance changes.
The paper addresses a problem similar to our previous work on
detecting change points in test histories [10], although our previous
work assumes performance test results have a constant mean value
between change points.

Test result noise is an ongoing challenge. Several papers investi-
gate both sources of noise [12, 20] and quantifying the impact of
that noise [18]. Duplyakin et al. [12] use change point detection to
identify when the performance of the nodes in a datacenter change.
Their objective is to identify and isolate those performance changes
in order to keep them from impacting experiments run in the data-
center. The paper by Maricq et al. [20] includes a number of practi-
cal suggestions to reduce performance variability. The suggestions

should be useful for anyone running performance benchmarks, and
we perform many of these suggestions in our system. They also
show the lack of statistical normality in their results, validating our
design choice to not assume normality. Finally, Laaber et al. [18]
compare the variability of different microbenchmark tests across
different clouds and instance types on those clouds, demonstrating
that different tests and different instance types have wildly differ-
ent performance variability. Running benchmark test and control
experiments on the same hardware can help control the impact of
that noise.

The related area of energy consumption testing shows similar
issues with test noise. Ournani et al. [24] describe the impact of CPU
features (C-states, TurboBoost, core pinning) on energy variability.
We have observed similar impacts on performance variability from
those factor in our test environment [14]. Other work looks at
extending the state of the art for change point detection in the
presence of outliers [25]. Our system is sensitive to outliers in
the results as well. Our efforts on outlier detection would have
helped reduce the impact of outliers in our use case, if it had been
successful.

Finally, there is ongoing work related to our ultimate goal of
more efficiently detecting changes while simultaneously increasing
our overall performance test coverage. Grano et al. [13] investigated
testing with fewer resources. While this work is focused on correct-
ness testing, the principles can be extended to performance testing.
Multiple papers [11, 15] try to identify which software changes
are most likely to have performance impact in order to prioritize
the testing of those changes. Huang et al. [15] use code analysis
of software changes to decide which changes are most likely to
impact which tests, while de Oliveria et al. [11] use many indica-
tors (including static and dynamic data) to build a predictor of the
likelihood of a performance change in the tests based on a given
software change. Other work has focused on efficiently finding
performance changes across both versions and configurations [23]
and is specifically focused on minimizing test effort while enabling
the testing of potentially huge space of configuration options and
software changes. We hope to build on these efforts to improve the
efficiency of our performance testing.

11 ACKNOWLEDGMENTS
The work described in this paper was done by a large collection
of people within MongoDB. Key teams include the Decision Au-
tomation Group (including David Bradford, Alexander Costas, and
Jim O’Leary) who are collectively responsible for all of our analysis
code, the Server Tooling and Methods team who own the testing
infrastructure, the Evergreen team which built Cedar and Poplar
for the expanded metrics support, and of course our dedicated build
baron team whom make the whole system work.

We would also like to thank Eoin Brazil for his feedback on drafts
of this paper.

12 CONCLUSION
In this paper we have reviewed a number of recent changes to our
performance testing infrastructure at MongoDB. This builds on
previous work we have done to automate our performance testing
environment, reduce the noise in the environment (both actual

Session 1: Testing, Measurement and Profiling  ICPE ’21, April 19–23, 2021, Virtual Event, France

40



Virtuous Cycle in Performance Testing ICPE ’21, April 19–23, 2021, Virtual Event, France

noise and its impact), and better makes use of the results from our
performance testing. This infrastructure is critical to our software
development processes in order to ensure the overall quality of the
software we develop.

We first reviewed the general increase in load on the infrastruc-
ture. Each year we run more tests in more configurations while our
developers commit more changes to our source repository. Overall
we had a more than 3x increase over two years in the total possible
number of test results to generate and analyze.

Paired with the general increase in load, we focused on improv-
ing the scalability of our ability to process those results and isolate
performance changes. We also added the ability to report more and
more descriptive results from tests, enabling saving information
about every operation within a performance test. This required new
systems to store and process the results, as well as new displays for
triaging the results.

Attempting to better control system noise, we built a system to
detect when the performance of our testbeds changed, and therefore
we should not trust the results of our performance tests. While
promising in theory, in practice this did not work as well as we had
hoped, and ultimately we disabled it.

Finally, we enabled better comparison of results between arbi-
trary commits. This was a large open challenge for us. Building
upon the change point detection system we use to process our
results, we were able to give a much clearer view of the significant
changes between arbitrary commits, making it much easier to reg-
ularly check the current state of the development software against
the last stable release. We continue to both refine this comparison
of results and lift it into our production environment.

The cumulative impact of these changes and our previous work
has been to enable a virtuous cycle for performance at MongoDB.
As the system is used more, we catch and address more performance
changes, leading us to use the system more. This virtuous cycle
directly increases the productivity of our development engineers
and leads to a more performant product.

REFERENCES
[1] [n.d.]. 1.3.5.17. Detection of Outliers. https://www.itl.nist.gov/div898/handbook/

eda/section3/eda35h.htm
[2] [n.d.]. 1.3.5.17.3. Generalized Extreme Studentized Deviate Test for Outliers.

https://www.itl.nist.gov/div898/handbook/eda/section3/eda35h3.htm
[3] [n.d.]. Evergreen Continuous Integration: Why We Rein-

vented The Wheel. https://engineering.mongodb.com/post/
evergreen-continuous-integration-why-we-reinvented-the-wheel

[4] [n.d.]. Evergreen Ecosystem. https://github.com/evergreen-ci/evergreen
[5] [n.d.]. Package cedar. https://godoc.org/github.com/evergreen-ci/cedar
[6] [n.d.]. Package poplar. https://godoc.org/github.com/evergreen-ci/poplar
[7] 2020. Genny workload generator. https://github.com/mongodb/genny original-

date: 2018-02-12T19:23:44Z.
[8] 2020. YCSB. https://github.com/mongodb-labs/YCSB original-date: 2015-03-

17T18:10:30Z.
[9] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell

Sears. 2010. Benchmarking cloud serving systems with YCSB. In Proceedings of
the 1st ACM symposium on Cloud computing - SoCC ’10. ACM Press, Indianapolis,
Indiana, USA, 143. https://doi.org/10.1145/1807128.1807152

[10] David Daly, William Brown, Henrik Ingo, Jim O’Leary, and David Bradford.
2020. The Use of Change Point Detection to Identify Software Performance
Regressions in a Continuous Integration System. In Proceedings of the ACM/SPEC
International Conference on Performance Engineering (ICPE ’20). Association for
Computing Machinery, Edmonton AB, Canada, 67–75. https://doi.org/10.1145/
3358960.3375791

[11] Augusto Born De Oliveira, Sebastian Fischmeister, Amer Diwan, Matthias
Hauswirth, and Peter F. Sweeney. 2017. Perphecy: Performance Regression

Test Selection Made Simple but Effective. In 2017 IEEE International Confer-
ence on Software Testing, Verification and Validation (ICST). 103–113. https:
//doi.org/10.1109/ICST.2017.17

[12] Dmitry Duplyakin, Alexandru Uta, Aleksander Maricq, and Robert Ricci. 2020. In
Datacenter Performance, The Only Constant Is Change. In 2020 20th IEEE/ACM
International Symposium on Cluster, Cloud and Internet Computing (CCGRID).
370–379. https://doi.org/10.1109/CCGrid49817.2020.00-56

[13] Giovanni Grano, Christoph Laaber, Annibale Panichella, and Sebastiano
Panichella. 2019. Testing with Fewer Resources: An Adaptive Approach to
Performance-Aware Test Case Generation. IEEE Transactions on Software Engi-
neering (2019), 1–1. https://doi.org/10.1109/TSE.2019.2946773 arXiv: 1907.08578.

[14] Henrik Ingo and David Daly. 2019. Reducing variability in performance tests
on EC2: Setup and Key Results. https://engineering.mongodb.com/post/
reducing-variability-in-performance-tests-on-ec2-setup-and-key-results

[15] Peng Huang, Xiao Ma, Dongcai Shen, and Yuanyuan Zhou. 2014. Perfor-
mance regression testing target prioritization via performance risk analysis.
In Proceedings of the 36th International Conference on Software Engineering
(ICSE 2014). Association for Computing Machinery, Hyderabad, India, 60–71.
https://doi.org/10.1145/2568225.2568232

[16] Henrik Ingo and David Daly. 2020. Automated system performance testing at
MongoDB. In Proceedings of the workshop on Testing Database Systems (DBTest
’20). Association for Computing Machinery, New York, NY, USA, 1–6. https:
//doi.org/10.1145/3395032.3395323

[17] Christoph Laaber and Philipp Leitner. 2018. An evaluation of open-source soft-
ware microbenchmark suites for continuous performance assessment. In Pro-
ceedings of the 15th International Conference on Mining Software Repositories
(MSR ’18). Association for Computing Machinery, Gothenburg, Sweden, 119–130.
https://doi.org/10.1145/3196398.3196407

[18] Christoph Laaber, Joel Scheuner, and Philipp Leitner. 2019. Software microbench-
marking in the cloud. How bad is it really? Empirical Software Engineering 24, 4
(Aug. 2019), 2469–2508. https://doi.org/10.1007/s10664-019-09681-1

[19] H. B. Mann and D. R. Whitney. 1947. On a Test of Whether one of Two Random
Variables is Stochastically Larger than the Other. Annals of Mathematical Statistics
18, 1 (March 1947), 50–60. https://doi.org/10.1214/aoms/1177730491 Publisher:
Institute of Mathematical Statistics.

[20] Aleksander Maricq, Dmitry Duplyakin, Ivo Jimenez, Carlos Maltzahn, Ryan
Stutsman, and Robert Ricci. 2018. Taming Performance Variability. In 13th
$\{$USENIX$\}$ Symposium on Operating Systems Design and Implementa-
tion ($\{$OSDI$\}$ 18). 409–425. https://www.usenix.org/conference/osdi18/
presentation/maricq

[21] Mat Keep and Dan Pasette. 2020. Accelerating Delivery with a New Quarterly
Release Cycle, Starting with MongoDB 5.0 | MongoDB Blog. https://www.
mongodb.com/blog/post/new-quarterly-releases-starting-with-mongodb-5-0

[22] Stefan Muhlbauer, Sven Apel, and Norbert Siegmund. 2019. Accurate Modeling
of Performance Histories for Evolving Software Systems. In 2019 34th IEEE/ACM
International Conference on Automated Software Engineering (ASE). IEEE, San
Diego, CA, USA, 640–652. https://doi.org/10.1109/ASE.2019.00065

[23] Stefan Mühlbauer, Sven Apel, and Norbert Siegmund. 2020. Identifying Software
Performance Changes Across Variants and Versions. In 2020 35th IEEE/ACM
International Conference on Automated Software Engineering (ASE). 12. https:
//doi.org/10.1145/3324884.3416573

[24] Zakaria Ournani, Mohammed Chakib Belgaid, Romain Rouvoy, Pierre Rust, Joel
Penhoat, and Lionel Seinturier. 2020. Taming Energy Consumption Variations In
Systems Benchmarking. In Proceedings of the ACM/SPEC International Conference
on Performance Engineering (ICPE ’20). Association for Computing Machinery,
New York, NY, USA, 36–47. https://doi.org/10.1145/3358960.3379142

[25] Paul Fearnhead and Guillem Rigaill. 2019. Changepoint Detection in the Presence
of Outliers. J. Amer. Statist. Assoc. 114, 525 (2019), 169–183. https://doi.org/10.
1080/01621459.2017.1385466

[26] Kim-Thomas Rehmann, Changyun Seo, Dongwon Hwang, Binh Than Truong,
Alexander Boehm, and Dong Hun Lee. 2016. Performance Monitoring in SAP
HANA’s Continuous Integration Process. ACM SIGMETRICS Performance Evalu-
ation Review 43, 4 (Feb. 2016), 43–52. https://doi.org/10.1145/2897356.2897362

[27] Bernard Rosner. 1983. Percentage Points for a Generalized ESD Many-Outlier
Procedure. Technometrics 25, 2 (1983), 165–172. https://doi.org/10.2307/1268549
Publisher: [Taylor & Francis, Ltd., American Statistical Association, American
Society for Quality].

[28] B. L. Welch. 1947. The Generalization of ’Student’s’ Problem When Several
Different Population Variances are Involved. Biometrika 34, 1-2 (Jan. 1947), 28–35.
https://doi.org/10.1093/biomet/34.1-2.28 Publisher: Oxford Academic.

Session 1: Testing, Measurement and Profiling  ICPE ’21, April 19–23, 2021, Virtual Event, France

41

https://www.itl.nist.gov/div898/handbook/eda/section3/eda35h.htm
https://www.itl.nist.gov/div898/handbook/eda/section3/eda35h.htm
https://www.itl.nist.gov/div898/handbook/eda/section3/eda35h3.htm
https://engineering.mongodb.com/post/evergreen-continuous-integration-why-we-reinvented-the-wheel
https://engineering.mongodb.com/post/evergreen-continuous-integration-why-we-reinvented-the-wheel
https://github.com/evergreen-ci/evergreen
https://godoc.org/github.com/evergreen-ci/cedar
https://godoc.org/github.com/evergreen-ci/poplar
https://github.com/mongodb/genny
https://github.com/mongodb-labs/YCSB
https://doi.org/10.1145/1807128.1807152
https://doi.org/10.1145/3358960.3375791
https://doi.org/10.1145/3358960.3375791
https://doi.org/10.1109/ICST.2017.17
https://doi.org/10.1109/ICST.2017.17
https://doi.org/10.1109/CCGrid49817.2020.00-56
https://doi.org/10.1109/TSE.2019.2946773
https://engineering.mongodb.com/post/reducing-variability-in-performance-tests-on-ec2-setup-and-key-results
https://engineering.mongodb.com/post/reducing-variability-in-performance-tests-on-ec2-setup-and-key-results
https://doi.org/10.1145/2568225.2568232
https://doi.org/10.1145/3395032.3395323
https://doi.org/10.1145/3395032.3395323
https://doi.org/10.1145/3196398.3196407
https://doi.org/10.1007/s10664-019-09681-1
https://doi.org/10.1214/aoms/1177730491
https://www.usenix.org/conference/osdi18/presentation/maricq
https://www.usenix.org/conference/osdi18/presentation/maricq
https://www.mongodb.com/blog/post/new-quarterly-releases-starting-with-mongodb-5-0
https://www.mongodb.com/blog/post/new-quarterly-releases-starting-with-mongodb-5-0
https://doi.org/10.1109/ASE.2019.00065
https://doi.org/10.1145/3324884.3416573
https://doi.org/10.1145/3324884.3416573
https://doi.org/10.1145/3358960.3379142
https://doi.org/10.1080/01621459.2017.1385466
https://doi.org/10.1080/01621459.2017.1385466
https://doi.org/10.1145/2897356.2897362
https://doi.org/10.2307/1268549
https://doi.org/10.1093/biomet/34.1-2.28

	Abstract
	1 Introduction
	2 Review
	3 Organic Changes
	4 Better Processing of performance changes
	5 Making the System More Descriptive
	6 Lowering the Performance Impact of System Issues
	7 Improved Comparison of Arbitrary Results
	8 Impact
	9 Future Work and Continuing Challenges
	10 Related Work
	11 Acknowledgments
	12 Conclusion
	References


 
 
    
   HistoryItem_V1
   AddMaskingTape
        
     Range: all pages
     Mask co-ordinates: Horizontal, vertical offset 43.25, 719.92 Width 518.11 Height 17.81 points
     Origin: bottom left
      

        
     1
     0
     BL
            
                
         1
         AllDoc
         1
              

       CurrentAVDoc
          

     43.2463 719.9229 518.108 17.8073 
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2 2.0
     Quite Imposing Plus 2
     1
      

        
     8
     9
     8
     9
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     Range: From page 1 to page 1
     Mask co-ordinates: Horizontal, vertical offset 49.18, 77.16 Width 251.00 Height 83.95 points
     Origin: bottom left
      

        
     1
     0
     BL
    
            
                
         1
         SubDoc
         1
              

       CurrentAVDoc
          

     49.1821 77.1636 250.9983 83.9488 
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2 2.0
     Quite Imposing Plus 2
     1
      

        
     0
     9
     0
     1
      

   1
  

 HistoryList_V1
 qi2base





