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ABSTRACT
DevOps is an emerging paradigm that integrates the development
and operations teams to enable fast and efficient continuous de-
livery of software. Applications and services deployed on cloud
platforms can benefit from implementing the DevOps practice. This
involves using different tools for enabling end-to-end automation
to ensure continuous deployment and maintain good Quality-of-
Service. Self-Adaptive systems can support the DevOps process by
automating service deployment and maintenance without manual
intervention by employing a MAPE-K (Monitoring, Analysis, Plan-
ning, Execution- Knowledge) framework. While industrial MAPE-K
tools are robust and built for production environments, they lack the
flexibility to adapt large applications on multi-cloud environments.
Academic models are more flexible and can be used to perform
sophisticated self-adaption, but can lack the robustness to be used
in production environments. In this paper, we present a MAPE-K
framework that is built with existing Components-off-the-Shelf
(COTS) that interacts with each other to perform self-adaptive ac-
tions on multi-cloud environments. By integrating existing COTS,
we are able to deploy a MAPE-K framework efficiently to support
DevOps for applications running on a multi-cloud environment.
We validate our framework with a prototype implementation and
demonstrate its practical feasibility by a detailed case study done
on a real industrial platform.
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1 INTRODUCTION
DevOps[14] is a popular practice that enables the development and
operation teams to continuously coordinate and collaborate with
each other. By adopting DevOps practices and tools, it is possible
to build, deploy and manage services and applications seamlessly
while providing good Quality-of-Service (QoS) to the end users.
With more and more commercial enterprise software increasingly
being deployed on the cloud, it is important to adapt DevOps prin-
ciples for assuring good QoS for cloud-based applications.

Multi-cloud platforms aggregates multiple cloud providers (for
e.g., Amazon EC2,Microsoft Azure, Google Cloud Platforms, Private
Clouds) to achieve faster, easier and better application building
and deployment [3]. However, ensuring good QoS in multi-cloud
platforms requires a substantial level of automation and adaptation
in such heterogeneous hybrid platforms. This can be realized by
employing a MAPE-K (Monitoring, Analysis, Planning, Execution-
Knowledge) framework [4] [16][9], which deploys a feedback loop
that cycles through Monitoring, Analysis, Planning, and Execution
phases of a system, and shares data through a common Knowledge
base. To support autonomic computing, there are existing enterprise
products that follow theMAPE-K framework [10]. These autonomic
frameworks are robust and reliable as they are designed to handle
production applications. However, industrial MAPE-K frameworks
support limited analysis based on basic threshold-based monitoring
and planning [21]. This lack of flexibility limits the DevOps teams to
createmore sophisticated automation plans for complexmulti-cloud
applications. On the other hand, autonomous frameworks proposed
in academia are more flexible and can be applied to a wider variety
of analysis including machine learning models, analytical models,
control loops, etc. However, they are less robust and non-scalable
as many of them are not designed for production environments
[24].

In this paper, we explore the feasibility of developing an auto-
nomicMAPE-K framework for multi-cloud platforms by integrating
existing services and Components-Off-the-Shelf (COTS) software.
When we incorporate MAPE-K into applications to support DevOps
operations, we need to satisfy several requirements. Multi-cloud
application deployments must be dynamic in nature and require
automatic scaling capabilities in which service components can be
added or removed in response to incoming traffic without manual
intervention. They also require adaptive management that enables
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deployment and movement of service components across different
cloud providers. Providing good QoS in a multi-cloud platform
needs large-scale automated resource monitoring across several
cloud platforms, which is challenging to do since resource monitor-
ingmetrics are often tightly coupledwith individual cloud providers.
Additionally, the autonomic framework needs to be robust and
should be able to handle failures as applications in production need
to have high availability and stability. Essentially, we need to satisfy
the requirements of availability, scalability, autonomicmanagement,
multi-cloud integration and ease of deployment. Keeping these re-
quirements in mind, we answer the following research questions
in this work:

• RQ-1: Is it feasible to build a MAPE-K framework for multi-
cloud applications by integrating existing COTS and ser-
vices?

• RQ-2: What are the challenges of building such a frame-
work?

• RQ-3:What is the performance and efficiency of this frame-
work?

RQ-1 explores COTS and available industrial services to deter-
mine if they meet our requirements. The interactions between each
of technologies has to follow the MAPE-K model and needs to be
connected together seamlessly. RQ-2 identifies the various tasks
needed for integration and the challenges we experienced when
merging each of the services. RQ-3 evaluates the framework on
different self-adaptive use cases on a IBM benchmark application.
We applied our framework to scale services depending on the work-
load, repair the application by redeploying a failed service and scale
services in response to varying workloads on a multi-cloud setup.

Figure 1: DevOps to MAPE Loop

We support the DevOps lifecycle by incorporating the MAPE-K
framework with Continuous Deployment, which can be seen in
Figure 1. Continuous deployment refers to automatically releasing
the developer’s changes of the application into production [1]. Dur-
ing application deployment, the DevOps team needs to monitor
and manage their infrastructure to assure the services are properly
provisioned and are able to perform well [2]. Our framework in-
corporates the COTS and available services to perform each of the
phases in the MAPE-K loop. The DevOps teams can specify and de-
velop the requirements that need to be satisfied for their managed
application. The deployment and movement of the services on the
cloud(s) can then be autonomously managed by our framework.

The rest of the paper is organized as follows. We discuss the
background of DevOps and current research in self-adaptive sys-
tems in Section 2. We present our framework architecture and it’s
components in detail in Section 4. Section 5 outlines the concrete
implementations of the framework components and our java code.
We outline the setup of our testbed application for evaluation, and
describe the use cases and the challenges that we faced when ap-
plying our framework in Section 6. Finally, section 7 evaluates the
framework and presents experiment results from the use cases.

2 RELATEDWORK
Autonomous Systems on Clouds has been a popular research area
by practitioners and researchers, and integrating it for DevOps
environments is a developing area. Cukier [11] present their experi-
ence in using cloud services to scale a web application by following
DevOps and development patterns. They provide different solu-
tions when scaling a complex web application that has a mix of
cloud services in PaaS, SaaS and IaaS layer. Guerriero et. al. [13]
designed a DevOps tool to support QoS assessment, optimization
and QoS-aware runtime capacity allocation of cloud applications.
To support DevOps operations with an Autonomous Management
System (AMS), Barna et. al [7] proposed a method to develop an
(AMS) for multi-tier, multi-layer data-intensive containerized appli-
cations. They employ a self-tuning performance model that outputs
the performance metrics based on the application’s topology, and
plan for potential adaptive actions on the system if there are any
problematic situations based on the performance model. In our
research, we support the DevOps Operations by building an auto-
nomic framework that explores COTS and existing tools to provide
the DevOps teams with a high-level language equivalent to design
adaptive actions for their system.

In Multi and Hybrid Cloud Autonomous Systems, different meth-
ods have been proposed to help scale deployments across multiple
clouds. Wadia et. al [23] present a framework for elastic scaling
of cloud resources that is portable across a wide range of private
and public cloud providers and can be easily integrated with other
frameworks. Their framework uses a Monitoring Engine, Deci-
sion Engine, Provisioning Manager, and a Database to auto-scale.
Their decision engine is both rule-based and schedule-based, al-
lowing them to scale at a particular time or when the monitored
resource satisfies rules or policies. Miglierina et. al [19] propose a
self-adaptive technique for both in-cloud scaling policies and traffic
routing among the different cloud providers in a multi-cloud setup
with a control-theoretical approach. Loreti and Ciampolini [18]
propose an autonomic method to scale clusters of virtual machines
over a hybrid cloud for MapReduce jobs. Kang et al. [15] propose
an auto-scaling method to provide efficient resource utilization
for Hybrid clouds. Their auto-scaler method is designed to handle
variable workloads of modern applications, which must also meet
SLAs such as deadlines, cost-oriented and performance-oriented
policies. Ahn et. al design an auto-scaler that dynamically allocates
resources depending on the two patterns of jobs, Bag-of-Tasks and
workflow, in Hybrid Clouds [5]. Ahn and Kim also extend this work
by focusing on dynamically allocating VMs in Hybrid Clouds in
order to maximize resource utilization within a deadline and deal-
ing with task dependency in workflow application [6]. Yunchun
Li and Yumeng Xia [17] design a platform which can auto-scale
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web applications in hybrid cloud based on docker. They built a
hybrid scheduling controller, and use a combination of prediction
and reaction algorithms to scale docker containers of a web appli-
cation on a hybrid cloud. In this paper, our architecture follows
the MAPE-K framework, utilizing COTS and open-source services
performing the Monitor, Analysis, Planning and Execution stages
to autonomously manage Multi and Hybrid cloud applications.

Finite-state machine (FSM) is a design pattern that handles the
change from one state to another in response to some inputs, based
on a finite number of changes. Drumea and Popescu [12] discuss
implementing finite state machines in the software application do-
main, with a focus on web technologies. Rules and the ruleflow can
be modeled as finite-state machine with rules being used to transi-
tion from one state to the next [8]. Mor’n et. al [20] use a rule engine
to apply adaptive changes in Federated clouds, with the adoption
of Rule Interchange Format (RIF) to allow the portability of reusing
the rules on a different rule engine. In our previous research, we
used business rules to define security rules at an operational level
and created a flow of rules to assist developers and security analysts
in finding security vulnerabilities [22]. We extended this work by in-
corporating COTS and existing infrastructure management tools to
ensure automated DevOps management for enterprise applications.

3 REQUIREMENTS FOR DEVOPS
AUTONOMIC FRAMEWORK

In this section, we have established a set of requirements for a
MAPE-K framework that automates cloud deployment and supports
the DevOps process. These requirements were selected based on
current challenges in Cloud Automation for DevOps operations
and multi-cloud deployment for industry applications.

REQ-1: Availability Availability is a measure of how the sys-
tem is able to run without failure and how fast it recovers from
failure. Availability of a service is of primary importance in or-
der to provide good QoS to its end users. Services deployed on a
multi-cloud environment can often suffer from faults and must have
mechanisms in place to recover quickly. This is challenging since a
multi-cloud environment spans multiple cloud providers, with each
provider offering different mechanisms of control and management
over its own virtual infrastructure, which significantly increases
the room for faults throughout multiple services and cloud plat-
forms. Thus, we need highly reliable components that can be used
by multi-cloud services in a production environment. This is most
likely to be achieved by using established software components
that have been already tested in production.

REQ-2:Multi-cloud Integration In amulti-cloud environment,
service components are distributed across multiple cloud providers.
In such environments, features from different public cloud provider
platforms are required to be integrated with the service’s internal
private cloud. Since each cloud provider offers different mecha-
nisms to control its infrastructure, integrating features and services
as well as managing and automating service deployments becomes
complicated in a multi-cloud environment. This involves runtime
monitoring of data from multiple heterogeneous sources, deploying
services on different cloud provider platforms and networking them
with the proper security protocols in place.

REQ-3:AutonomousConfiguration forCloudApplications
Services deployed on multi-cloud environments require an auto-
nomic framework that is able to (a) deploy an application on multi-
clouds and (b) self-manage the deployed application at runtime. To
this end, the framework needs to handle a wide variety of input
metrics from different service components deployed on multiple
cloud platforms for sophisticated decision-making. Based on the
decision, the framework should be able to perform a wide variety
of different adaptive actions that can make changes to the service
at runtime for enabling better service management and optimizing
its QoS. Additionally, we also need to keep track of changes to our
multi-cloud resources so that they can be used for implementing
autonomic decision-making for managing our services in the future.

REQ-4: Scalability The autonomous framework needs to han-
dle monitoring millions of metrics and deploying thousands of
servers and applications across multiple data centers or cloud
providers. When new services are deployed or new cloud platforms
are integrated, the MAPE-K components needs to scale accordingly
and seamlessly. We need to be able to scale up services at runtime
in response to increased workload. Similarly, we should also be able
to scale down services when needed so as not to incur additional
cloud resource costs. This scaling has to be done automatically and
efficiently so as to not react to transient changes in the state of the
service.

REQ-5: Ease of Deployment We need to provide the DevOps
teams an autonomous framework that can be integrated with the
service without incurring significant levels of development, main-
tenance or learning effort. For this purpose, each of the COTS tools
selected for the MAPE-K framework must be intuitive to learn,
and easy to configure and implement. Selecting COTS tools with
extensive documentation and online support will help significantly
in this regard.
4 DEVOPS AUTONOMIC FRAMEWORK

ARCHITECTURE
The architecture of our proposed framework as shown in Figure
2 has three main components: (1) Cloud Monitor, (2) State Rule
Engine, and (3) Workflow Engine. These components interact with
each other in a continuous MAPE-K loop to conduct DevOps au-
tomation and integration for cloud-based services. For the monitor-
ing stage of MAPE-K, we deploy a Cloud Monitor that monitors and
records performance metrics of the managed services running on
different cloud platforms in a multi-cloud environment. The State
Rule Engine is responsible for the analysis and planning stages of
the MAPE-K loop where it queries events, i.e. a set of metrics from
the Cloud Monitor, to automate operational decisions for changing
the state of the deployed service, if needed. Finally, the execution
stage of the MAPE-K loop is automated by implementing these op-
erational changes by the Workflow Engine. We describe the Cloud
Monitor, State Rule Engine and Workflow Engine components of
our framework in details in Sections 4.1, 4.2 and 4.3 respectively.
We also describe how our architecture adequately satisfies the 5
requirements (REQ-1 to REQ-5) as discussed before in Section 3.

4.1 Cloud Monitor
The Cloud Monitor is used to monitor and collect performance
metrics for our managed service on the cloud. The Cloud Monitor
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Figure 2: Conceptual Framework

deploys a distributed cloud monitoring tool on each cloud provider
platform that runs the individual service components of the man-
aged service. The Cloud Monitoring tool runs continuously along
with the service to collect performance metrics at runtime. It can
be configured to collect a wide variety of such metrics at both the
application, platform and infrastructure level. In our case, we de-
signed the Cloud Monitor to collect resource utilization metrics for
each service component continuously at runtime at an interval of t
seconds. We note that the value of t is configured by the DevOps
team. This value needs to be tuned for each service component and
cloud platform, depending on what kind of metrics the DevOps
team wants to monitor as well as the performance overhead im-
posed by the Cloud Monitor on the service. In our case, we set the
value of t based on the observation that collecting the resource
utilization metrics from each service tier once every t seconds does
not impose a maximum performance overhead of more than 2%−3%.
For multi-cloud setups, the cloud monitoring tool is distributed on
all the cloud platforms, and the performance metric data from each
cloud platform is streamed to the State Rule Engine and aggregated.

The Cloud Monitor uses Service Discovery to find new instances
running the service for collecting the desired performance metrics
from these instances. Service Discovery is a process for automatic
detection of newly deployed services. In order to collect metrics
from an instance, the metrics have to be exposed to the Cloud
Monitor. This is done by using an exporter. An exporter exposes
the performance metrics of the instance on which a service tier is
running. The exporter is deployed on the same cloud instance as
the service component. When an exporter is initialized, it has an
exposed port which can be accessed by the CloudMonitor to capture
the metrics from the instance. When a new instance is deployed
alongwith its exporter, the CloudMonitor uses Service Discovery to
find the instance first. We note that the Cloud Monitor component
in our framework can also be used to work with the microservice
architecture. To this end, the exporter is deployed as a container on
each cloud instance running the service.We note that for containers,
the container technology itself exposes the performance metrics of

its containers, rather than each individual container. Thus, Service
Discovery is not required for new containers. Formulti-cloud setups,
each of the instances and container platform on the different cloud
platforms have their own exporter

The ability to deploy the Cloud Monitor on multiple cloud plat-
forms allows the DevOps team to enable multi-cloud integration
(REQ-2). The Cloud Monitor can automatically handle a large selec-
tion of input metrics from heterogeneous cloud platforms, which
fulfills the requirements of autonomic management (REQ-3) and
scalability (REQ-4). Finally, the DevOps team can easily deploy the
Cloud Monitor and integrate it with the rest of the components in
our framework (REQ-5). The Cloud Monitor provides an API for
the other components of our framework to access. The State Rule
Engine periodically queries the Cloud Monitor API. The query can
include functions, for e.g. sum and average of all metrics collected
over the past T seconds. The aggregated data is then sent to the
State Rule Engine as an event for the Analysis and Planning stage,
as described in detail in Section 4.2 next.

4.2 State Rule Engine
The State Rule Engine component is responsible for the Analysis
and Planning part of the MAPE-K loop to automate the deployment
of the services. The State Rule Engine is used to execute andmanage
operational rules. These rules are composed of a set of conditional
and consequential "When - Then" rules, for e.g., When a condition
occurs, Then perform a consequence or action. Since rules are simple
to learn and can be easily understood by the DevOps teams (REQ-5),
we implement the State Rule Engine to facilitate autonomic decision-
making. The rules are written by both operations and development
teams based on the events that are input from the Cloud Monitor to
the State Rule Engine. The State Rule Engine enables the DevOps
teams to collaborate for maintaining a desired level of QoS for the
deployed service at runtime in a large multi-cloud environment.
The operations team can utilize the rules to manage and deploy
the required infrastructure and platform for the services, while the
development team can autonomously configure their application
as services on the infrastructure at run-time through the rules.
As mentioned earlier, the State Rule Engine queries events from
the Cloud Monitor periodically every T seconds. These events are
then validated against the conditionals of the rules, where first the
"When" statement is checked to be satisfied against the current
values of the events. If the conditional is met, the consequential
statement is triggered, which performs the action from the "Then"
statement mentioned in the rules.

Figure 3: Analysis Stage of State Rule Engine
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The consequential ”then” statement can perform the Analysis
stage or Planning stage. We can take advantage of the stateful
and temporal properties of the State Rule Engine. The State Rule
Engine can store objects in memory. These objects include states,
metrics and deployment descriptions. Since these objects are stored
in memory, we can perform analysis by having rules that compare
new objects with the previous objects that are stored in memory.
The temporal property means that the objects can have a timestamp,
which allows for time-based conditionals in the rules.

For the Analysis stage, we use states in the State Rule Engine that
are used to define the current event of the service. The states take
advantage of the temporal property which allows us to compare the
timestamps of the state and another object. When a business rule is
triggered, it can begin the Analysis stage by inserting a new state.
An example of this can be seen in Figure 3, where in the beginning
Business Rule 1 compares the performance metric event against a
threshold value. If the metric meets or exceeds its threshold value,
the state of the service is transitioned to an initiated state and an
adaptive action needs to be taken, for e.g., scaling up the cloud
service. The Business Rule 2 is triggered after another sampling
interval and uses the temporal property to compare the current
performance metric event with the initiated state to check if the
metric still meets or exceeds the threshold value. If so, the business
rule causes the state to transition to the next state. This triggers the
Business Rule 3 in the sequence and starts the Planning stage which
prepares the service for scaling. However, if the performance metric
no longer meets the threshold value, Business Rule 3 is triggered
that cancels the state from the State Rule Engine, as shown in the
figure. The use of states in the State Rule Engine shows forward
chaining in action, where the rules are connected with each other
in sequence.

For the Planning stage, service deployment and modification
plans can be defined in the consequential "Then" statement. Plans
are the deployment details of the service. Examples of these deploy-
ment details include the number of container replicas, hostname,
cloud platform location, etc. The cloud operator can specify these
input values of the instance that will need to be deployed or modi-
fied. The new values will be sent as a POST request to the Workflow
Engine’s API, where the changes will be applied. The Workflow
Engine will then return a response, which gives the details of the
service. These details include the name and ID of the deployment,
the output value of the services (e.g. IP address) and the input values
that were specified by the rule. We then store these details into the
State Rule Engine, which can be used for future conditionals and
consequential. For example, if we need to deploy a second service
that requires the previous service, we can create a conditional state-
ment that will trigger if first service has already been deployed by
checking if the deployment details are in the State Rule Engine.

Using the State Rule Engine allows the DevOps team the robust-
ness (REQ-1) to maintain QoS in large services spanning multiple
cloud platforms by taking adaptive actions through a ruleset. Using
the State Rule Engine, we can orchestrate the scaling of multiple
services (REQ-4) deployed on different cloud platforms with rules
that are easy to understand. This means integration in the DevOps
process will be more efficient with minimal impact on the actual
application which improves the ease of deployment (REQ-5).

4.3 Workflow Engine
The Workflow Engine is responsible for deploying and managing
the services on the cloud through end-to-end automation. It is
responsible for the execution stage of MAPE-K by deploying the
changes based on the analysis and planning decisions from the
State Rule Engine. The Workflow Engine uses Templates, which
is a blueprint of the service and infrastructure details described
in high-level configuration syntax. We use Templates to describe
the instances and configurations required for running the service.
The services are then deployed by the commands issued by the
Workflow Engine based on the Template descriptions. Additionally,
the Workflow Engine is also responsible for automating the initial-
ization and runtime of the service. Once the service is deployed,
the Workflow Engine can modify and apply changes to the running
instances, for e.g. applying new updates to the service, making
changes in the requirement or taking auto-scaling decisions. Hence,
we can automate DevOps operation by integrating the convenience
of rules along with the Infrastructure-as-Code (IaC) capability of
the Workflow Engine.

The Templates are written in IaC scripts, and the IaC engine
is used to deploy and manage these Templates. The deployment
variables, such as the access keys, number of VMs, resource allo-
cation, etc, are specified by the DevOps teams and are obtained as
input from the State Rule Engine component. The Template can
select one or multiple cloud providers where the services will be
deployed, thus automating service deployments in a multi-cloud
environment (REQ-2). As Templates are high level descriptions of
our services, it is easy to keep track of a large number of growing
services, supporting the scalability of those services (REQ-4). Using
IaC scripts in the Workflow Engine also provides more flexibility
for the DevOps teams to describe, modify and manage the service
configurations at runtime with ease (REQ-5). We note that this is
better than designing, building, testing and maintaining an adaptive
framework from scratch, since each of the components has already
been extensively tested and designed for production environments.
Additionally, the industrial tools used for building the framework
components have the added advantage of good documentation and
tool support.

RQ-1: It is feasible to develop MAPE-K frameworks for multi-
cloud applications by reusing COTS. There is an abundance of
commercial and open source services, especially for implementing
the Monitoring and Execution components. The offering for Anal-
ysis and Planning is weaker, which suggests that more research
is needed in developing reusable services for these two activities.
A mitigation strategy is to use state-full rule engines, which can
encompass both Monitoring and Analysis. Rule engines, given
their low complexity but high expressiveness, can also act as a lan-
guage common denominator for a Development and Operations
team.

5 CONCRETE ARCHITECTURE
In this section, we present the COTS that we selected to build
our MAPE-K framework and describe the integration process for
each of the COTS. Table 1 show the COTs that we used for each
component, as well as other potential alternatives COTS.
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Component COTS

Cloud Monitor Prometheus, Graphite,
InfluxDB, Nagios, Zabbix

Rule Engine
Drools, IBM Operational
Decision Manager,
Red Hat Decision Manager, Grule

Automation Manager IBM Cloud Automation Manager,
Ansible, AWS CloudFormation

Container Platform Docker, Kubernetes
VM Exporter NodeExporter
Container Exporter cAdvsior

Table 1: COTS for Each Component

Figure 4: Concrete Architecture

5.1 Prometheus
For our Cloud Monitor implementation, we used Prometheus 1, an
open-source monitoring system and time-series database that can
collect runtime performance metrics at runtime. Prometheus stores
runtime performance metrics collected from an exporter into its
local memory and allows us to query the stored metrics. We can
use query functions provided by Prometheus to get the aggregate
time series data in real-time.

Prometheus integrates data exporters, including third party data
exporters, depending on the cloud platform where the service will
reside on. For capturing the performance metrics of containers, we
use a exporter from Google called cAdvisor 2 which provides the
resource usage of running containers. For Virtual Machine, we use
Prometheus’ NodeExporter to capture the performance metrics of
the hardware and the Operating System. In our implementations,
we deploy a cAdvisor container on each of the Docker Nodes on
our Docker Swarm Cluster. On the Docker Nodes, the cAdvsior
exposes its metrics on a specified port (the default port is 8000). In

1https://prometheus.io/
2https://github.com/google/cadvisor

the Prometheus configuration file, we define the cAdvisor port for
Prometheus. When new containers are deployed or old containers
are deleted, the performance metrics of these will automatically be
reflected on Prometheus. For our Hybrid Cloud implementation, we
use both cAdvisor on an Openstack-based community cloud, which
will be described in more detail in Section 6.1.4, and NodeExporter
on the EC2 Cloud. When we deploy a MongoDB instance on EC2
through the IaS script, we also specify in the Terraform script to
install and enable NodeExporter on the MongoDB EC2 instance.
In the Prometheus configuration, we enable Service Discovery to
filter VMs with the String "MongoDB" in its name. NodeExporter
metrics are exposed on port 9100 by default, which we specify
in the Prometheus Configuration for Service Discovery. For both
Node Exporter and cAdvisor, we have to specify the time interval
in which we want to collect the metrics in the Prometheus configu-
ration. For our experiments, we collected metrics of cAdvisor and
NodeExporter every 5 seconds. The default retention time of the
data is configured as 15 days.

5.2 Drools
For State Rule Engine implementation, we use Drools 3, an open-
source Business Rules Management System (BRMS). Drools is im-
plemented and located on-premise in the IBM Cloud. Drools is
Java-based, and it is implemented with our own Java code. This is
through Java Libraries provided by Drools that contain the Drools
core and compiler. We use the classes provided by the Drools Li-
braries in our Java Code which will be explained in more detail in
Section 5.4. The Drools Engine handles a Drools file that contains
a set of Business Rules. To get the metrics from the performance
monitor, we have an initial rule that calls the Prometheus API with
a query range that gets the utilization metrics from the last 30
seconds. The rule also uses one of our custom Java methods that
calculates the average CPU utilization from the query range of val-
ues. To insert the metric into the memory, we create a Drools Type
Declaration. While Drools works out of the box with plain Java
Objects as facts, the user may want to define a fact directly in the
Drools File instead of creating a new object in Java. Drools provides
the ability to declare new types in the Drools File to be used with
the business rules. In our use cases, we defined a new type called
Metrics with the attribute cpuAverage to store the CPU Average
from the query range and insert it into the Working Memory.

The auto-scaling decisions in the Business Rules are executed
using States and rule chaining. The first rule evaluates the perfor-
mance metrics against a threshold value in the rule conditional. If
the rule is triggered, a state is created and inserted into the working
memory. In the state, we set the name and state value. In our use
cases, the state value is binary, either the state is new and has not
completed the task, or the state has completed the task. Using states,
we can create a sequence of rules that react to each others changes,
known as Forward Chaining. Instead of reacting instantly to the
change in the performance metrics, we insert the state for the next
rule to evaluate. If the performance metric is still within the thresh-
old value of the condition and the state has been in the working
memory for 30 seconds, the next rule in the chain is triggered. This
rule sets the state as FINISHED for the third rule in the sequence.

3https://www.drools.org/
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When the state is set as FINISHED, the rule is triggered and begins
to call the Automation Manager API and scale the services accord-
ingly. The Drool Rules are able to call the CAM API through our
custom Java class to send the deployment and modification details
for the services.

5.3 CAM
For our Workflow Engine, we use IBM’s Cloud Automation Man-
ager (CAM) 4 to handle the deployment of services. It uses the
Terraform Engine 5 to deploy services that are described in IaC
scripts. Using IBM CAM strengthens the robustness in our auto-
nomic framework as it is an industry component rigorously tested
and deployed on actual production environments. CAM is deployed
on an internal IBM VMware Cloud. We first need to initialize a
cloud connection to our Cloud Platforms. We set the authentication
values of our Openstack-based and EC2 cloud connections. For
SAVI, we require the Project Name, Domain Name, Region Name
and Login credentials. For connecting to EC2, we need the Access
Key ID and Secret access key. We have to create a template for
our services that we plan on deploying on the cloud platforms. In
practice, the Template and its associated files is located in a GitHub
repository. When a new commit is placed on the repository, the
changes are reflected dynamically in the CAM Catalog.

resource "docker_service" "web-application" {
name = "${var.webname}"
mode {
replicated {

replicas = "${var.web_replica}"
}

}
task_spec {

container_spec {
image = "webapp/image-name"
env {

MONGO_PORT_27017_TCP_PORT="${var.mongodbport}"
}

}
}

}

Figure 5: CAM Template of Web Application

Our services and their configurations are described in the Ter-
raform template. An example of a portion of our service Template
for a web application can be seen in figure 5. This web application
resource is a deployment for Docker Swarm. As seen in the figure,
the var.variablename in the template are the input deployment vari-
ables. The number of replicas is one of the variables that we modify
with our Drools engine for scaling. Other configuration values that
can be seen are the name of the web application image and the en-
vironment variables in the env block. When the CAM API receives
the POST request to plan, modify and apply the Template, it begins
the process of deploying the instance on the cloud. Depending on
the service, it may take a few or several minutes for the deployment
4https://www.ibm.com/us-en/marketplace/cognitive-automation
5https://www.terraform.io/

to be complete. Once complete, CAM displays the output variables
automatically, such as the IP address.

5.4 Java Components
To be able to get Drools functioning with Prometheus and CAM,
we had to code and implement our own components to support the
framework. Since Drools is Java-based, all our components were
coded in Java. As seen in Figure 4, there are four main components:
(1) Drools Classes (2) Prometheus Classes (3) CAM classes and the
(4) Utilities. The Java libraries provided by Drools are imported in
a Core java component that we also coded. This core component
runs the Drool Engine and orchestrates between all the other com-
ponents. These Java components are used to connect Prometheus,
the Drools Engine and CAM in a working MAPE-K process.

The core components build the Drools Engine and input the
Drool rules file into the engine. Building the Drools engine with
our Java code first requires creating a Drools memory file system
which is provided by the Drools library. We then import our Drools
rule file location into the Drools memory file system. A Drools
configuration class is also declared to specify the STREAM option
which adds a duration attributes to the rules and memory man-
agement techniques to optimize real-time streaming. Finally, we
initiate a Drools session from the Drools file system detailed above.
The session is used to fire the rules periodically every 30 seconds.
The core component also periodically checks if there is any change
in the rule files. When there is a change in the Drools file, it rebuilds
the session with the modified Drools file.
RQ-2: The main challenge in developing a MAPE-K from COTS
is the development effort for integrating components. While the
integration of the Monitoring and Execution components with
the underling cloud and the application is of medium complexity,
integrating the Rule Engine with Monitoring Execution requires
some effort. For our particular case, we needed to write and test
1760 lines of code. A second challenge is the steep learning curve
of particular components as well as of the underlying cloud in-
frastructure.

6 EXPERIMENTS AND EVALUATION
In this section, we describe the testbed for our evaluations and how
we applied our MAPE-K framework to three self-adaptive use cases.

6.1 Testbed Applications
6.1.1 Acme-Air. In our work, we use a Web benchmark application
called Acme-Air 6 developed by IBM. Acme-Air is an implementa-
tion of multi-tier airline e-commerce microservice application com-
posed of two service components. The application-tier component
is a front-end NodeJS server connected to a data-tier component,
a MongoDB Database. These components are deployed as Docker
containers that can be run on different cloud platforms. We selected
the micro-service application mode and containerized the Acme-Air
components by enabling a Docker Swarm Cluster. This allows us
to to easily scale the Acme-Air web and database servers using our
framework. We used the httperf and JMeter workload generator
tools to generate traffic to our Acme-Air application which allows
6https://github.com/acmeair/acmeair
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us to control and stress the system metrics (CPU, memory, disk,
network) for our use cases.

6.1.2 HAProxy Loadbalancer. We implemented a containerized
HAproxy loadbalancer 7 for our Acme-Air web containers. We
deployed the HAProxy container on the Docker Swarm Cluster
where the Acme-Air services reside. We used the containerized
HAProxy loadbalancer to distribute the workload to the Acme-
Air containers within the cluster. We enabled service discovery
in the HAproxy configuration file by looking for newly deployed
AcmeAir containers by their container name and connecting them
to the loadbalancer. In our use cases, we instruct HAProxy to look
for container services that has "Acme-Web" as their service name.
When a new Acme-Web container is deployed, HAproxy looks
for that container that matches the name and port number that is
specified in the server-template setting. The workload generator
sends the requests to HAproxy loadbalancer as the entry point to
Acme-Web containers and we used the default round-robin load
balancing algorithm.

6.1.3 Docker Swarm. The Acme Air Service components service
components were containerized to be deployed on a Docker Swarm
Cluster. We set up a Docker swarm cluster with three nodes for our
deployment. All the nodes were on medium-sized VMs (2 VCPUs,
4GB Ram, and 40GB disk). Two of the nodes were worker nodes
while one of the nodes was both the master and worker. This al-
lowed us to run Acme-Web in a distributed environment with a
large amount of CPU and disk resources to stress using the work-
load generator. Since the web service and the mongoDB containers
connect with each other from different nodes, we create a Docker
overlay network. An overlay network sits on top of the host-specific
networks allowing all containers in the network to communicate.
The HAProxy loadbalancer is deployed on the master node which
has a public IP address and acts as the entry-point. All the other
worker nodes are internal and only have private IP addresses.

6.1.4 Cloud Platform. We deployed our services on SAVI Cloud
8 and EC2 Cloud9, while the BRE and Automation Manager were
deployed on premise in an internal VMWare Cloud 10. SAVI is a
community cloud provided as a partnership between universities,
research and industry in Canada. It is built on Openstack 11, which
is one of the many clouds supported by the services we used to
build our framework. For our Hybrid Cloud use case, we deploy the
Acme-Air database services on EC2. Since Workflow Engine will
need to use the API of both SAVI and EC2, the authentication values
are required by the Workflow Engine. For Openstack, these values
can be found in the Openstack RC File V3. The Authentication
URL, Region Name, Project Name, Domain Name, Username and
Password are required for the Workflow Engine to connect to the
Openstack API. For EC2, the Access Key ID, Secret Access Key and
Availability Zones are required for the Workflow Engine. Since
the State Rule Engine and Workflow Engine are located on the
IBM internal cloud, these components also need to also connect to
the performance monitor and the Docker Swarm API to scale the
7https://hub.docker.com/r/haproxytech/haproxy-debian
8https://www.savinetwork.ca/
9https://aws.amazon.com/ec2/
10https://cloud.vmware.com/
11https://www.openstack.org/

containers. Public floating IP is associated for the Docker Swarm
Master node and the Cloud Monitor instance. We use security
groups for both these instances, and create rules such that only IP
addresses of State Rule Engine and Workflow Engine can access
the exposed ports of the Cloud Monitor and Docker Swarm APIs.

6.2 Use Cases
6.2.1 Self-Configuration. It is important for a web application to
prevent the end user from experiencing high latency and availability
issues. To this end, web applications should be able to self-configure
automatically for providing good quality of service while optimiz-
ing costs incurred due to resource utilization. This allows for the
support of Continuous Deployment by keeping the application
within good performance requirements. We demonstrate the self-
configuration capability of our framework in the first use case using
the Acme-Air Web application. Our Acme-Web and MongoDB con-
tainers are all deployed on the three-node Docker Swarm Cluster.
We test our framework’s self-configuration ability to see if it can
keep the average CPU utilization of the Acme-Web and MongoDB
containers within an acceptable threshold range. For this purpose,
we set the upper and lower threshold limits for the average CPU
utilization in Acme-Web to 50% and 25% respectively. For our Mon-
goDB container, we set the upper and lower threshold limits for
the average CPU utilization to 10% and 5% respectively. We first
deploy our performance monitor and initiate service discovery, as
mentioned in Section 5. Next, we write business rules in Drools
that can handle the self-configuration scenario.

The first rule we create is to insert the Prometheus metric into
the Drools engine. This rule triggers periodically after an interval
set up by the DevOps team. In our case, this was done by setting the
timer attribute for the rule to 30 seconds. In the "Then" statement,
we get the query range from the last 30 seconds of the average CPU
utilization from our Prometheus component, which we insert into
a Metric object and store it in the Drools memory, as mentioned in
Section 5.2. The first business rule for self-configuration checks if
the Acme-Web containers have an average CPU utilization over 40%
and whether there is any existing state in the memory for scaling.
When the threshold and requirements of the "When" statement in
figure 6 are met, we initialize the state. As seen in the figure, we
give the state an identifying name "ScaleUp" to allow the other rules
responsible for scaling up to look for this state. We set the state
value to NOTRUN, which is the initial value of the state. We then
insert this state into the working memory. The next rule checks
if the "ScaleUp" state exists in the working memory, and if it is in
the initial state. This rule executes if the average CPU utilization is
still over 50% after 30 seconds of the initial state. The state is set to
FINISHED for the final rule in the sequence to trigger. The reason
why we have these two rules is to check if the average CPU usage is
consistently above the upper threshold limit of 50% since we want
to prevent reacting to sudden and transient utilization spikes.

The rule that is responsible for the execution stage and sending
the scaling plan to CAM is shown in Figure 7. This rule checks if the
State is complete and inserts a camJson() object as seen in the figure.
This camJson object includes deployment value of the number of
current Acme-web replicas. We initialize the CamTemplateAPI from
the Cam Caller Component in the "Then" statement, specifying the
endpoint of our CAM deployment. We get the current value of the
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rule "Prepare for Scale Up"
when

metric: Metric (metric.getCpuAverage() > 50)
state : State (name == "ScaleUp" && state ==

State.NOTRUN, this before[30s] metric)
then

state.setState(State.FINISHED);
update(state);

end

Figure 6: Business Rule for Finishing State

rule "Scale Up" salience 10
when

camJson : CamJson ()
state : State (name == "ScaleUp" && state ==

State.FINISHED)
then

CamTemplateAPI camAPI = new
CamTemplateAPI("<HOSTNAME>");

int value = camJson.getNumericalValue("acme.json",
"web_replica");

camJson.changeValue("acme.json", "web_replica", value
+ 1);

CamJson ModifyJson = new CamJson();
camAPI.ModifyInstance("<instance-id>","acme.json")
camAPI.ApplyInstance("<instance-id>")
retract(state)

end

Figure 7: Business Rule for calling CAM to Scale

replicas for our Acme-Web Service using the getNumericalValue()
function, which is a simple function that parses the Json of the
Acme-Web deployment. We increase the value of the replica in
the Json file. We send the Json file through a POST request for
modifying an instance to the CAM API and then send a POST
request for applying the modification on the SAVI cloud. We then
retract the state, allowing the process to accept new "ScaleUp"
states. This process is same for scaling down as well. If the average
CPU usage does not meet the threshold value while a "ScaleUp"
or "ScaleDown" state is already in the memory after 30 seconds,
another rule is triggered that removes the state, and restarts the
rule sequence.

There were challenges when setting up our Self-configuration
use case with our framework. When we first began to deploy the
Acme-web infrastructure through Terraform, both our MongoDB
and Acme-Web containers resided in a single Template. However,
due to Terraform’s behavior, this caused some issues. As mentioned
before, the Automation Manager may need to recreate the instance
when a Modify plan is applied. When having Acme-Web and Mon-
goDB services in a single template file, we observed that when
scaling the Acme-Web containers, it would remove the MongoDB
container each time. We decided to create two different templates,
one for MongoDB and another for Acme-Web. This would allow us

to scale without causing an increased unavailability time by remov-
ing the MongoDB container. We also needed to figure out a way to
keep track of the number of replicas when we scale. Originally, we
started our BRE with no services deployed on SAVI and wrote rules
that deployed the initial infrastructure before scaling. However,
most of the time there is already an existing service on CAM that
we may want to modify. For this reason, we choose to deploy and
modify services by using Json files. With the acme.json file, we can
keep track of the web replicas of an existing service. However, one
related challenge that is unresolved is tracking changes to services
that occur through the CAM UI with our BRE. If the DevOps team
makes changes to the services through the CAM UI, we need to be
able to sync those changes while the BRE is running.

6.2.2 Self-Healing. When a service goes down, we need the ability
to automatically respond and re-deploy the service.We demonstrate
our framework’s capability to self-heal a service in the second use
case. This can support the DevOps team and Continuous Deploy-
ment by maintaining good availability while potentially logging
and alerting the DevOps team when the service went down. To this
end, we use our framework for self-healing Acme-Air by automat-
ing the redeployment of a MongoDB container when it goes down
instead of redeploying MongoDB manually. We check the status of
MongoDB for Acme-Web to see if we get a response. This is done
through our Prometheus instance, which is periodically monitoring
the MongoDB instance. If we receive an empty or irregular JSON
array from Prometheus, we conclude that the MongoDB service
is down. Instead of inserting the CPU usage average metric into
the working memory, we insert the JSON output when we query
Prometheus every 30 seconds.

rule "Prepare for Self-Healing"
when

jObj : JsonObject
(jObj.get("data").getAsJsonObject().get("result")
.getAsJsonArray().size() == 0)

state : State (name == "HealDB" && state ==
State.NOTRUN, this before[30s] jObj)

then
state.setState(State.FINISHED);
retract(jObj);
update(state);

end

Figure 8: Business Rule for Self-Heal State Initialization

Similar to the rule that initializes the state in the Self-Configuration
use case, we run a rule that checks if the query of our MongoDB ser-
vice is empty. If empty, the rule inserts a new state named "HealDB".
The next rule in this sequence is shown in Figure 8. The "When"
statement checks if the query is still empty after 30 seconds of the
initial state. The rule is then triggered, and the state is complete.
The time duration between the two rules that modify the state is to
confirm that the MongoDB service stays down consistently. The
final rule in the sequence checks if the state is complete, and uses
the ModifyInstance and ApplyInstance functions seen in Figure 7
to MongoDB.
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6.2.3 Hybrid Cloud Scaling. One of the key features of CAM is
that it allows the DevOps team to automatically deploy services
in a Hybrid cloud setup. An organization can have private data
that they prefer not to store on a public cloud and store it on
their internal private cloud instead. There also may be unique
services that are only offered by a specific cloud platform and the
organization may want to use different services from different cloud
providers simultaneously, such as using storage instances from one
cloud platform while having front-end services on another cloud
platform. Resource and cost constraints can also be a reason to
have a Hybrid Cloud setup. Our framework enables the capability
of CAM to allow for automatically managing services in a Hybrid
Cloud setup. In this use case, we scale a MongoDB instance in EC2,
while simultaneously scaling an Acme-Web container in our SAVI
cloud. Similar to the Self-Configuration and Self-Healing use case,
we have a rule that checks the CPU average usage of the MongoDB
instance deployed on EC2. We implement business rules for scaling
up and scaling down these instances in a Hybrid Cloud setup. Since
the Acme-Web container needs to connect to a running MongoDB,
we first have to deploy a MongoDB instance. When the state is
finished after the 30 second timer, the business rule sends a POST
request to CAM to deploy a new MongoDB instance on EC2 with
a json file. The json file contains the deployment variables for our
MongoDB instance. Once we deploy the MongoDB instance on EC2,
we can then deploy an Acme-Web container in SAVI that connects
to MongoDB through the next business rule in sequence. We write
our rules such that they prevent the Acme-Web container to be
deployed while the Mongo-DB deployment is still not complete.

When scaling instances on a Hybrid Cloud platform, we had
to consider some unique challenges. Since we have our services
on two different cloud providers, we have to deploy two cloud
monitors, one on SAVI and the other on EC2. Every time we have
to deploy a service on a new Cloud Platform, we have to deploy
Prometheus with its respective Service Discovery configuration as
it can differ for each cloud platform. Next, we needed to automate
the connection of the MongoDB instance on EC2 to the Acme-Web
containers in SAVI with our framework. By deploying MongoDB
as an instance, CAM is able to get deployment output variables
from the EC2 instance, and in our case, the public IP address of the
MongoDB instance from EC2. We can then specify in our rule that
the Acme-Web container will connect to the MongoDB instance
with that IP address. This simplifies the automation process to
establish the connections between the two services by using CAM
to get the output variables of newly deployed services. Since we
have our Database on EC2 and our Web Server on our SAVI cloud,
we need to automate ways to secure the connection between Acme-
Web and MongoDB. We first have to manually create a security
group that only exposes theMongoDB port to the IP address of SAVI
Instances used for outbound requests. With CAM, we can specify
the unique ID of the security group in the template which it will
automatically associate the MongoDB instance with our security
group during deployment.

7 RESULTS AND DISCUSSION
The results of the Self-Configuration use case are shown in Figure 9
and Figure 10.We start with one Acme-Web container and gradually

Figure 9: Acme-Web CPU Utilization during Self-
Configuration

Figure 10: Number of Acme-Web Containers during Self-
Configuration

increase the incoming workload which causes the CPU utilization
of the Acme-Web container to exceed its upper threshold limit, as
seen around the 270 second timestamp in Figure 9. Our framework
correctly identifies this transgression, and triggers the business
rule that waits for an additional sampling time of 30 seconds before
scaling. This rule automatically adds a second Acme-Web container
to the service at the 345 second timestamp as seen in Figure 10,
taking 35 seconds to deploy the container from when the rule to
scale up is first triggered. The average CPU utilization is still above
the threshold at this point, and the framework adds an additional
container at the 405 second timestamp. Our framework successfully
self-configures by distributing the incoming workload between the
3 containers such that the average CPU utilization of the Acme-Web
containers is maintained within the acceptable threshold limits for
75 seconds until the workload is increased again. To this end, our
framework adds a total of 4Acme-Web containers to the service and
the average CPU utilization stays inside its acceptable threshold
values from the 630 second timestamp to the 1005 second timestamp
as we no longer increase the workload. At this point, the workload
generator starts decreasing the workload to the service, which trig-
gers the scale-down business rule in our framework. The utilization
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decreases below the lower threshold at the 1020 second timestamp,
after which begins the additional 30 second sampling period before
scaling down. This rule takes 35 seconds to remove the Acme-Web
container. However, even after removing a container, the CPU uti-
lization stayed below the lower threshold limit. Our framework
successfully identifies this transgression and further removes two
containers, the first container at the 1245 second timestamp and
second container at 1335 second, thus maintaining the average CPU
utilization within the threshold value.

Figure 11: Acme Air CPU Utilization during Self-Healing

Figure 12: Number of MongoDB Containers during Self-
Healing

Next, we discuss results for the Self-Healing use case as shown
in Figure 11 and Figure 12. We configure the Acme-Air service with
one Acme-Web and one MongoDB container and send incoming
workload to the service such that the CPU utilization values for
both the containers are at acceptable levels. At the 525 second times-
tamp, the MongoDB container goes down, which reduces the CPU
utilization values for both the MongoDB and Acme-Web containers
to zero, as seen in Figure 11. This indicates that at this point, the
MongoDB container is not working and the Acme-Web container,
which is dependent on the MongoDB, also stops working. Our
framework correctly identifies this fault after waiting an additional
30 seconds and triggers the self-healing business rule described
previously in Figure 8 to correct this fault. Consequently, the frame-
work automatically re-deploys the MongoDB container, as seen in

Figure 12. which takes 42 seconds. Once the container is deployed
and running, it takes an additional 90 seconds for the MongoDB
container to stabilize, after which the container utilization levels
are within acceptable limits.

Figure 13: MongoDB Average CPU Utilization on EC2

Figure 14: Acme-Web Average CPU Utilization on SAVI

Figure 15: Number of Acme-Web and MongoDB Containers
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Finally, we show results for the Hybrid Cloud Scaling use case in
Figures 13, 14 and 15. We deploy this scenario using one Acme-Web
container on the private SAVI cloud platform and one MongoDB in-
stance on the public EC2 cloud platform.We set the upper and lower
average CPU utilization thresholds for MongoDB to be within 5%
to 10 % CPU Utilization since MongoDB on EC2 incurs lower levels
of CPU Utilization than Acme-Web on SAVI. We start by sending
incoming workload to the Acme-Air application such that the CPU
utilization of both Acme-Web and MongoDB are maintained within
the acceptable threshold limits. We then increase the workload
so that their CPU utilization values exceed their upper threshold
limits at the 325 second timestamp. Our framework correctly senses
the need for scaling the hybrid cloud setup and triggers the cor-
responding business rules. The rules then scales the hybrid cloud
automatically by adding a MongoDB instance in EC2 and then an
Acme-Web container in SAVI, as seen in Figure 10. Since we are de-
ploying MongoDB as an EC2 instance instead of a container, it takes
longer to deploy because it needs to initiate and install MongoDB.
The framework then evenly distributes the incoming workload be-
tween the 2 Acme-Web containers such that the CPU utilization
values of Acme-Web and MongoDB are maintained within their
respective threshold limits, as seen from the figures. Finally, we re-
duce the workload to the application at 925 seconds, which triggers
a business rule for scaling down the new deployments. The rule
deletes the newly deployed Acme-Web container from SAVI and
the MongoDB instance from EC2 at 1070 second timestamp and
is able to maintain the average CPU utilization within acceptable
limits.
RQ-3: The MAPE-K framework we proposed, has the required
performance and efficiency. We showed that it supports deploy-
ment and self-configuration in a multi-cloud environment, one
of the main tasks of the DevOps pipeline. Furthermore, it can
implement self-configuration and self-optimization across mul-
tiple clouds. Similarly, it can implement self-healing scenarios.
The syntax of rules, used to implement the self-* is accessible to
both Development and Operations team, making it appropriate
for DevOps.

8 CONCLUSIONS
Enabling automation for service deployment and configuration
in the cloud for the DevOps practice allows us to maintain good
Quality-of-Service and continuous delivery. In this work, we pre-
sented a industrial framework that can support the automation
of services on the cloud. We detailed the three main components
of our framework, the Cloud Monitor, State Rule Engine and the
Workflow Engine. These components interact with each other in
our framework implementation based on the MAPE-K feedback
loop.

In the future, we plan on expanding our framework with support
from predictive models. Proactive self-adaptation methods can help
avoiding costs incurred from excessive scaling as found in reactive
approaches. This allows us to save costs and have better accuracy in
various adaptation scenarios. We plan on implementing a predictive
Machine Learning/AI model as a service that can be accessed by
our framework components. Additionally, we plan to study our
framework on different types of applications and services. We also

plan on investigating our framework for more Hybrid Clouds sce-
narios as various large industry partners are moving towards the
domain of Hybrid Clouds.
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