Session 7: loT, Embedded Systems, Cloud

ICPE 21, April 19-23, 2021, Virtual Event, France

Statement-Level Timing Estimation for Embedded System
Design Using Machine Learning Techniques

Vittoriano Muttillo, Paolo Giammatteo, Vincenzo Stoico
DEWS Centre of Excellence, University of L’Aquila, L’Aquila, Italy
{vittoriano.muttillo,paolo.giammatteo}@univagq.it,vincenzo.stoico@graduate.univaq.it

ABSTRACT

During the initial design phases of an embedded system, the ability
to support designers using metrics, obtained through a prelimi-
nary analysis, is of fundamental importance. Knowing which ini-
tial parameters of the embedded system (HW or SW) influence
such metrics is even more important. The main characteristic of
an embedded system that typically designers need to measure is
the embedded SW (i.e., functions) execution time, used to describe
the final system’s performance (i.e., timing performance metric).
The evaluation of such a metric is often a critical task, relying on
several different techniques at different abstraction levels. Further-
more, in the era of Big Data, the use of Machine Learning methods
can be a valid alternative to the classic methods used to evaluate
or estimate metrics for temporal performance. In such a context,
this paper describes a framework, based on the use of Machine
Learning methods, to calculate a statement-level embedded soft-
ware timing performance metric. Results are compared with those
obtained with different approaches. They show that the proposed
method improves the estimation accuracy for specific processor
classes while also reducing estimation time.

CCS CONCEPTS

+ Computer systems organization — Embedded systems; Em-
bedded hardware.

KEYWORDS

timing performance prediction, machine learning, embedded sys-
tem, feature analysis

1 INTRODUCTION

In the last thirty years there has been an exponential increase in
the spread and evolution of information technology. In this regard,
it is undoubtedly underlined the spiraling of Embedded systems
[1]. The problem of determining an embedded system’s charac-
teristic is a task with an effort that should not be underestimated,
especially during the early design phases. Indeed, working on a
higher abstraction level (i.e., Electronic System-Level, ESL) is needed
to early estimate HW/SW performance [2]. Furthermore, in the
era of Big Data, the use of Machine Learning (ML) methods [3, 4]

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ICPE ’21, April 19-23, 2021, Virtual Event, France

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8194-9/21/04...$15.00
https://doi.org/10.1145/3427921.3450258

257

in this context can be a valid alternative to the classic methods
to estimate metrics for embedded system performance [5-7]. So,
according to this scenario, this work tries to answer the following
research questions:

(1) RQ;: How to extrapolate a meaningful timing performance
metric for Embedded platforms without Instruction Set Sim-
ulators (ISSs) or the target device, which is time consuming?

(2) RQ2: How to reduce estimation time and increase accuracy
for embedded timing software performance predictions us-
ing Machine Learning techniques?

RQ; relies on the considered timing performance metric extraction
[8], and the use of ISS instead of the final HW/SW embedded plat-
forms can reduce the time needed for estimation step, depending
on the simulator accuracy. RQ considers to replace ISS or selected
HW/SW platforms with ML algorithms to reduce design time and
increase accuracy w.r.t. the traditional approaches.

Thus, this work presents an approach for timing performance
estimation. The aim is to extract information about the main prac-
tice used in system-level design flows in order to reduce the time
needed for the initial activities, reducing also estimation errors with-
out an extensive and deep analysis of the final hardware/software
platforms. A timing performance metric related to high-level C pro-
gramming language statements will be exploited, as presented in
[9]. In addition, a framework that helps to calculate this metric for a
given function will be presented. Additionally, this framework can
automatically generate large amounts of constrained random inputs
and evaluate statistics on the metric itself. The framework exploits
ISSs to evaluate several features from the source code, while static
code analysis is used to enrich the dataset. The number of clock
cycles needed to execute the program, the number of executed
C statements with profiling on the host architecture, the Cyclo-
matic and Healsted number are a subset of the considered features
selected for the following ML activity. These big data have been
analyzed through several statistical methods, and useful results
encourage exploiting this approach inside an ESL design flow.

2 PRELIMINARIES

In the context of Embedded System Design [1], some of the main
challenges are related to accuracy and simulation/estimation time
associated with estimation methods at different abstraction level
[10]. The higher the abstraction level, the lower the accuracy and
the estimation time, depending on adopted estimation models and
simulators [11]. Different abstraction levels can be considered to per-
form timing estimation, and several approaches have been proposed
in the literature. Malik et Al. [12] explored different performance
metrics that need to be considered in embedded software perfor-
mance analysis and examined a wide range of techniques (e.g., path
analysis techniques, system utilization analysis techniques). The

https://doi.org/10.1145/3427921.3450258

Session 7: loT, Embedded Systems, Cloud

work in [13] presents two approaches to solve the performance
estimation problem: (1) a source-based approach that uses compila-
tion onto a virtual instruction set, and (2) an object-based approach
that translates the assembly generated by the target compiler to
“assembly-level”. Brandolese et Al [5] introduce a methodology for
software execution time estimation. The procedure is supported
by mathematical models of C statements and statistical analysis.
Alterbernd et Al. [6] introduce an approach to predict the execution
time of software through an early, source-level timing analysis. The
estimation is done directly from the source code, without compil-
ing and running it, using a set of virtual instructions, and defining
an abstract machine able to execute the source code. Finally, [14]
introduces an approach to source-level timing estimation through
elementary operations. Most of these works aim to predict timing
performance behaviors using time-consuming but quite accurate
simulators, mathematical prediction models at the system-level, or
virtual platform emulators.

In contrast, timing prediction approaches based on ML tech-
niques are the newest methods exploiting big training data-set to
make predictions without knowledge of the considered HW plat-
form. Oyamada et Al [15] presents a methodology for system de-
sign and performance analysis. They use an analytic approach based
on neural networks for high-level software performance estimation.
The analytical estimation results in errors only up to 29.75%, with
an estimated time of about 17 seconds. The work in [16] extracts
performances of a small set of computers. It uses this information
to develop linear regression and neural network models to predict
any different considered computer’s performance. They can predict
the performance of regarded platforms within 3.4% average error
rate. Huang et Al [17] propose the SPORE (Sparse POlynomial
REgression) methodology to build prediction models of program
performance using feature data collected from program execution
on sample inputs, with relative error less than 7%. Finally, the paper
in [18] proposes a method through performing data mining on
historical data. The authors suggest performing timing prediction
using three ML techniques (i.e., Naive Bayes, Logistic Regression,
and Random Forests). These works confirm the validity of ML and
data mining in general and the use of these techniques in particular
for software estimation. Table 1 compares the different approaches,
w.r.t. ML techniques and results. Furthermore, to the best of our
knowledge, very few research works exploit these techniques for
embedded system timing performance estimation, mostly for the
low accuracy of these techniques. Our work tries to solve this open
research problem.

3 PROPOSED APPROACH

The approach proposed in this work performs statement-level exe-
cution time estimation using statistical analysis and approximate
predictions, as shown in Fig. 1. The idea behind this approach is
to train the ML model, using (micro-)benchmarks, so that it can
predict the performance for any given input C-code function for
a given target processor. Compiler and program analysis tools are
exploited to extract data for this goal on different real embedded
devices. The ML module uses this data to solve the timing perfor-
mance prediction problem. The whole framework is divided into
three macro-blocks: (a) Input Generator Block, where the selected

258

ICPE 21, April 19-23, 2021, Virtual Event, France

functions take several inputs randomly generated inside module
@. (b) Parallel Independent Block, where three sub-modules can be
executed independently from each other. Module 2) uses Geov pro-
gram to extract dynamic information about executed C statements;
module) performs Instruction Set Simulator (ISS) execution, with
the collection of clock cycles needed to execute the benchmark
function set; module @) implements static analysis, where Frama-C
[19] is used to enlarge the dataset with static function parameters
useful for the ML algorithm. (c) Machine Learning Block, the core
of the estimation method.

A module that (semi)automatically generates inputs for the
benchmark functions has been created in (D). In particular, for each
function they are randomly generated 1000 input data sets. More-
over, for each function, different data types have been considered
(i.e. int8, int16, int32, and float) to analyze the results w.r.t. the in-
ternal architecture of the considered processor. Each input data set
is stored in a header file to be included in the function at compile
time. After the inputs generation phase, a procedure to count the
number of executed C statements is evaluated in (2). This value
is obtained by performing a profiling of the benchmark functions
employing the gcov profiler for each generated input. To obtain
the total number of executed C statements for each function, a
sum of the single profiling numbers is performed. The number of
clock cycles needed by the target processor technology to execute
each function (for each generated input) in the benchmark (and the
number of executed assembly instructions, useful for energy/power
analysis) is extracted in). Depending on the target processor tech-
nology there is the need for an Instruction Set Simulator (ISS) or an
High Level Synthesis (HLS) Simulator for Special Purpose Processors
(SPP). The latter is not part of this work. The last data are evalu-
ated using Frama-C tool and other useful script in @), integrated
inside the whole framework instance. Finally, all the generated data
output artifacts are sent to (5) where the information is organized,
selected and exploited for model training, test and validation, as
described below.

3.1 Dataset Preparation and Feature Extraction

In this paper, several features have been chosen to provide a statisti-
cal analysis of collected data (i.e., distribution parameters). Several
Python scripts have been created to automate all CSV file’s statis-
tical analysis, integrated into the last framework module). To
guarantee unbiased data and correct ML training activities, feature
analysis is applied to the output framework dataset (i.e., 33 features)
that can be clustered w.r.t. the number of code line (SLOC), input
data type, Halstead Complexity, Cyclomatic Complexity, functions
reachability and program profiling, as described in [20]. Once the
dataset is created, four regressor models are considered in order
to perform the feature analysis, taking inspiration from [21]. In
particular, we considered the Random Forest Regressor, Extra Trees
Regressor, Gradient Boosting Regressor and Ada Boost Regressor, ex-
ploiting the python scikit-learn package. The average value of the
previous results [21], reduced by the confidence interval value of
99%, has been used as the lower bound to select the most important
features. After the feature analysis process, the most significant
features will be taken into consideration. ML algorithms will be

Session 7: loT, Embedded Systems, Cloud

ERATOR B

PARALLEL INDEPENDENT BLOCK

ICPE 21, April 19-23, 2021, Virtual Event, France

MACHINE LEARNING BLOCK

INPUT GENERATION @

<<Output Files>>
N

Compiler

Prototype
Generation
Method
Range &
#Values

Input
Generator
Value.h

AN

program.c program.geda

HOST PROFILING @

program.gcno

Profiler: gcov

progrgm.exe
program.c.gcda

MACHINE LEARNING ESTIMATION @

Data Set

Preparation

Executed C
Statements

Feature
Extraction

Test Data

STATIC ANALYSIS @
Static Analysis | _
Tool M

Ste
Frama-c_teport.txt

1SS EXECUTION @

Instruction Set

Model
(Machine
Learning

Techniques)

N\
59

Model
Training,

Execution

Simulator
(ISS)

lock cycle Y
m (clock cycles) vl
1
1
1SS_report.txt |
1

Figure 1: Proposed Approach.

Table 1: ML timing performance estimation comparison (N.A. means Not Available).

Work H Domain ‘ Pl;:‘;:i:n ‘ Pre]B:—:‘tion ‘ Benchmark ‘ Platform Accuracy ‘ Tl:;il:::g ‘ Est_}ril::temn
[15] Embedded NI\:::;(irlk N.A. B;‘é;tl’::rk ARM946 up to 29.75% Slow up to 17s
General Linear Regression (LR) Clementine AMD Opteron LR: 1.5% ... 3.5%
[16] Purpose Neural Network (NN) Software SPEC2000 Intel Pentium D and 4 | NN: 1.16% ... 5.94% N.A. N.A.
Computer Intel Xeon (Best Case)
General Sparse SPORE Lucene Generic
[17] Purpose Polynomial LASSO Find Maxima CPUs up to 7% N.A N.A.
Computer Regression Method Segmentation
General Naive Bayes (NB) Wrapper NASA Generic NB: 17%
[18] Purpose | Logistic Regression (LR) Feature software CPUs LR: 19% N.A. N.A.
Computer Random Forest (RF) Selection Benchmark RF: 14%
BAT, BOT, Average Custom 8051 up to 2.58%
This Work || Embedded FT, LR, Score Benchmark LEON3 (Best Case) < 10s « 1ms
SVM Value ATmega328/P

trained to predict the timing performance metric, or better the
Effective Clock Cycles feature.

3.2 Machine Learning Techniques

The ML techniques considered, among the most used in literature
[22, 23], range from regression trees to SVM, and linear regressors,
with the aim to identify which of these can better predict the timing
performance metric. At this stage of the work, the Matlab app Re-
gressor Learner [24] has been used. In particular, we considered five
ML methodology, according to those available: Linear Regression
(LR), Fine Trees (FT), Boosted Trees (BOT), Bagged Trees (BAT),
and Support Vector Machine (SVM). We excluded Neural Network
Algorithm’s usage since we plan to dedicate a specific work in
future time so as not to burden the discussion in this paper [25].
Furthermore, this analysis involves the usage of a different Matlab
package.

Linear regression models [26] have predictors linear in the model
parameters and are easy to interpret and fast for making predic-
tions. However, the highly constrained form of these models means
that they often have low predictive accuracy compared to the oth-
ers. Regression Learner App uses the fitlm function to train Linear

model option. Regression trees [26] are easy to interpret, fast for
fitting and prediction, and low in memory usage. The Matlab App
Regression Learner gives the possibility to choose among different
kinds of regression trees. In this work, the Fine Tree option was
selected, which means high flexibility, with many small leaves for a
highly flexible response function (the minimum leaf size is 4). The
Regression Learner App uses the fitrtree function to train regres-
sion trees, with the parameter Minimum leaf size equal to 4 and no
splitting criteria for surrogate nodes. Ensemble Boosted Tree model
combine results from many weak learners into one high-quality
ensemble model. The approach involves a least-squares boosting
methodology with regression tree learners [26]. Regression Learner
App uses the fitrensemble function to train ensemble models and
gives the possibility to set three different parameters: the Minimum
leaf size, the Number of learners and the Learning rate, which are
respectively 8, 30 and 0.1. Another kind of ensemble model with re-
gression tree learners is the Bagged Trees [26]. Regression Learner
App uses the fitrensemble function to train ensemble models. Here
the parameter to set are two: the Minimum leaf size and the Number
of learners, which are respectively 8 and 30. Support vector ma-
chines are supervised learning methods used both for classification

Session 7: loT, Embedded Systems, Cloud

4 x10* 12 X10°

Fad
[

o

o
2]

Clock Cycle
»
o 4]
"w
7’&,
Clock Cycle
o

ICPE 21, April 19-23, 2021, Virtual Event, France

6 x10°

» o

Clock Cycle
w

0 500 1000 1500 2000
Executed C instructions

(a) LEONS3 Corr. Scatter Plot.

2500 500

1000

Executed C instructions

(b) 8051 Corr. Scatter Plot.

2 A
14/
.
4
- — 0
1500 2000 2500 0 0.5 1 15 2 25
Executed C instructions x10%

(c) ATmega328/P Corr. Scatter Plot.

Figure 2: Correlation plot w.r.t. different processors and float data type

and regression [26]. Among the advantages of the support vector
machines approach, it is effective in high dimensional spaces and in
cases where the number of dimensions is greater than the number
of samples. Regression Learner App uses the fitrsvm function to
train SVM regression models and, in this case, the parameter Kernel
function is set to Linear.

4 EXPERIMENTAL RESULTS

The proposed approach has been evaluated first in the SW domain
by considering General Purpose Processor (GPP) technology. In
this work, three GPPs, and their related ISSs, have been analyzed:
LEONS3, a 32-bit synthesizable RISC soft-microprocessor with a
Harvard architecture, and a simulated system clock of 75 MHz.
Cobham Gaisler offers TSIM System Emulator as an accurate ISS
of LEON3 processors, with gcc compiler (in this work, the default
optimization flag —O0 has been used); Intel 8051 micro-controller,
an 8-bit micro-controller with MCS-51 CISC instruction set and
Harvard Architecture; The Dalton Instruction Set Simulator (ISS)
[27] has been used to simulate programs written for the 8051 and to
collect statistics, with SDCC (Small Device C Compiler) compiler;
picoPower CMOS 8-bit AVR ATmega328/P, with an 8-bit RISC-
based processor core and Harward architecture. The SimulAVR [28]
program has been used as a simulator for the Atmel AVR family
of microcontrollers, with gcc compiler (in this work, the default
optimization flag —O0 has been used).

The benchmark execution has been done with a microprocessor
software simulation using each processor’s ISS, as presented above.

4.1 Dataset Preparation and Feature Extraction
Results

A benchmark composed of control-dominated and data-dominated
applications was used to train and test the estimator [15] and finally
validate the approach. The benchmark is composed of 15 different
algorithms taken from [29] for training and test, with a total amount
of 6 * 10* samples, and 12 different algorithms taken from [30] for
validation, with a total amount of 48 103 samples. Table 2 describes
the functions used in the experiments. For each function, different
data types have been considered (int8, int16, int32, and float). Indeed,
timing performance metric changes w.r.t. the dimension of data

[11].

260

Table 2: Functions Set.

binarysearch, bubblesort, insertionsort,
mergesort, quicksort, selectionsort
matrixmul, ged, bankeralgorithm
astar, bellmanford, bfsdfs,
djikstra, floydwarshall, kruskal
allpass, bitrev, can, conv, dir
Viterbialgorithm, tap, wave, wrap

Sort and Search

Numerical

Networking

Data Processing

Fig. 2 shows the scatter plot related to the Pearson correlation
for different processors. The three figures show a strict correla-
tion between C statements and clock cycles. Regarding the other
points (the ones under the main linear regression line), the devia-
tion depends on function implementations that introduce different
behaviors compared to the significant distribution. These points
introduce errors inside the timing estimation activity and are re-
lated to the internal processor micro-architecture (i.e., 8/16/32 bit
architecture, pipeline, number of registers, etc.).

Table 3 shows the Pearson correlation and slope values between
clock cycles and executed C statements. The high correlation values
reported in Table 3 between the Clock Cycles and the number of
C statements prompts us to explore further the processor char-
acteristics and to exploit ML algorithms for timing performance
estimation.

Table 3: Correlation and Slope Analysis results (p-value <
0.001 for every processor, so that we can reject the null hy-
pothesis and the statistical analysis is highly significant).

Function ‘ ‘ int8 ‘ int16 ‘ int32 ‘ float ‘ ‘ Tot.

LEONS3 Corr. 0.9939 0.9872 0.9277 0.7465 0.9631
MPUB8051 Corr. 0.9939 0.9871 0.9276 0.7465 0.9631
ATmega328/P Corr. 0.7465 0.9939 0.9871 0.9277 0.9631
LEONS3 Slope 10.8838 9.4241 10.9702 15.1550 88.9492
MPUB8051 Slope 88.2752 | 110.5197 | 183.8507 | 389.2319 || 88.9492
ATmega328/P Slope 24.7353 11.197 18.1595 14.0614 88.9492

In Fig. 3 is reported the result of the feature analysis. The figure
(green line) shows the arithmetic mean behavior between the four
algorithms results [21]. Some features show prominent behavior

Session 7: loT, Embedded Systems, Cloud

compared to others. To select the most important, a selection cri-
terion is introduced, as described in Section 3.1. From Fig. 3 it is
worth noting that two feature dominates the other ones. These
two features are related to the dynamic execution of the code. To
introduce features connected to static code analysis, we decided
to remove the "Executed Assembly Instructions" and "Executed
C instructions” features and to apply the selection criteria to the
remaining features again. The solid red line represents the average
value calculated without the two dominant features. Since some
features are close to the solid red line in Fig. 3, we included features
with a mean score value holds within the confidence interval of 99%
(i.e., the dashed lines), eliminating all those features with a value
less than the lower confidence interval value.

Feature Analysis Mean Score

Executed Ass Instr
Executed C Instr

TOTAL FUNCTIONS +
COVERAGE A
CYCLOMATIC COMPLEXITY
POINTER DEFERENCING
FUNCTION CALL

EXIT POINT
ASSIGNMENT

GaTo

GLOBAL VARIABLES
DECISION POINT

PROGRAM LEVEL
DIFFICULTY_LEVEL
TIME_TO_IMPLEMENT 1
BUGS_DELIVERED

EFFORT

PROGRM_VOLUME +
VOCABULARY_SIZE
PROGRAM_LENGTH 4

DISTINCT OPERANDS
TOTAL_OPERANDS
DSTINCT_OPERATORS
TOTAL_OPERATORS
RANGE_ARRAY INPUT
ARRAY_INPUT
RANGE_SCALAR_INDEX_VALUES
"~ SCALAR_INDEX_INPUT
RANGE_SCALAR_VALUES
SCALAR_INPUT

feature

|

=
=

Figure 3: Feature analysis (X-axes represent the percentage
score from 0 to 1).

Respect to each regressor algorithms the variance is 0.0210 for
Random Forest Regressor, 0.0169 for Extra Trees Regressor, 0.0202
for Gradient Boosting Regressor and 0.0188 for Ada Boost Regressor.
The most prominent value is for Random Forest Regressor, while the
feature GLOBAL VARIABLES has the larger variance than others,
considering all the regressor.

4.2 Machine Learning Training and Test
Results

Once the less significant features were eliminated from the dataset
for each processor, the ML algorithms listed in the previous para-
graph were trained to define a model capable of predicting the
output performance variable, i.e., the Clock Cycles. The dataset
generated from the 15 functions inside the training and test bench-
mark is divided into 80% for training and 20% for testing for each
processor. After the training process, in Fig. 4 are reported the
prediction values Vs. the real values for a subset of devices and
ML models trained. The good agreement between prediction and
real values for FT in each device is evident. Also, the LR and SVM
behave well, at least for 8051 and LEON3. The BAT, on the other
hand, provides bad results for each device. The ATmega328/P device
badly behaves for every predictor except for the FT.

261

ICPE 21, April 19-23, 2021, Virtual Event, France

Testing is performed on 20% of the dataset. Fig. 5 shows the
results of the Root Mean Square Percentage Error (RMSPE) for a
subset of the processors. In each plot, it is possible to distinguish
each ML predictor model’s behavior for various types of data aggre-
gation: by function, data type, total dataset test (All). As mentioned
for the prediction vs. real values plots, the Fine Tree is the ML model
that performs best since its RMSPE values are globally lower than
all other ML models. It is worth noting that in the LEON3 and 8051
scenarios, the predictor’s RMSPE is always under the 10%, while
the FT and BAT for the same devices are generally under the 1%.
There is just an exception w.r.t. 8051, where the int8 scenario is
badly driven by bubblesort function (maybe related to some dataset
noise). The ATmega328/P results are the worst scenario because
the error is always > 10° and < 10! for BAT and FT, while is > 10!
for BOT, LR, and SVM. Concerning the RMSE, the error variance
ranges from 102 and 10%. For the ATmega328/P, the error range is
shifted to 10° and 10°.

Overall, from the following analysis, it can be stated that the SVM
does not fit well the problem and owns the worst overall RMSPE,
probably since there is a lot of data w.r.t. the feature. Boosted Trees
and Bagged Trees can be considered acceptable. Still, they need an
optimization of the model’s input parameters, especially for the
BAT, if we look at Fig. 4. The Linear Model is good for prediction
but swinging for the RMSE, as expected. The best ML model is the
Fine Tree, which performs best for predictions and RMSPE. Also, the
latter can be improved by further modifying the input parameters
of the model.

As a final analysis, in Fig. 6 are reported the average prediction
time considering 8051 processor (Figure a) and the average train-
ing time for each processor of the five ML models (Figure b). The
average prediction time behaviour is equal for each selected proces-
sor. The best performance belongs to the Bagged Trees, while the
SVM persist with worse execution timing behavior. Knowing each
model’s execution times is essential to understand how quickly the
model is in its training and prediction phase, considering the ESL
scenario where it is necessary to execute the model predictions
several times. Regarding the training time, BAT and BOT are the
quicker ones, under 5 s, LR and FT approximately 10 s, while the
SVM takes the slowest execution time, more than 2 h.

4.3 Validation

In this paragraph, the validation of the five ML models is presented.
Fig. 7 report the RMSPE for 8051 and ATmega328/P. Still, it is pos-
sible to see a good behavior of the decision tree (FT) and ensemble
models (BAT and BOT), unlike the Linear and SVM, which have
extremely high percentage values. Regarding FT, BOT, and BAT,
it is possible to notice that FT is the best considering the different
processors. For the 8051, all the three best models are under the
10% of RMSPE. FT is under the 3% (with values below 1%), BOT is
under 7% (with an error range greater than the FT scenario), while
BAT is between 1% and 10%. For the LEON3, FT, BOT, and BAT
are similar, varying between 9% and 70%. Finally, the unique model
that is always under 60% is the FT for the ATmeag328/P, ranging
from 1% to 60%, with an average error of about 20%.

The average time prediction analysis shows the same behavior
w.r.t. the original training dataset, placing the BAT as the best and

Session 7: loT, Embedded Systems, Cloud

10° x10°

+ Observations
—Perfect prediction

&
o

IS

@

BN e oo »

esponse
¥ <

Predicted response

&

N
Predicted response

. Predicted re
2

o

* Observations
—Perfect prediction|

ICPE 21, April 19-23, 2021, Virtual Event, France

x10° «10°

5
* Observations 16 ;Sbrs'ewamcgs)
4T |——Perfect prediction| erfect prediction
35 1 .
vt o .
3 P =t o @ .
2 3 =y 212
o S i
I * 210
@
©2° 2 . .
B 58 ¢ %
L2 7 £)
3] ° 3 $ic
D15 5 6 T
£ & J i
oy 4 ?‘ pi
05 E
0 0

0 1 2 3 4 o 5 0 15 1 2
True response True response x10°

(a) 8051 FT. (b) ATmega328/P FT.

g

True response

(c) LEON3 FT.

1 2 3 4 0 5 10 15
True response x10° True response

(d) 8051 BAT. (e) ATmega328/P SVM.

4 5 0
x108

Figure 4: Predictions Vs Real Values w.r.t. different prediction models and processors

RMSPE [%]

(a) 8051 RMSPE (%).

(b) LEON3 RMSPE (%).

Figure 5: Test Errors w.r.t. different processors.

5 5 o 10* P « BAT
% _®~a- p ~e _e. TR emmmm e O - -
10 o -0 -e--0--e--0-o P LS P il o= ? ~BOT,
—-FT
—LR
-5 -SVM
z
)
E10°
=
v -~
. PO L P
10°
S Q@ 0 2 @ N DdD I DI I L 0N D 0
é"b&“&@‘ e,b\ RN R S 5SS L \\00 v 107
® & L& F S & I P &8
O & O & D@ O & O O
O & NI S & & & O
S O RS & FE ¢
& & & R &
&

(a) 8051 Prediction Time.

(b) Training Time.

Figure 6: Training and Prediction Time w.r.t. different processor technologies.

SVM the worst from a timing performance point of view. The predic-
tion times for the validation dataset are similar to those considered
in previous paragraphs, while variance is in terms of ms — us, as
shown in Fig. 8.

4.4 Discussion

Answer to RQ1: The considered "meaningful” timing performance
metric is the embedded software execution time (i.e., Clock Cy-
cles) [11]. It is possible to use the approach presented in this paper
to predict this metric. The idea is to use ML techniques instead

262

of simulators/emulators. This idea is reasonable because we have
noted a quite high observed correlation among the Clock Cycles,
C Statements, and Assembly Instructions Executed, as shown in
Fig. 2 and Table 3. Despite the high correlation values shown in the
table, LEON3 and ATmega328/P present lower correlation values,
respectively, to float and int8, which can lead to wrong predictions.
For 8051, the lowest correlation value of float data type depends on
internal microcontroller architecture (i.e., due to the absence of the
Floating-Point Unit). The use of the proposed ML approach leads to
feature selection problems (i.e., to find the most essential features

Session 7: loT, Embedded Systems, Cloud

100

RMSPE [%]
-o‘b

S & N R PSSP TR L L S D
F L PSS T EARIEN - CRgr R CARRR S S AR
N & Q}\é’ &L & & &S
R L ¥ @
o‘o‘ & ¥

(a) 8051 RMSPE (%).

RMSPE [%]

ICPE 21, April 19-23, 2021, Virtual Event, France

S Q& & R ¥ DO RPN LN D
2 L RS TP ST TN AT SL T
P & @ N R R CARRR S S N,
&8 & Q}\é’ ‘.9 \Q{o\ & & & §§ K

3 SR

L @ ¥ &

(b) ATmega328/P RMSPE (%).

Figure 7: Validation Errors w.r.t. different processors.

10
z
3
E10°
=
10 et
& ¢ D DO R DN DD
PSS T RFS TP RL WA F R
\\Q'b’é‘\‘ o o ‘°o° ,\00 {o\\ eSS
? & O & F
O @ &
g &
&

(a) 8051 Prediction Time.

10-6 \'-——o»»4-~-11
P A S REDS DO CRLC N SN
° @ & NS T2 N RPN SR
27 &7 b 2 W ISR
'b\\Q& ¢ ~Q9°°(’~"\0@@¢‘®Q $UEEE
0{0‘\-‘\@4\3

(b) LEON3 Prediction Time.

Figure 8: Prediction Time w.r.t. different processor technologies and validation data set.

considering only the software code). From Fig. 3, we can state that
the most important features that contribute to the prediction model
are the Executed Ass. Instr. (Assembly Instructions) and Executed C
Instr. (C Instructions). The only Cyclomatic Complexity parameters
considered are ASSIGNMENT and GLOBAL VARIABLES, which de-
pends on the input data type. The Halsted Complexity parameters,
the Input Data Type, and SLOC are included almost totally, while
the Function Reachability parameters (COVERAGE and TOTAL
FUNCTIONS) do not reach the considered threshold. The mini-
mum score feature is the POINTER DEFERENCING since there are
not many dereferencing pointer operators inside the considered
benchmark.

Answer to RQo: It is necessary to exploit several ML algorithms
and analyze them to reduce estimation time and increase accuracy
using ML. Regarding the Fig. 4, we can notice that the models
based on the regression trees approach behaves better than the
other ones. The same behaviour is also present in the plots reported
in Fig. 5 (training and test) and Fig. 7 (validation). 8051 shows
the best prediction behavior in terms of RMSPE. For training and
test FT, BOT and BAT are under 1%, while validation of the 8051
timing performance prediction errors ranges from 1% to 10%. These
low errors depend on 8051 microcontroller architecture (i.e., 8 bit),
instructions set (i.e., MCS-51 CISC), and limited register size (i.e.,
8 bit). For ATmega328/P, despite the architecture and register size
being the same as 8051, the different instructions set (i.e., RISC)
leads us to have high errors because of the reduced number of
micro-code instructions that deal with a vast amount of assembly

263

line after the compilation step. LEON3 presents good results w.r.t.
training and test (i.e., all the prediction models have errors lower
than 1%), but worst for validation (i.e., higher than 60%), compared
to ATmega328/P (i.e., errors lower than 1% for the FT scenario). This
error depends on LEON3’s more complex processor architecture
(i-e., 32 bit with 7 stage pipeline). Fig. 6 and Fig. 8 present the
training, test, and validation prediction time, where all the results
are aligned in terms of time granularity. The fast prediction model
is the BOT, followed by BAT and FT, and it shows that these three
models are the best in estimation and training time, and they can be
improved in future works. This approach seems to be good enough
to answer to RQ; as presented in [15]. Concerning the results in [15],
Table 4 present a comparison between the two different approaches
(Neural Network for [15], FT for our work). The FT estimation
error is lower than the other test scenario approach, while LEON3
and ATmega328/P behave worst in the validation scenario. Also the
estimation time is slower than [15], as shown in Fig. 6. Future works
will continue to refine this strategy working on ML parameters and
algorithms.

5 CONCLUSION

This work presented an ML-based approach to predict the timing
performance of embedded processors. The modular framework
helps the designer extracting static and dynamic code information,
used by the next ML module to guess selected embedded processors’
timing performance. The results show that the proposed approach

Session 7: loT, Embedded Systems, Cloud

Table 4: Estimation Error Comparison.

Processor Max Mean Std
Error | Error | Deviation
ARM946 Test [15] 29.75% | 9.05% 8.90%
8051 Test 0.61% 0.42% 0.12%
ATmega328/P Test 6.03% | 2.24% 1.48%
LEONS3 Test 0.29% 0.07% 0.06%
ARM946 Validation [15] N.A. N.A. N.A.
8051 Validation 2.58% | 1.19% 0.69%
ATmega328/P Validation || 65.39% | 12.58% 17.79%
LEON3 Validation 73.74% | 52.02% 21.36%

is good enough to predict timing behaviors for a CISC microcon-
troller. Simultaneously, the use of this method for more complex
processors introduces estimation errors that can be reduced with
more advanced ML techniques. Future works will investigate (1)
the possibility to increase the total number of features introducing
metrics and features able to characterize not only the input data
types but also the input specific values (2) the model prediction
parameters optimization (i.e., minimum leaf size and the number of
learners for ensembles of trees and regression trees, kernel function
for SVM, etc.); (3) overfitting problems (e.g., the LEON3 scenario)
and the use of cross-validation to solve them, (4) the possibility to
analyze several regression models, different from the ones consid-
ered in this work, also considering the use of Neural Networks as a
concrete and useful ML algorithm alternative, (5) the usage of the
proposed approach to characterize the impact of SW-monitoring
systems on given processors [31], (6) the possibility to apply this
approach to other domains (i.e., Cyber-Physical Systems, SW Com-
puter performance, etc.) [32].

ACKNOWLEDGMENTS

This work has been partially supported by the ECSEL RIA 2017-
783162 FitOptivis and the ECSEL-JU 2018-826610 COMP4DRONES
projects.

REFERENCES

[1] Yuriy Zacchia Lun, Alessandro D’Innocenzo, Francesco Smarra, Ivano Malavolta,
and Maria Domenica Di Benedetto. State of the art of cyber-physical systems
security: An automatic control perspective. Journal of Systems and Software,
149:174 - 216, 2019.

P. Derler, E. A. Lee, and A. Sangiovanni Vincentelli. Modeling cyber—physical
systems. Proceedings of the IEEE, 100(1):13-28, 2012.

Francesco Smarra, Giovanni Domenico Di Girolamo, Vittorio De Iuliis, Achin
Jain, Rahul Mangharam, and Alessandro D’Innocenzo. Data-driven switching
modeling for mpc using regression trees and random forests. Nonlinear Analysis:
Hybrid Systems, 36:100882, 2020.

A. Lojo, L. Rubio, J. M. Ruano, T. Di Mascio, L. Pomante, E. Ferrari, I. G. Vega,
F. K. Giirkaynak, M. L. Esnaola, V. Orani, and J. Abella. The ecsel fractal project:
A cognitive fractal and secure edge based on a unique open-safe-reliable-low
power hardware platform. In 2020 23rd Euromicro Conference on Digital System
Design (DSD), pages 393-400, 2020.

C. Brandolese, W. Fornaciari, F. Salice, and D. Sciuto. Source-level execution time
estimation of ¢ programs. In Proceedings of the Ninth International Symposium
on Hardware/Software Codesign (CODES °01), page 98-103, New York, NY, USA,
2001. ACM.

Peter Altenbernd, Jan Gustafsson, Bjorn Lisper, and Friedhelm Stappert. Early
execution time-estimation through automatically generated timing models. Real-
Time Syst., 52(6):731-760, Nov. 2016.

Philip Axer, Rolf Ernst, Heiko Falk, Alain Girault, Daniel Grund, Nan Guan, Bengt
Jonsson, Peter Marwedel, Jan Reineke, Christine Rochange, Maurice Sebastian,
Reinhard Von Hanxleden, Reinhard Wilhelm, and Wang Yi. Building timing

s

(5

=

l6

=

=

264

=
&

=
&

=
i)

=
&

(17

[18

[19
[20]

[21

[22

[23

[24

[25]

[26

[27

[28

[29]

[30

[31

(32

ICPE 21, April 19-23, 2021, Virtual Event, France

predictable embedded systems. ACM Trans. Embed. Comput. Syst., 13(4), March
2014.

D.]. Lilja. Measuring Computer Performance: A Practitioner’s Guide. Cambridge
University Press, USA, 2000.

V. Muttillo, G. Valente, L. Pomante, V. Stoico, F. D’Antonio, and F. Salice. Cc4cs:
An off-the-shelf unifying statement-level performance metric for hw/sw tech-
nologies. In Companion of the 2018 ACM/SPEC International Conference, New
York, NY, USA, 2018. ACM.

G. Valente, T. Di Mascio, G. D’Andrea, and L. Pomante. Dynamic partial reconfig-
uration profitability for real-time systems. IEEE Embedded Systems Letters, pages
1-1, 2020.

David J. Lilja. Measuring computer performance: A practitioner’s guide. SIAM
Review, 43:383-384, 01 2001.

S. Malik, M. Martonosi, and Y. S. Li. Static timing analysis of embedded software.
Proceedings of the 34th Design Automation Conference, pages 147-152, 1997.
Jwahar R. Bammi, Wido Kruijtzer, Luciano Lavagno, Edwin Harcourt, and Mihai T.
Lazarescu. Software performance estimation strategies in a system-level design
tool. In Proceedings of the Eighth International Workshop on Hardware/Software
Codesign. CODES 2000, CODES 00, page 82-86, New York, NY, USA, 2000. Asso-
ciation for Computing Machinery.

Nikolina Frid, Danko Ivosevi¢, and Vlado Sruk. Elementary operations: a novel
concept for source-level timing estimation. Automatika, 60(1):91-104, 2019.
Marcio Oyamada, Flavio Wagner, Marius Bonaciu, Wander Cesario, and Ahmed
Jerraya. Software performance estimation in mpsoc design. In Asia and South
Pacific Design Automation Conference, volume 0, pages 38-43, 01 2007.

B. Ozisikyilmaz, G. Memik, and A. Choudhary. Machine learning models to
predict performance of computer system design alternatives. In 2008 37th Int.
Conf. on Parallel Processing, pages 495-502, 2008.

Ling Huang, Jinzhu Jia, Bin Yu, Byung-Gon Chun, Petros Maniatis, and Mayur
Naik. Predicting execution time of computer programs using sparse polynomial
regression. In Proceedings of the 23rd International Conference on Neural Infor-
mation Processing Systems - Volume 1, pages 883-891. Curran Associates Inc.,
2010.

Monika and O. P. Sangwan. Predicting software effort estimation using machine
learning techniques. In 7th International Conference on Cloud Computing, Data
Science Engineering - Confluence, pages 92-98, 2017.

Frama-C Software Analyzers, 2020 (accessed: 15.03.2020). https://frama-c.com/.
CC4CS-ML Open-SOurce Git Repository, 2020 (accessed: 15.03.2020). https://github.
com/vnzstc/cc4cs.

L. Letteri, G. Della Penna, and P. Caianiello. Feature selection strategies for http
botnet traffic detection. In 2019 IEEE European Symposium on Security and Privacy
Workshops (EuroS PW), pages 202-210, 2019.

L. Breiman, J. H. Friedman, R. A. Olshen, and C.]. Stone. Classification and
Regression Trees. Wadsworth and Brooks, Monterey, CA, 1984.

Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Statistical
Learning. Springer Series in Statistics. Springer New York Inc., New York, NY,
USA, 2001.

Regression Learner App, 2020 (accessed: 15.03.2020). https://it. mathworks.com/
help/stats/regression-learner-app.html.

P. Giammatteo, F. V. Fiordigigli, L. Pomante, T. Di Mascio, and F. Caruso. Age
gender classifier for edge computing. In 2019 8th Mediterranean Conference on
Embedded Computing (MECO), pages 1-4, 2019.

Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Statistical
Learning. Springer Series in Statistics. Springer New York Inc., New York, NY,
USA, 2001.

Dalton Project: 8051 microcontroller, University of California, 2020 (accessed:
15.03.2020). http://www.ann.ece.ufl.edu/i8051/.

Martin Becker, Ravindra Metta, Rentala Venkatesh, and Samarjt Chakraborty.
Scalable and precise estimation and debugging of the worst-case execution time
for analysis-friendly processors. International Journal on Software Tools for
Technology Transfer, 02 2018.

Vittoriano Muttillo, Paolo Giammatteo, Vincenzo Stoico, and Luigi Pomante.
An early-stage statement-level metric for energy characterization of embedded
processors. Microprocessors and Microsystems, 77:103200, 2020.

Donatella Sciuto, Fabio Salice, Luigi Pomante, and William Fornaciari. Metrics for
design space exploration of heterogeneous multiprocessor embedded systems. In
Proceedings of the Tenth International Symposium on Hardware/Software Codesign,
CODES 02, page 55-60, New York, NY, USA, 2002. ACM.

G. Valente, T. Di Mascio, L. Pomante, and V. Stoico. An esl methodology for hw/sw
co-design of monitorable embedded systems: the “design for monitorability”
project - work-in-progress. In 2020 International Conference on Hardware/Software
Codesign and System Synthesis (CODES+ISSS), pages 4042, 2020.

S.J. Pan and Q. Yang. A survey on transfer learning. IEEE Transactions on
Knowledge and Data Engineering, 22(10):1345-1359, 2010.

https://frama-c.com/
https://github.com/vnzstc/cc4cs
https://github.com/vnzstc/cc4cs
https://it.mathworks.com/help/stats/regression-learner-app.html
https://it.mathworks.com/help/stats/regression-learner-app.html
http://www.ann.ece.ufl.edu/i8051/

	Abstract
	1 Introduction
	2 Preliminaries
	3 Proposed Approach
	3.1 Dataset Preparation and Feature Extraction
	3.2 Machine Learning Techniques

	4 Experimental Results
	4.1 Dataset Preparation and Feature Extraction Results
	4.2 Machine Learning Training and Test Results
	4.3 Validation
	4.4 Discussion

	5 Conclusion
	Acknowledgments
	References

 HistoryItem_V1
 AddMaskingTape

 Range: all pages
 Mask co-ordinates: Horizontal, vertical offset 42.72, 718.52 Width 527.14 Height 18.80 points
 Origin: bottom left

 1
 0
 BL

 1
 AllDoc
 1

 CurrentAVDoc

 42.7184 718.5244 527.145 18.7961

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 6
 8
 7
 8

 1

 HistoryList_V1
 qi2base

