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ABSTRACT

Innovation needs a competitive and fair playing field on which

products can be compared and informed choices can be made. Stan-

dard benchmarks are a necessity to create such a level playing

field among competitors in the server market for more energy-

efficient servers. That, in turn, motivates their engineers to de-

sign more energy-efficient hardware. The SPECpower_ssj 2008

benchmark drove the increase of server energy efficiency by 113

times for single CPU servers, or 19 times on average. Yet, with

added functionality and load, they are expected to consume a ris-

ing amount of energy. Additionally, server usage in data centers

has changed over time with new application types. To continue

the effort of increasing server energy efficiency, a new version,

SPECpowerNext, is under development. In this work, after a short

introduction to SPECpower_ssj 2008, we present the new imple-

mentation of SPECpowerNext together with the standardized way

to collect server information in heterogeneous data centers. We

also give insight, including preliminary measurements, into two of

SPECpowerNext new workloads, the Wiki and the APA workload,

in addition to an overview of both workloads.

CCS CONCEPTS

· Hardware → Power and thermal analysis; · Computer sys-

tems organization→ Cloud computing; · Software and its en-

gineering → Software creation and management; · General and

reference→ Performance;Measurement; · Applied comput-

ing → Data centers.
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1 INTRODUCTION

Standard benchmarks drive innovation in the industry by creating

a competitive and fair playing field on which products are rated

and compared. This competitiveness motivates engineers to design

better versions of their products. When it comes to developing

more energy-efficient servers, the SPECpower_ssj 2008 benchmark

is a significant milestone with 728 publicly available results [20].

Through public results and the contribution of the industry, server

energy efficiency (operations-per-watt server efficiency) has in-

creased by 113 times for servers with a single CPU (from 190 to

21603), or 19 times on average [19]. As the energy consumption of

data centers was estimated to be around 263 TWh in 2020 by An-

drea et al. [1] and is, in the optimistic scenario, about to rise to 1137

TWh until 2030, it is clear that the effort for better energy efficiency

must continue. Additionally, over the years since the first release of

SPECpower_ssj 2008, the usage of servers has changed, and with

it, the workloads that are attractive from a competitive point of

view to the server manufacturers. In an effort to advance and in-

crease the server energy efficiency, a new version, SPECpowerNext,

is currently under development.

The new SPECpowerNext introduces modern workloads that

stress different hardware capabilities simultaneously instead of

one at a time, namely the Wiki workload. It also features a new

workload to benchmark servers with state-of-the-art Auxiliary Pro-

cessing Accelerators (APA), also known as GPGPU systems. To

better accommodate novel workloads as well as ease current and

future developments, SPECpowerNext is now based on the Chaffeur
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WDK [2] and includes a standardized way for collecting data about

the server that is benchmarked. SPECpowerNext is planned to be

released in 2021.

In this work, we give a short overview of the SPECpower_ssj

2008, together with the SSJ workload, as a comparison point with

the new implementation in Section 2. Afterwards, in Section 3, we

also describe the benchmark’s new implementation in Chaffeur

WDK that makes workload development easier and faster. With

more and more heterogeneous data centers, SPECpowerNext also

includes Redfish, a standardized interface to collect management in-

formation for servers, replacing the more error-prone shell scripts.

We then also introduce the new workloads with preliminary mea-

surements for theWiki workload that showwhat has been achieved

already in stressing multiple system components and an overview

of the APA workload in Section 4 and conclude the paper in Sec-

tion 5.

2 THE SPECPOWER_SSJ 2008 BENCHMARK

Before we illustrate and discuss the new implementation and novel

workloads, we will describe briefly the current SPECpower_ssj 2008

benchmark. This is the first benchmark to allow power measure-

ments alongside performance measurements to relate each other

while at the same time acknowledging that servers in data centers

are not continuously run at full load [14]. There are 728 publicly

available results that show the performance-to-power ratio has

steadily increased 113 times for servers with a single CPU and

node (marked in red) in Figure 1a, with a minimum score of 190

and a maximum score of 21603. This development has taken place

despite the increasing core count and amount of memory avail-

able in off-the-shelf hardware, visible in Figures 1b and 1c. For

Figures 1a, 1b, and 1c, all 728 results have been parsed and filtered

for non-compliance with the run and reporting rules [17], leaving

687 compliant results shown.

2.1 Overview

The minimal setup is shown in Figure 3a for SPECpower_ssj 2008

that consists of a minimum of two devices. The system under test

(SUT) executes the workload and the controller device governs the

benchmark execution through the control and collect system (CCS).

The PTDaemon interface manages and collects the data from the

two physical measurement devices, a power analyzer and a tem-

perature sensor. Power and temperature data are then transmitted

to the CCS, which measures the throughput and calculates the fi-

nal score across all load levels. At the time when SPECpower_ssj

2008 was developed, all components needed to be self-implemented.

Collecting server information, such as the CPU model, memory

configuration, operating system, and Java version, had to be done

with specialized shell scripts as no standardized method was avail-

able. And despite being developed before the five principles of a

good benchmark had been discussed and published by Huppler et

al. and Kistowski et al. [7, 22]. SPECpower_ssj 2008 was designed

to adhere as closely as possible to these principles [2].

Relevance How closely the benchmark behavior correlates to

behaviors that are of interest.

Reproducibility Consistently produce similar results when

run with the same test configuration.
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Figure 1: SPECpower_ssj 2008 results over time.

Fairness Allowing different test configurations to compete on

their merits without artificial limitation.
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Verifiability Providing confidence that the result is accurate.

Usability Avoiding roadblocks for users to run the benchmark.

2.2 Measurements

As servers are often not run at 100% load, the workloads are run

at ten different load levels, an active idle run, and three calibra-

tion intervals. An example measurement execution with a single

calibration interval and three load levels is shown in Figure 2. An ac-

tual SPECpower_ssj 2008 run would use load intensities from 100%

down to 10% in 10% steps and an active idle with 0% load intensity.

Each interval consists of a pre-measurement, measurement, and

post-measurement phase. The pre- and post-measurement phases

also are called ramp-up and ramp-down phase. The pre- and post-

measurement phases let the system reach a steady-state at the

current load-level. First, the SUT’s maximum load must be deter-

mined by the three calibration runs saturating the SUT. The average

of the last two calibration runs is used as the maximum through-

put achievable by the SUT. From the resulting maximum load, the

throughput is then determined for each load level. To be able to

hold a steady load level below 100%, the workloads are designed

as transactional loads. This means that a transaction blocks the re-

sources until finished and before a new transaction is dispatched. By

calibrating for the maximum load at 100%, the benchmark harness

can then calculate the number of transactions for a particular load

level. No transactions will be dispatched for the active idle interval.

The standard ramp-up and ramp-down phases for each interval of

SPECpower_ssj 2008 are 30 seconds, and the measurement phase

is 240 seconds.
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Figure 2: Example measurement execution with single cali-

bration interval (blue), three load levels (red), and without

active idle interval [8].

2.3 The SSJ Workload

The SSJ workload is designed as an ordering and warehouse ap-

plication on which multiple user interactions are possible. The

interactions are mixed but must be in a definite order. The mix of

interactions stresses the CPU and memory of the SUT. SSJ supports

six different user interactions, implemented as transactions that

occur at a specific frequency. The rate at which a transaction oc-

curs is approximated by the benchmark harness to match the rates

shown below. The transactions are (occurrence rates are shown in

parentheses) [14]:

• New Order (30.3%): A new order is inserted into the system.

• Payment (30.3%): Record a customer payment.

• Order Status (3.0%): Request the status of an existing order.

• Delivery (3.0%): Process orders for delivery.

• Stock Level (3.0%): Find recently ordered items with low

stock levels.

• Customer Report (30.3%): Create a report of recent activity

for a customer.

3 REIMPLEMENTING AN INDUSTRY
STANDARD BENCHMARK

The reimplementation of a well-received and successful benchmark

like SPECpower_ssj 2008 is a challenging task. Not only should it

fulfill certain criteria but, at the same time, ease development and

reduce the workload on the result submission reviewers. Both are

achieved by using the Chauffeur WDK and the Redfish standard

described in the following sections. It must be stated that all pre-

sented implementation details, measurements, or other information

are from a pre-release version of SPECpowerNext and are subject to

change in the future if necessary.

3.1 Chauffeur WDK

SPECpowerNext is based on Chauffeur WDK, developed in 2013.

The main goals of Chauffeur WDK are coherent with the design

goals of the server efficiency rating tool (SERT) [16], which is also

based on Chauffeur WDK. With Chauffeur WDK used in the SERT

and SPECpowerNext, the maintenance overhead for SPECpowerNext

is reduced. Freeing developers to focus on the implementation on

new workloads rather than the benchmark harness. The goals are

the following [2]:

Stress multiple system components. ChauffeurWDK allows

the sequential execution of so-called worklets that stress a

server’s components.

Multiple synthetic worklets. Worklets can be developed eas-

ily with Chauffeur WDK, allowing to write a large variety

of synthetic codes.

Multiple load levels. ChauffeurWDK already has implemented

a graduated measurement series (shown in Figure 2) that

supports running a worklet at user-defined load levels after

a calibration.

Cross-platform support. Chauffeur WDK is written in Java,

allowing cross-platform support.

All the mentioned goals apply to SPECpowerNext, making Chauf-

feur WDK a good choice as a basis for the new implementation

of SPECpowerNext. Additionally, Chauffeur WDK has a very sim-

ilar setup than SPECpower_ssj 2008 shown in Figure 3a and 3b.

Instead of a custom built CCS, which can only run the SSJ workload,

Chauffeur WDK uses a more generalized Director and Reporter.

The Director can run a variety of workloads independent of their

actual implementation and is responsible for the execution of the

workloads and worklets. The Reporter collects and compiles the

results of a benchmark run in a better readable format. The second

large alteration is the differentiation of workloads and worklets.
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A worklet is the smallest unit that is executed on the SUT that

stresses one or more system components like CPU and memory.

A workload, on the other hand, consists of one or more worklets.

The remaining setup, power, and temperature measurement col-

lection are handled as in SPECpower_ssj 2008 by the PTDaemon

interface. Chauffeur WDK is written in Java, making it portable

across multiple systems.

SPECpowerNext also comes with a newly developed GUI on the

controller (see Figure 3c). The GUI makes the proper configuration,

complying with the run and reporting rules, of SPECpowerNext

easier and less error-prone by checking user input early in the con-

figuration process. It also reduces the amount of in-depth knowl-

edge of the configuration files for the benchmark user, making the

benchmark more accessible to a wider audience.

Chauffeur WDK provides an easy-to-use interface to develop

new worklets that can be run in benchmark suites using it. In

the simplest form, only three interfaces need to be implemented:

The SuiteDescription, the User, and the Transaction. However,

abstract classes are provided to simplify further the process of work-

load development. This strong abstraction from howworkloads and

worklets are executed allows for faster and easier development. Its

Java implementation also makes it platform-independent, allowing

to develop workloads and worklets on one system while running

them on a multitude of Java-supported systems. Also, native code

is supported through the Java native interface. While the current

workloads do not depend on networked resources, Chauffeur WDK

also allows implementing workloads that need network communi-

cation. Additionally, Chauffeur WDK is maintained by the Standard

Performance Evaluation Corporation (SPEC), allowing the devel-

oper to focus on the development of its workloads instead of the

necessary infrastructure code to execute them and collect data [2].

3.2 Redfish

Today’s data centers are heterogeneous in nature, (i.e., the compute

servers, storage, and networking devices may consist of multiple

different vendors). Here, each vendor would use his own propriety

standards, tools, and protocols, each of which requires significant

expertise, thereby limiting the scalability of the data center or result

in vendor lock-ins. The Redfish Standard from DMTF [5] helps

in preventing these vendor lock-ins and increasing data center

scalability by providing a standard suite of specifications to manage

these heterogeneous components using a simple and secure HTTPS

interface and delivered as RESTful APIs on the SUT, shown in

Figure 3c. The remainder of this section is based on [6] and [4].

Within the SPECpowerNext benchmark, the Redfish standard

automatically is used to gather hardware information of the SUT.

The flow for retrieving hardware information is shown in Figure 4.

When the Redfish data collection module is first invoked by the

SPECpowerNext harness, an authenticated connection is then estab-

lished to the Redfish interface of the SUT. After successful authen-

tication into Redfish, each API URL represents either a collection

of resources or a singleton resource. A group of similar singleton

resources represents a collection resource. For example, multiple

computer systems are contained as members of a "Systems" collec-

tion, where each system instance will have its own CPU, memory,

Workload

CPU CPUPSU

Memory

Network System Under Test

PSU

CCSController

ReporterSPEC PTDaemon

SPEC PTDaemon

Temperature Sensor

Power Analyzer

(a) SPECpower_ssj 2008
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Worklet C

Worklet B

Worklet A
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(b) Chauffeur WDK

APA-Workload

APA APA

FFT

SGEMM
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Wiki-Workload

CPU CPU

security

nlp

transform

PSU

Database

Memory

Network RESTful API System Under Test

PSU

DirectorController

Reporter

GUI

SPEC PTDaemon

SPEC PTDaemon

Temperature Sensor

Power Analyzer

(c) SPECpowerNext

Figure 3: Components andminimal setup of SPECpower_ssj

2008, Chauffeur WDK, and SPECpowerNext [15, 18]

etc. The Redfish standards dictate the output schema and nam-

ing convention of Resource collections. Moreover, Redfish also

dictates the output schema of the singleton resources; however,

the naming convention of singleton resources is left open to the

hardware vendor implementing Redfish. For example, the API of a

"Systems" collection is "redfish/v1/Systems" for which the path

and schema are well defined by the Redfish standards. However, a

singleton resource under "Systems" collection for which the schema

is defined by Redfish could be represented by <sr> in the API URL

"redfish/v1/Systems/<sr>" where the exact naming convention

of <sr> can be defined by the hardware vendor. A module within

SPECpowerNext self discovers these singleton resource names by

taking advantage of the Redfish’s Hypermedia capabilities, (i.e., the

collection resources are aware and expose the identifiers of the pool

of all available singleton resources using their corresponding APIs).

This property allows us to identify the singleton resource names

used by the vendor by gathering the information from the data

found in the collection resource output. Using this technique, the

module is able to construct the complete APIs for all the singleton

resources from which the information needs to be gathered. Once

all these APIs have been constructed, the module performs REST

calls to these APIs using HTTPS protocol and stores the raw JSON
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response obtained for each of these REST calls. The Redfish module

then parses these JSON outputs obtained to collate the necessary

system information. Finally, the module stores and converts the

results into a unified format as expected by the SPECpowerNext test

harness for further processing.

Authenticate into SUT Redfish 

interface

Invoke Resource Collection API 

to receive JSON response

Parse JSON output to build 

knowledge base of singleton 

resource identifiers

Using the identified singleton 

resource identifiers build 

complete Redfish API list

Invoke calls to the built APIs and 

receive raw JSON response

Parse responses and process 

results to unified format

Send data back to 

SPECpowerNext harness

Redfish Module invoked by 

SPECpowerNext harness

Figure 4: Gathering hardware information with Redfish.

The introduction of automated hardware data collection and pro-

cessing in SPECpowerNext benchmarkwould enable auto-populating

the Full Disclosure Reports (FDR), therefore, simplifying the bench-

mark users task describing the execution environment. Additionally,

it would also assist during the result review process of the com-

mittee as data collected using Redfish can undergo lesser scrutiny,

saving reviewers time, as compared to results where the FDR has

been populated manually.

4 NEWWORKLOADS

To adapt to the changing usage of cloud servers and with new up-

coming usage scenarios, new workloads for a relevant benchmark

suite are necessary. We, therefore, introduce the new workloads,

Wiki and APA, togehter with their included worklets in the follow-

ing sections.

4.1 Wiki Workload

The Wiki Workload consists of three distinct worklets:

Transformation. The transform worklet includes compres-

sion and decompression, data serialization, and JSON parsing.

Additional data transformation operations are being consid-

ered for the final release.

Natural Language Processing (NLP). The nlp exercises Nat-

ural Language Processing transactions using the OpenNLP

library. Transactions include language detection, tokeniza-

tion, sentence detection, and part of speech detection.

Security. The security worklet tests a variety of security oper-

ations, including encryption, decryption, signatures, secret

key generation, and key exchange. It uses multiple algo-

rithms for each of these operations, including AES-128, AES-

256, CHACHA20_POLY1305, SHA256, SHA384, RSA, and

ECDSA, and others.

To show that the Wiki workload can stress different components

of the SUT, as depicted in Figure 3c, we measured an example run

of SPECpowerNext on a state-of-the-art HPE ProLiant DL380 Gen10

server. The server is equipped with two Intel® Xeon® Platinum

8280 CPUs with 28 cores and 56 threads each, as well as 192GB of

memory in 12 modules. For hard drives, two 1TB disks in RAID 0

mode are installed. We took measurements with SPECpowerNext

PK15, a pre-release candidate, so all measurements are preliminary.

The results in Figure 5 clearly show the four load levels in the

CPU utilization.While visibly clear, they have expected fluctuations.

These fluctuations can be explained as the CPU utilization must

not necessarily be correlated to the load level. In fact, as already

mentioned in the SPECpower_ssj 2008 design document, CPU uti-

lization is measured in different ways on different platforms and

SPECpowerNext, as well as SPECpower_ssj 2008, target the through-

put instead [15]. Yet, Figure 5 shows that the Wiki workload can

stress the CPU of the SUT to a certain degree at different load lev-

els. On other platforms, though, the actual CPU utilization could

look different. All three worklets scale well over the four measured

load-levels.

The available (free) memory of the SUT also is shown, but the

load levels are not visible. To observe the different load levels in the

amount of available memory during a measurement interval, the

executed workload must be specifically tuned to do so. While the

Wiki workload is synthetic, its design goal is a mixed workload not

explicitly adjusted to memory. Yet, the Wiki workload still should

utilize most of the installed memory as it clearly does, bringing the

free memory down to about 75GB of the 192GB installed in the NLP

worklet. For the transformation and security worklet, the available

memory is slightly higher, yet all three worklets utilize the SUT’s

memory as intended. The reason behind the minor difference in

available memory between the NLP and the other two worklets

most likely stems from the implementation but is something that

can be investigated in the future.

Figure 5 also highlights that the Wiki workload stresses not only

the CPU and memory as the SSJ workload (described in Section 2.3)

but has an additional IO component. SPECpowerNext achieves IO

stress through a large number of Wikipedia articles, approximately

30GB, stored on the disc. As can be seen, the IO component mainly

consists of file read operations and close to zero file write opera-

tions. File read operations also clearly show the four different load

levels, 100%, 75%, 50%, and 25%, for the transformation measure-

ment interval. For the NLP and security measurement series, the

file operations are minor. While the Wiki workload seems to stress

IO through numerous file operations, our measurements show a

current downside of the new workload; the bytes read and writ-

ten to disk are small. Most data transfers happen at the end of a

measurement series, reaching maximum values of just over 6MB

per second. This issue of low data transfer to and from the disk is

a matter that needs to be addressed in future versions of the Wiki

workload. It is also worth mentioning that most file operations are

file read operations while the actual data transmissions to and from

disk are data writes.

The Wiki workload is, therefore, a suitable new workload for the

upcoming SPECpowerNext, allowing it to stay relevant for server

manufacturers. Hence, SPECpowerNext further fosters the develop-

ment of more energy-efficient hardware over time. Yet, the newly
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Figure 5: Preliminary measurements of CPU time, available memory, file operations, and disk data rates on a SPECpowerNext

Wiki workload run. Measurement phases with four load levels, 100%, 75%, 50%, and 25%, are highlighted for each of the three

worklets.

introduced stress on the IO component of the server needs more

attention in future versions.

4.2 Auxiliary Processing Accelerator Workload

While many APA benchmarks exist, for example, LAMMPS [13]

for atomic/molecular simulations or SHOC [3] for heterogeneous

computing, their focus is on the maximum reachable performance.

The new APA workload in SPECpowerNext, on the other hand,

is for measuring the power-to-performance ratio under different

load levels, a novelty in industry-standard benchmarks containing

workloads aiming at accelerator hardware. The following section

is based mainly on the previous work of Kistowski et al. [23].

As shown by Kistowski et al., by using transactional loads neces-

sary for generating load levels, GPUs also scale with the workload.

However, the scaling is not as pronounced as the CPU scalability.

The reasons are twofold. First, on a system with an accelerator,

the CPU adds to the static power reducing the range of scalability,

even in the case when it is not computing. Second, accelerators

are designed for maximum load in HPC environments and have

fewer power-saving optimizations than CPUs. The CPU’s has also

a higher scalability when an OpenCL Fast-Fourier-Transformation

(FFT) is run on the CPU without an accelerator.

The new APA workload transfers the findings in [23] into an

industry-standard benchmark. Next to the FFT worklet, which has
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been reimplemented, the SPECpowerNext APA workload imple-

ments nine additional worklets, totaling ten worklet kernels, de-

signed for transactional loads. APA worklet kernels are package

executables compiled explicitly for the execution on a GPU.

There are currently two dominating languages to write kernels,

either CUDA or OpenCL. CUDA is NVIDIA’s vendor-specific kernel

language compatible only with NVIDIA GPUs [11]. Nevertheless,

it is popular through a large number of libraries. OpenCL supports

the majority of hardware accelerators and also can be run solely on

the CPU if necessary. This is achieved by compiling the kernel at

run-time [21]. For each of the following mentioned worklets, two

kernel implementations exist, one for CUDA and one for OpenCL.

• Stream/Copy

• Stream/Scale

• Stream/Add

• Stream/Triad

• Stream/DAXPY

• Stream/Fill

• Stream/Sum

• Stream/Dot

• SGEMM

• FFT

The APA worklets Copy, Scale, Add, and Triad are inspired,

among others, by the Streammemory bandwidth benchmark [9, 10].

The Copy worklet makes a copy of a memory location to another.

Scalemultiplies a value in amemory location with a scalar value and

stores the result in a new memory location. The Add worklet sums

the values of two memory locations, storing the result in a third one.

At the same time, the Triad first uses a scalar value multiplication on

one memory location before the addition but is identical to Add oth-

erwise. DAXPY works very similar to Triad but uses vectors instead

of single memory locations. The Fill workload writes a constant

scalar into a memory location. The Sumworklet works by summing

up consecutive memory locations in a single value stored to a new

memory location. Dot, as the name implies, computes the dot prod-

uct on matrices. SGEMM performs a matrix-matrix operation with

the following pseudocode 1, from [12], where alpha and beta are

scalar values, and A, B, and C are matrices. As alreadymentioned, the

FFT worklet performs Fast-Fourier-Transformations. The SGEMM

and FFT worklets are implemented with the help of the cuBLAS

and cuFFT libraries in case of the CUDA implementation, and the

clBLAS and clFFT libraries for OpenCL.

C := alpha * op(A) * op(B) + beta * C (1)

Figure 6 shows a general sequence of a transaction in an APA

worklet similar to a typical transaction of other worklets. First,

there is an initialization phase to prepare test-data for a compute-

device, followed by the device’s buffers’ preparation, or putting it

differently, transferring the test data to the device. After the data is

transferred to the device, the actual computation executes, results

are retrieved, and finally validated. Validation, though, is handled

in the background, not to interfere with the compute-device.

In this section, we highlighted, based on previous work, that APA

workloads do show scalability across load levels in transactional

workloads and how the prototype of an FFT worklet resulted in ten

Preparation of buffers on 

compute-device

Starting the computation

Read the processed data from the 

compute-device

Start validation thread in 

background

Initialization of test-data for 

processing on compute-device

Start

Return

Figure 6: Typical APA worklet transaction execution.

worklets for servers with an APA. An example of how research can

be transferred into sophisticated industry-standard benchmarks.

5 CONCLUSION

To drive innovation of energy-efficient servers for large scale data

centers, new benchmarks are required. While the SPECpower_ssj

2008 benchmark certainly helped to increase the power-to-performance

ratio by 113 times for single CPU and single node servers, the usage

servers in data centers changed over time with new workloads

and a more heterogeneous hardware landscape. For this reason,

we presented the current state of development of the SPECpow-

erNext benchmark. It is based on a technically mature framework,

Chauffeur WDK that allows the benchmark developers to focus

their time on designing and implementing new workloads instead

of the surrounding benchmark harnesses. To accommodate hetero-

geneous data centers, the modern Redfish standard is introduced to

SPECpowerNext. Redfish additionally reduces the time necessary to

review benchmark results. To satisfy the changing application mix,

SPECpowerNext introduces two new workloads. First is the Wiki

workload that allows for stressing multiple hardware components

simultaneously, although disc operations are a current work-in-

progress as the preliminary measurement is showing. Second is the

APA workload for stressing state-of-the-art hardware accelerators

like GPUs with novel transactional loads able to reach specific load

levels. Yet, the development of SPECpowerNext is not completed.
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