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ABSTRACT
Load tests evaluate software quality attributes, such as performance
and reliability, by e.g., emulating user behavior that is representative
of the production workload. Existing approaches extract workload
models from recorded user requests. However, a single workload
model cannot reflect the complex and evolving workload of today’s
applications, or take into account workload-influencing contexts,
such as special offers, incidents, or weather conditions. In this
paper, we propose an integrated framework for generating load
tests tailored to the context of interest, which a user can describe
in a language we provide. The framework applies multivariate time
series forecasting for extracting a context-tailored load test from an
initial workloadmodel, which is incrementally learned by clustering
user sessions recorded in production and enriched with relevant
context information.

We evaluated our approach with the workload of a student in-
formation system. Our results show that incrementally learned
workload models can be used for generating tailored load tests. The
description language is able to express the relevant contexts, which,
in turn, improve the representativeness of the load tests. We have
also found that the existing workload characterization concepts
and forecasting tools used are limited in regard to strong workload
fluctuations, which needs to be tackled in future work.
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1 INTRODUCTION
The workloads of modern session-based [31] applications vary
significantly [21]. This variation needs to be considered when
load-testing [24] the application. Known from detecting contextual
anomalies [10], contexts such as special offers, incidents, or weather
conditions can influence the workload— also known as operational
profile [34]—, resulting in different workload scenarios. For in-
stance, while the normal workload of a webshop might comprise
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Figure 1: State-of-the-art load test generation methodology
and its extension presented in this paper.

1000 concurrent users of a certain mix, a special offer could cause a
spike of up to 5000 users of a different mix. As contexts influence
not only the number of users but also the workload mix, there
may not be a single most demanding scenario to test. However, the
fast release cycles of continuous software engineering (CSE) [22]
contradict a testing approach that covers all scenarios that have
already been observed or might occur in the future [5, 48].

As illustrated in Fig. 1 (top part), the existing approaches [3, 8,
25, 28, 30, 42, 57] can generate a load test representing a workload
scenario that occurred in the past. The workload scenario is deter-
mined by a human, who selects a finite subset of the continuous
stream of sessions arriving at the production system. By clustering
the sessions, the approaches extract a workload model — e.g., based
on Markov chains— that represents the behavior of different user
groups with a particular mix. A drawback of such generated load
tests is that they only reconstruct past workload scenarios. Most
workloads follow a global trend and seasonal variations [21], which
need to be integrated into the load test. For that, approaches for
time series modeling and forecasting [4, 21, 54, 58] could be used,
which, however, mainly focus on the overall intensity, disregarding
a varying workload mix. Also, they lack support for selecting the
relevant scenarios and incorporating qualitative forecasting [30],
e.g., for estimating unseen future scenarios. Finally, approaches
used in CSE need to be automated and should abstract the technical
details, such as clustering and forecasting, from the user [5].

Therefore, in this paper, we introduce an integrated, end-to-
end framework for automatically generating load tests tailored to
the contexts a user specifies. The workloads simulated in the load
tests are predicted automatically, based on the provided context
information. Thus, users can focus on the scenarios relevant to
them and save the time needed for testing less relevant scenarios.
As an example, the operator of a webshop will be interested in the
Black Friday spike in early November, but the same spike is less
relevant in December. Also, the user can add external knowledge
as a qualitative forecast, e.g., planned changes to the platform.
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We build upon the WESSBAS approach [57], which is based
on the session-based workload characterization methodology by
Menascé et al. [31], and add two extensions summarized in Fig. 1
(bottom part). First, to scale with the constantly increasing number
of sessions, we cluster them incrementally and store the resulting
clusters and their mix in a repository. Second, for predicting the fu-
ture behavior of these clusters in a user-defined context, we leverage
existing time series forecasting approaches, including Telescope [4]
and Prophet [54]. For describing the context-tailored workload sce-
nario to be predicted, we introduce the Load Test Context-tailoring
Language (LCtL). LCtL instances serve as input to the forecasting
approach, specify how to extract a workload scenario from a fore-
cast or past data, and allow changing the scenario for qualitative
forecasting. For integration with CSE, the generation of a context-
tailored load test based on an LCtL description is fully automated.

We evaluated the framework with the student information sys-
tem (SIS) of Charles University, Prague, regarding LCtL’s expres-
siveness, the learned workload model’s ability to predict future
workloads, and the representativeness of workload models with
forecasted intensities. We found that LCtL is suitably expressive for
real-world scenarios and contexts. Also, we assessed the framework
to be suited for generating representative context-tailored load tests.
Predicted workload scenarios are particularly representative when
considering the user groups separately and enriching the forecasts
with contexts. However, we also identified limitations of the exist-
ing workload characterization and forecasting approaches, such as
the handling of session timings and predictions of sharp spikes.

Our results pose the following challenges to be addressed in
future work. First, the workload characterization methodology by
Menascé et al. [31] and Vögele et al. [57] needs to be extended to
handle fluctuating inter-request think times appropriately. While
the methodology has been extensively evaluated to extract highly
representative workload models from a single bunch of recorded
user sessions, we show it impairs the representativeness of models
incrementally learned from a large time frame. Second, time-series
forecasting approaches, such as Telescope [4] and Prophet [54],
can accurately predict steady-state future workloads but lack the
prediction of sharp variations, including load spikes. To evaluate
the effectiveness of improved approaches, which can smoothly be
integrated into our framework, we provide supplementary material
with our evaluation data and replication instructions online [51].

To summarize, our contribution extends state-of-the-art load test
generation approaches to address the specific requirements of CSE
in an end-to-end manner through these technical steps:

• we extend the workload clustering from [57] to support an
incremental construction and maintenance of the workload
model,

• we define the LCtL language for describing the context that
the generated load test is to approximate, and

• we combine the context information with workload forecast-
ing to generate models for contexts that were not previously
observed.

The paper is structured as follows. Section 2 defines fundamental
terms and provides examples, followed by the related work in Sec-
tion 3. In Section 4, we introduce our framework, and in Section 5,
we provide its evaluation. Section 6 concludes the paper.

2 DEFINITIONS AND EXAMPLES
A fundamental concept of our work is the context, which we pre-
sume to influence the workload. We define the workload context as
a set of workload context facets. A workload context facet is a self-
contained circumstance present to a significant number of users of
an application with a well-defined state at each point in time.

A context-tailored load test aims at replaying a particular work-
load scenario, which we define as a workload segment of a fixed
length with specific characteristics to be replayed in a load test,
e.g., the constant workload of a specific mix or a workload spike.
Workload scenarios can have occurred in the past, be expected in
the future, or be hypothetical, e.g., for what-if analyses. The context
influences a workload scenario.

We have collected multiple anecdotal examples of contexts that
have influenced an application’s workload. Particularly reported
in news articles and blog posts are influences that caused high
workload, which, in turn, lead to downtimes. The examples listed
below include seven different context facets.

Some context facets recur, i.e., their state and influence on the
workload are predictable from the past occurrences. These facets
include high workload due to special offers (Christmas) [53]; high
workload and downtime due to combinations of releases of new
products, weather conditions, and special offers (TV series and rainy
[60]/sneakers and Black Friday [19]/Prime Day [32]); varying work-
loads depending on the weekday and holidays [7]; and increased
focus on a particular subject influenced by current events [62].

Similar are continuous facets, such as weather conditions [59, 60].
While their influence on the workload is typically predicable, the
predictions themselves are often inaccurate and of limited horizon.

The future impact of irregular facets, in contrast, is unpredictable.
An example is a special incident (recovery from message endpoint
outage) leading to workload spikes [50]. Still, past occurrences
can be used for predicting the impact on future workload at a
hypothetical date, for conducting a what-if analysis.

Finally, there are singleton facets, which only occur once. As
there are no past occurrences, quantitative methods cannot predict
their influence on the workload. However, at least for some facets,
e.g., [50], the future state is known and the influence can be added
by manual estimation as a qualitative forecast [30]. Here, examples
include increased workload due to planned changes to the platform
(new devices added) [50], high workload and downtime due to a
special incident (prominent posting) [6], or high workload due to a
special incident (acquisition of competitor) [39].

Besides the differences in predictability, contexts also differ in
the type of workload scenario. While some cause increased but
generally steady workload [53], others entail a workload spike [50].
A particularly interesting case is [62], where the context influenced
the workload mix. As a consequence, there is no most-demanding
workload we could use in a load test for covering all scenarios.
Instead, we need load tests tailored to those contexts and scenarios
that are currently relevant.

3 RELATEDWORK
Load Testing in DevOps. DevOps [64] poses a significant chal-

lenge to applying traditional load testing practices [24, 31], due
to the organizational changes and increased velocity of software
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delivery. The integration of load testing in such an environment
requires special attention [5, 48]. DevOps teams are in charge of
developing, testing, and deploying their own microservices [35].
Load testing assumes testing the entire system under a realistic
workload. In previous work [46], we developed an approach to
generate load tests tailored to particular microservices.

Delivery in microservice-based software systems is more fre-
quent and fast. Hence, it leaves very little time for the execution of
time-consuming tasks such as load tests. Daly et al. [14] propose
a change point detection approach to deal with a number of tests
and analyzing their results.

In this paper, we aim to optimize the load test execution by
selecting those tests that are relevant to the next delivery.

Test Case Selection/Prioritization. The testing of complex systems
can be a challenge in terms of time and effort. To deal with increas-
ing costs, many approaches have been developed for test selection
and prioritization. The goal is to select and run tests that are most
likely to identify errors. This is a well known technique in func-
tional testing, as surveyed by Yoo and Harman [63]. For software
performance tests, it is even more important, since they sometimes
have to be run for a longer time, for performance issues to manifest
themselves. For example, Ferme et al. [18] use test selection for
obtaining fast performance feedback. Most of the work in the field,
however, is oriented on regression testing. Hashemian et al. [20]
present the IRIS approach, which, considering the testing budget,
maximises the performance insights. The PerfRanker approach [33]
is based on estimating the impact of the code added since the last
revision. Reichelt et al. [41] propose to use code and trace analysis
for test selection in order to reduce the time required to run tests.

In this approach, we select and generate load tests, which are
tailored to specific future contexts, based on the historical workload
characteristics and workload-influencing contexts.

Workload Characterization. Workload characterization deals with
the extraction and representation of theworkload from a production
system [9, 31]. There are different formalisms for characterizing
a workload, for example based on state-based models [31, 57] and
time series [58]. These models can be used to generate and execute
representative load tests [24].

In this paper, we extend the WESSBAS [57] approach for char-
acterizing and forecasting workloads divided into user groups, by
including workload-influencing contexts.

Workload Forecasting. An intrinsic property of the workload
characterization approaches above is that they deal only with in-
formation from the past. To test the system with a future workload,
we have to apply a suitable forecasting approach to predict how
the workload will evolve over time.

There are different approaches that deal with quantitative work-
load forecasting, such as [21, 30], with many of them based on time
series forecasting. These approaches predict only how the work-
load of a system will change based on the currently available, i.e.,
past data. They do not take into account potential future workload-
influencing contexts. In our work, we rely on existing forecasting
techniques, particularly Telescope [4] and Prophet [54]. With the
inclusion of workload-influencing contexts, we also support quali-
tative workload forecasting [30].

Performance Testing Languages. The specification of load tests
requires expertise and experience, as well as the knowledge of
tools. Hence, researchers have developed approaches to ease the
specification based on domain-specific and natural languages. As a
part of the BenchFlow [17] approach, users can specify different
types of load tests using the BenchFlow domain-specific language
(DSL), without having to know the details of particular tools, which
will be used to run them. In previous work [50], we proposed the
Behavior-driven Load Testing (BDLT) language, which leverages
BenchFlow and preliminary concepts from this work to reduce
the effort and expertise required to specify and execute load tests.
Furthermore, we introduced an annotation language to reduce the
effort to maintain load tests and automate their generation [52]. An
approach by Okanović et al. [37] allows the user to set up simple
load tests based on their concerns using a natural language and
obtain results tailored specifically to these concerns.

In this paper, we propose the LCtL language, to ease the task
of specifying context-tailored load tests. Compared to the BDLT
language, it does not include test execution but is more extensive
regarding the tailored specification of the load test scenario, with
the support of an automated framework to generate the test. For
automation, the framework leverages our annotation language.

4 CONTEXT-TAILORED LOAD TEST
GENERATION

As discussed in Section 2, the goal of our work is to generate load
tests tailored to the currently relevant contexts and workload sce-
narios. For that, we introduce a framework that leverages work-
load model extraction and forecasting techniques for generating a
context-tailored load test from a user’s description. We first provide
an overview in Section 4.1 and describe the details in the subsequent
sections.
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4.1 Overview of the Approach
As Fig. 2 illustrates, our framework consists of two parts: one that is
continuously repeated, and one that a user can trigger on-demand.
In the former part, we collect all the information required for gener-
ating a load test. For that, we continuously collect the user sessions
by monitoring the production system and cluster the stream of
sessions incrementally 1○. We obtain Markov chains representing
the behavior of a particular type of user and the corresponding
numbers of concurrent users (workload intensities [57]) over time,
and store them into the workload model repository (WMR) for later
use. Besides, we enrich the intensities with relevant contexts 2○.

For generating a new load test, a user defines a tailoring descrip-
tion using our provided language 3○. The description specifies the
purpose of the load test and serves as an input for the load test
generation process. This process consists of four steps. First, we
prepare the workload and context, i.e., select all relevant data from
the WMR and potentially adjust it based on the tailoring descrip-
tion 4○. While the future context is known, the future values of
the workload intensities are to be predicted. For that, we utilize
time series forecasting tools, considering the context and tailoring
description 5○. Next, we aggregate the forecasted intensities and
potentially adjust them based on the tailoring description 6○. As a
result, we obtain user groups represented by Markov chains plus
the corresponding relative frequencies and intensities.

The final step is to transform the listed artifacts into an exe-
cutable load test 7○, which will replay the workload that these
artifacts describe. Regarding this transformation, we refer to our
previous work [52]. It automates the transformation, allowing for
a fully automated processing of the user’s request.

Our approach is implemented as part of the ContinuITy project
[36, 48], with the source code being available online [44, 47, 49].
The technologies used are the following: Java for the major part
of the approach, Python with its powerful scikit-learn [38] library
for session clustering, R [40] for workload forecasting, and Elas-
ticsearch [16] for the WMR. All data in the WMR is formatted in
JSON.

4.2 Continuous Workload Model Learning
4.2.1 Incremental Clustering. Our approach builds on the work-
load model of WESSBAS [57], which targets closed workloads with
sessions. Each endpoint accessed by a workload, e.g., the HTTP
endpoints /login and /home, is modeled as one state in a Markov-
chain-based representation. The sequences of requests that make up
each session are modeled as transitions in the Markov chain, yield-
ing one transition matrix per session. Similar sessions are grouped
by clustering the matrices with k-means [31] or X-means [57]. After
clustering, the centroids of the session clusters represent groups
of users with similar behavior, and are transformed into Markov-
chain-based behavior models by converting the absolute transition
frequencies to probabilities. The think times— i.e., the times the
users wait between submitting two requests— are computed per
model and transition. Finally, the resulting workload model com-
prises the individual behavior models and their relative frequencies
(mix).

As outlined, the existing approaches are not designed for up-
dating an already-extracted workload model with newer sessions,

yet we require exactly this feature for building the WMR. With
a growing history of system execution typical for CSE, running
the clustering algorithm repeatedly from scratch does not scale
(the problem itself is known to be NP-hard, the specific complex-
ity depends on additional details). Also, the clusters discovered by
k-means or X-means are not necessarily stable, which can be a
problem if the developers, e.g., use the once-discovered clusters in
context specification (as we do in Section 5.3). Therefore, we modify
the existing clustering algorithms to enable incremental updates in
batches, preserving the once-discovered clusters and keeping the
computational complexity of each update manageable.

The exact implementation of the incremental clustering algo-
rithm is available in [49]. The algorithm distinguishes between the
first and further batches. In the first batch, we move the outliers
(based on distance to nearest neighbor) into a separate noise cluster
and then apply k-means++ [2] to cluster the remaining sessions, ob-
taining k + 1 clusters with their centroids and radiuses. For further
batches, we first assign all sessions that are within the radius of
some existing cluster, with a tolerance factor β ≥ 1, to that cluster.
We then loosely base upon Lloyd’s Algorithm [27] to form a clus-
ter of the remaining sessions, and finally add any still remaining
sessions to the noise cluster.

After each clustering iteration, our approach calculates the work-
load intensities for each cluster and stores them in the WMR. The
intensity is defined as the number of concurrent users in a config-
ured interval, e.g., one minute.

4.2.2 Enrichment with Contexts. Users can enrich the learned in-
tensities with workload contexts by providing past observations
and known future states of the relevant context facets. These states
are also stored in the WMR. This has two benefits: (1) a user can
describe a time range from which they want to extract a load test
based on the context facets’ states; (2) our approach can use the
future facet states for improving the intensity forecast.

The types of context facets we are interested in are those whose
state or influence is predictable. Other facets cannot be used to
describe the time range or improve the forecast. We store at least
the past states we have observed; for those with a predictable state,
we also store the future states. Furthermore, we provide a generic
API endpoint that can be used for synchronizing with various data
sources, e.g., calendars for sales events, corresponding platforms
for weather forecasts, or application monitoring tools for platform
incidents.

For technology-independent exchange, e.g., via Representational
State Transfer (REST), we store the context facets in records in the
JSON format, as shown in Listing 1. Context facets can be numeric,
string, or boolean, and the values are stored in one record per point
in time. For instance, the Black Friday is an event that either occurs
or not; hence, it is a boolean facet. For product releases, one might
differentiate between the products, which can be encoded as strings.
The temperature is a numeric facet.

4.3 Load Test Context-tailoring Language
When a user wants to extract a load test from the WMR, they need
to describe the workload scenario the test will simulate. For that,
we provide the Load Test Context-tailoring Language (LCtL), which
uses the YAML format [56] for viable integration with CSE. YAML
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Listing 1: Workload con-
text record example.
{

"boolean ": [

"black_friday"

],

"string ": {

"product_release ":

"sneakers"

},

"numeric ": {

"temperature ": 21

}

}

Listing 2: LCtL example.
timeframe:

- !<conditional >

product_release:

is: sneakers

context:

weather:

- is: rainy

temperature:

- added: -5

aggregation: !<maximum > {}

adjustments:

- !<users -multiplied >

factor: 1.2

is a superset of JSON aiming to be more human-readable and is used
by technologies such as Docker [15] and Kubernetes [55]. Fig. 3
provides the grammar of the language in extended Backus-Naur
form (EBNF), visualized as syntax diagrams [23] and formatted to
highlight the YAML structure. In the supplementary material [51],
we provide the pure EBNF. Listing 2 provides an example, which de-
scribes the maximum workload expected during a sneakers release
when the weather is cold and rainy, increased by 20 %.

The root clause of an LCtL instance is a scenario. It describes a
workload scenario based on the contexts stored in the WMR in up
to four sections, as described below.

4.3.1 Timeframe Section. Here, a user can specify the past or future
time frame from which the workload model of the load test will be
extracted. Hence, the section acts as a query language for selecting
data from theWMR.We provide the following clauses, which define
sequential restrictions or extensions to an unbound time frame.
A timerange defines a time range starting at a defined date and
time and having a potentially unbound duration. The conditional
clause refers to the context facets stored in the WMR and selects
the data where the specified conditions hold, e.g., the facets have
a specific state, or have a numeric state greater or less a value. The
extended clause extends the time frame defined by the previous
clauses by a specified duration. This is especially useful if users
are interested in the time before or after a specific state of a facet.
The example (Listing 2) defines the time frame for the release of
sneakers.

4.3.2 Context Section. This section is optional and allows users
to modify the data queried with the timeframe section. They can
change the facets’ states for influencing the workload forecast as a
what-if analysis, e.g., changing the expectedweather conditions (see
Listing 2). The section is a mapping of context facet names to one
or multiple context-def clauses, which provides three keywords,
whose usage depends on the type of facet: is sets the state to a
specific value (all types); added and multiplied add or multiply the
state of numeric facets with a value. The clause also has a during
keyword for restricting the modifications to a time frame.

4.3.3 Aggregation Section. The third section is mandatory. It de-
fines how to extract a workload scenario from the selected or fore-
casted per-group intensities. As the time frame can be large, a fea-
sible aggregation is crucial. The section consists of a single clause,
which we designed to be extensible. It refers to the unique name of

context:

timeframe

timeframe: \n

context

\n

aggregation: aggregation

adjustments:

adjustments

\n

(a) scenario

during:

added: numeric

>>

<<

- multiplied: numeric \n

\nadded: numeric

-

>>

is: \nvalue-

\n

timeframe

\n

(b) context-def

conditional

timerange

extended

[ ]

(c) timeframe

>>

<<

context-def

name : \n

(d) context

\n-

>> from: date \n

duration

to: date \n

duration:

\n

!<timerange>

<<

(e) timerange

!<conditional> \n-

>>

<<

condition

name

>>

: \n

<<

(f) conditional

!<extended> \n-

>> beginning:

\n

end: 

\n

<<

duration

duration

(g) extended

greater:

is: \n

\n

exists:

less:

numeric

numeric \n

boolean \n

value

(h) condition

!< name > properties

(i) aggregation

!<- name > properties

(j) adjustments

Figure 3: LCtL grammar. >> and << denote indents and de-
dents; \n denotes newlines respecting the indentation.
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registered code snippets implemented in the R programming lan-
guage [40], which get as input the (potentially forecasted) intensity
values per group for the specified time frame and need to extract
parts of it. Furthermore, the snippets can be parameterized with
properties, which are either empty or key-value maps. By default,
we provide the following aggregations: as-is returns the input it
receives; maximum selects the steady-state workload with the maxi-
mum intensity (as in the example); percentile acts similarly but
selects a defined percentile; sharpest-spike selects a part of the
workload around the highest slope.

4.3.4 Adjustments Section. In this section, a user can incorporate
a qualitative forecast into the workload scenario extracted by the
aggregation. It is optional. Again, it is extensible and users can
register R code snippets. The adjustments we provide by default are
users-multiplied and users-added, which apply the respective
operations to the intensities of either all groups or specific ones. In
the example, we increase all groups by 20 %.

4.4 On-demand Load Test Generation
4.4.1 Workload and Context Preparation. As a preparation for fur-
ther steps, we select all relevant data from the WMR based on the
time frame specified in the timeframe section. These are the behav-
ior models per group that represent the behavior before the start of
the time frame, the past per-group intensities and context, and the
future context until the end of the time frame. The behavior mod-
els and intensities constitute the latest state of the incrementally
learned workload model. We will use the past and future context for
forecasting the workload to the future. If the LCtL instance contains
a context section, we modify the context retrieved from the WMR.
In our example (Listing 2), we use the past data to forecast the future
workload in contexts where the WMR sets the product_release facet
to sneakers, and modify the weather conditions the WMR describes
for the sneakers releases.

4.4.2 Workload Forecasting. If the LCtL instance specifies a future
timeframe, we need to forecast the future workload. For that, we
applymultivariate time series forecasting to the data prepared in the
previous step, i.e., the per-group intensities and context. We obtain
the future intensities, which, in combination with the behavior
models, build the workload mix. This procedure is superior over a
pure forecast of the total intensity, as it can also predict the mix. We
utilize the Telescope [4] forecasting tool, which can use the prepared
context as covariates for a more relevant forecast. For evaluation
purposes, we also provide a perfect forecast, which returns the
actual intensities that lie in the future from a defined perspective.

4.4.3 Aggregation & Adjustments. The final step is to aggregate
and potentially adjust the intensity forecast (or selected past inten-
sities). First, we apply the R code snippet registered for the defined
aggregation to obtain a workload scenario. Then, we apply the
code snippets for the adjustments. In the example, we select the
steady-state workload with the maximum intensity and increase it.
The result is a per-group workload intensity that can be replayed
in a load test.

5 EVALUATION
We evaluated our approach with the student information system
(SIS) of the Charles University in Prague (around 50,000 students).
We applied our framework to the request logs from half a year and
the publicly available academic calendars for learning a workload
model and addressing the following research questions in three
studies. For RQ1—How expressive is the Load Test Context-tailoring
Language concerning workload scenarios of a production system?,
we conducted an expert survey to identify relevant scenarios and
expressed them using LCtL. Furthermore, we investigated scenar-
ios arising from special contexts, such as the COVID-19 pandemic.
Addressing RQ2—How well do the continuously learned workload
models describe the future workload?, we generated and executed
(against a mock server) several context-tailored load tests using
a perfect, i.e., simulated forecast and compared the results to the
actual workload. Finally, for RQ3—How representative for future
workload scenarios are the workload models with forecasted intensi-
ties?, we did the same but for time frames after the learned workload
model using real forecasting tools [4, 54]. Hence, we evaluated the
on-demand part of the framework. A replication package is avail-
able online [51].

In the following, we present the preparation, metrics used, the
studies, a discussion of the research questions, and a discussion of
threats to validity.

5.1 Preparation
Using a publicly available dataset of request logs of the SIS [29],
we learned a workload model and intensities from May 24 to Nov.
22, 2018. Furthermore, we had access to the request logs of Sep. 25
and Oct. 2, 2019, to compare the context-tailored load tests with.
We initialized our framework with the half year as input to the
incremental session clustering, which processed a four-week batch
for the initial clustering with k = 20 and α = 0.95. Further batches
comprised one week each and were processed with β = 1.1 and
m = 500. These parameters need to be settled once per application;
in this case, we identified them in informal experiments with differ-
ent settings. Overall, the clustering found 26 groups, including the
noise cluster. Fig. 4 illustrates the resulting per-group intensities. As
context, we used the publicly available academic calendars [11, 12],
which comprise the facets tuition, examination, final_exam, vaca-
tion, course_enrolment, and graduation_ceremony. Further entries
in the calendar, such as an open day, we found not to influence
the workload. We modeled all facets as boolean ones, except for
tuition and course_enrolment. Tuition phases have a higher work-
load in the beginning. Accounting for that, we modeled the facet
numerically with a value of 10 in the beginning and decreasing
negative exponentially to 1 within three weeks. Course_enrolment
is a string facet, which distinguishes between the priority and open
mode enrolment. Finally, we labeled strong spikes, which occurred
during the course enrolment, as having the special state.

A drawback of the dataset is that it only contains the workload
of half a year, i.e., the length of one semester. However, forecasting
tools require multiple seasons for properly predicting the future.
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Figure 4: Intensities (number of concurrent users) of the 26 groups and context of the SIS (excluding augmentation).

Therefore, for the third study, we augmented the per-group intensi-
ties by another half year. As precisely documented in the supple-
mentary material, we constructed the intensities according to the
context and applied smoothing and jittering for randomization.

5.2 Metrics
5.2.1 Request Metrics. In previous work [52], we have introduced
the ρ metric, which assesses the representativeness of a load test
compared to a reference workload. It calculates the weighted and
normalized difference of the number of requests per endpoint be-
tween the load test and the reference. Here, we utilize a slightly
modified version ρ, which considers the relative frequencies xtest
and xref per endpoint instead of the absolute counts, i.e., ρ ≈

∥(xtest − xref)/xref∥. The larger ρ is, the more the test’s request mix
differs from the reference. For a precise definition, we refer to [52].
To account for workload fluctuations, we calculate the metric per
minute and use the average ρ for the whole test.

Even if the request mix is similar to the reference, the total
number of requests might differ. The request gap is the difference
in the overall number of requests per minute between the load test
and the reference (summarized over all endpoints). Again, we use
the sum for the whole test, expressed relative to the number of
requests of the reference for comparison between tests.

5.2.2 Session Metrics. Further relevant metrics for session-based
workloads are the session length (number of requests per session)
and session duration (seconds a session lasts) [57]. We compare
these between the test and the reference using the Kolmogorov-
Smirnov (KS) statistic D. Throughout the paper, we use α = 0.05,
i.e., c(α) = 1.358, and normalize D with

√
ntest · nref/(ntest + nref)

based on the sample sizes ntest and nref for inter-test comparison,
such that the KS null hypothesis is rejected if the normalized D is
greater than c(α).

5.3 Expressiveness Evaluation
5.3.1 Method. The study consists of two parts. First, we conducted
an expert survey for collecting relevant workload scenarios, which
we expressed using LCtL. The survey showed the participants the
SIS workload, similar to Fig. 4, and asked for relevant load test
scenarios. Precisely, we asked about (a) the participant’s load testing

experience, (b) relevant scenarios without knowing the context,
and (c) relevant scenarios when knowing the context. We provide
the survey questionnaire and individual answers in [51]. In order to
obtain plausible scenarios, we invited known experts from industry
and academia. Then, one of the authors defined LCtL instances for
all specified scenarios, which a second author double-checked.

Second, we investigated the ability of LCtL to capture scenar-
ios arising from the COVID-19 pandemic, which started in spring
2020. Due to measures taken by the Czech government, Charles
University had to replace presence teaching with online teaching.
We analyzed whether LCtL can be used for generating load tests
that cover the affected SIS workload.

5.3.2 Results.

Expert Survey. The survey had six participants, who self-assessed
as competent or expert in load testing. Overall, they specified 36
scenarios.Without knowing the context, most participants specified
workload scenarios representing specific periods, many of which
correspond to the phases defined by the context. One participant
also distinguished between weekdays, i.e., workdays and weekends.
When knowing the context, they defined similar scenarios but
stated themmore precisely, e.g., referring to context facets instead of
dates. Several participants proposed to test the workload during the
overlap of multiple facets, e.g., examination and course_enrolment.

Except for one case, we were able to express all scenarios by
introducing two new LCtL clauses using the extension mechanisms,
namely for selecting specific weekdays in the timeframe section
and extracting a specific intensity curve in the aggregation sec-
tion. The exception is one participant with expert knowledge, who
stated to define the relevant scenarios “based on assumed risk” in-
stead of the recorded workload. We presume they follow a different
school of load design than we do, namely fault-inducing rather than
representative [24], which our framework does not cover.

COVID-19 Pandemic. Among the measures the Charles Univer-
sity has taken due to the pandemic [13], we consider the following
to be especially relevant for load testing. (1) As of Mar. 11, 2020,
students were prohibited from attending classes in person. Teachers
were recommended to continue teaching remotely via online tools.
The students had to complete all assignments electronically. (2) As
of Mar. 16, 2020, all employees had to work from home. (3) The
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Listing 3: LCtL instance for online tuition.
timeframe:

- !<timeframe >

from: 2020 -03 -11 T00 :00:00

duration: P4W

aggregation: !<percentile >

p: 95

adjustments:

- !<users -multiplied >

factor: 1.2

group: 0

- !<users -multiplied >

factor: 1.5

groups: [12 ,14 ,21 ,22 ,23 ,24]

Listing 4: LCtL instance for the graduation ceremony.
timeframe:

- !<timeframe >

from: XT00 :00:00

duration: P1D

context:

graduation_ceremony:

is: true

aggregation: !<sharpest -spike > {}

graduation ceremonies, which should have taken place on Apr. 21,
2020, were canceled. The university planned to have an alternative
on a later date.

We deduce two load test scenarios, which cover the special cir-
cumstances. The first scenario follows from (1) and (2), which result
in students and teachers accessing the SIS more than usual, espe-
cially for exchanging course material. Hence, we can test whether
the SIS can handle such an increased steady-state workload. List-
ing 3 shows the LCtL instance for this scenario. As the workload
expected under normal conditions, we selected the 95th percentile
of the workload during four weeks starting from Mar. 11. For in-
corporating the workload increase, we analyzed the groups of the
workload model, as our approach can differentiate between groups,
leading to a more accurate forecast. In the first place, we expect
the intensities of the groups related to course material exchange
to increase— these are groups 12 and 21 to 24, because they fre-
quently (9.3% to 22.1%) access the course browser, and group 14,
which frequently (70.4%) accesses the student application, which
we identify as being relevant for online learning and study man-
agement. Group 0 users call many endpoints representing normal
student activities, which are likely to increase, but less than the
other groups. Hence, we can, e.g., increase the intensity of group
0 by 20% and the intensities of the further listed groups by 50%.
These percentages illustrate a qualitative estimation to be made
by the operators of the SIS. As a result, the load test reflects the
workload predicted by quantitative forecasting, enriched with the
qualitative forecast of online tuition. We refer to the groups by IDs,
but we can also imagine labeling with user-friendly names, which
would increase the comprehensibility of the LCtL instance.

A past occurrence of the graduation ceremony phase contained
a workload spike. If this spike overlaps with other effects, it may
stress the system extraordinarily. Hence, for measure (3), we can
test the SIS under the workload at the new ceremony date. Listing 4

shows the LCtL instance, which uses X as a placeholder for the
date. As opposed to the first scenario, we can rely on quantitative
forecasting, which is influenced by the new ceremony date.

5.4 Experiments with Perfect Forecasting
5.4.1 Experiment Process. For evaluating the ability of the incre-
mentally learned workload model to predict the reference work-
load— i.e., requests and sessions of the SIS dataset —, we generated
and executed 28 load tests using our framework with perfect fore-
casting, which varied in the following dimensions. (1) We predicted
different phases using the LCtL timeframe section. First is the start
phase shortly after the initial clustering period. We used it to assess
the ability of the initial workload model to predict the workload
it was built from. Further phases are vacation, course_enrolment,
and tuition (see Fig. 4). (2) We generated steady-state and vary-
ing workloads using the 95th percentile and sharpest-spike
aggregations. (3) We varied the perspective, i.e., the date of the
workload model version used, between the start and directly before
each phase. In doing so, we could assess how much incremental
updates change the workload model and its ability to predict the
reference workload. (4) For evaluating the benefits of predicting the
workload mix in addition to the total intensity, we forecasted the
groups’ intensities individually or all in total using the workload
mix of the workload model.

We executed the spike load tests for the duration of the spike and
the steady-state tests for three hours (plus ramp-up and cool-down).
For comparison with the reference, i.e., the real users’ requests dur-
ing the predicted period, we used the server-side request log pro-
duced by the test. Additionally, we executed the load test with the
start phase and perspective, individual forecast, and percentile
aggregation ten more times, and—with the first execution as the
reference— used these executions to assess the normal variation of
a single test.

5.4.2 Experiment Setup. We used two bare-metal machines, which
both had an Intel® Xeon® CPU E5620 with 2.40GHz clock fre-
quency, 4 cores, and 8 threads, and were connected via a 1Gbit
switch. The first machine had 32GiB RAM and hosted our frame-
work and JMeter [1] for executing the load tests. The second ma-
chine had 8GiB RAM and hosted a mock server [45] that collected
the requests the load tests submitted.

5.4.3 Results per Aggregation Used.

Percentile. Fig. 5 and Table 1 provide an overview of the request
and session metrics. For the request metrics (ρ and request gap), we
calculated baselines from the corresponding test executions. The
average ρ is higher than the baseline µ for all tests and, except for
one case, also higher than µ + 3σ . Hence, the request mix differs
(only slightly for some tests) from the reference. For the tests with
individually forecasted intensities and perspective before the phase,
the difference is the smallest. The phase with the overall largest
difference is the course enrolment, whose workload sharply differs
from other phases (see Fig. 4). The request gap is different from
its baseline, too. Analyzing that further, we identified the gap to
the expected numbers of requests, which we obtained by solving
the Markov chains of the per-group behavior models, to be signifi-
cant as well. As a potential reason, we found that the think time
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Figure 5: Plots of tests with percentile aggregation (S = start,
V = vacation, E = enrolment, T = tuition).

specifications between two endpoints—which are normal distri-
butions, similar to existing work [57]—had a significant negative
portion stemming from large variances. As a load test cannot simu-
late negative think times, it replaces them with zero, resulting in a
biased mean think time. Our explanation is supported by the fact
that the lost time correlates with the gap to expected requests (see
Fig. 5c) with a Pearson correlation coefficient of 0.952. Indicating
that it does not stem from bottlenecks in the load driver, the gap
does not correlate with the number of concurrent users, where the
coefficient is −0.131.

The session metrics (length and duration) give a slightly different
picture. As shown in Fig. 5b, the KS statistics for the tests with total
forecast are mostly below the individual forecasts, but still above
c(α). An exception is the course enrolment phase, highlighting
its peculiarity. For the other phases, quantile-quantile (Q-Q) plots
(Fig. 5d) show that the sessions of tests with individual forecasts
are longer, except for the tail, while the ones with total forecasts
are shorter than the reference.

Sharpest Spike. In general, the results of the spike tests have
similar characteristics as the tests with the percentile aggregation.
A new aspect, however, can be seen in tests with notably sharp
spikes. As an example, the cumulative request gap of the tests for the
course enrolment phase sharply increases after about 100 minutes
(see Fig. 6a). So does the ρ metric. The reason is that at that time, the
request rate of the reference workload sharply increases, without a
corresponding increase in the number of concurrent sessions. In
contrast with the request rate, the number of concurrent sessions
generated by all tests is close to the reference.
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Figure 6: Plots of tests with spike aggregation.

Table 1: Metric Summary of Selected Test Scenarios

test scenario mean ρ gap KS (len) KS (dur)

perfect forecasting

S/perc/start/indiv 2.627 0.346 12.701 22.857
S/perc/start/total 2.200* 0.505 12.565 23.485
E/perc/before/indiv 4.176 0.242 10.749 18.558
E/perc/before/total 10.575 0.480 20.302 11.308
T/perc/before/indiv 2.338 0.229 12.153 17.425
T/perc/start/total 15.798 0.649 4.101 14.153
S/spike/start/indiv 1.974* 0.339 10.596 20.569
V/spike/before/indiv 5.554 0.677 6.656 3.075
E/spike/before/indiv 9.185 0.447 21.418 11.098
T/spike/before/indiv 9.221 0.459 14.858 13.901

real forecasting (Telescope)

T/perc/indiv/context 6.297 0.606 13.123 18.006
T/perc/indiv/pure 7.703 0.796 9.855 12.419
T/perc/total/context 21.419 0.757 11.521 13.623
T/perc/total/pure 20.203 0.872 7.513 11.445
E/spike/indiv/context 6.093 0.437 10.137 15.897

real forecasting (Prophet)

T/perc/indiv/context 8.366 0.479 12.218 18, 540
T/perc/indiv/pure 11.595 0.696 9.600 14.526
T/perc/total/context 22.083 0.634 12.218 16.591
T/perc/total/pure 22.623 0.787 10.607 13.429
E/spike/indiv/context 10.377 0.681 10.165 5.655
E/spike/total/context 25.990 0.716 26.603 16.720

*below µ + 3σ of the respective baseline (2.311 for ρ and 0.206 for request gap)

5.5 Experiments with Real Forecasting
5.5.1 Experiment Process. For evaluating the ability of workload
models with forecasted intensities to predict a reference workload,
we generated and executed sixteen further load tests using the
augmented intensities (see Section 5.1). The tests differed in the
following dimensions. (1) They replayed the workload scenarios
predicted for two specific days after the end of the (augmented)
intensities (May 23, 2019), namely the highest workload during
course enrolment (Sep. 25, 2019) and the first tuition day (Oct. 2,
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2019), for which we had access to the request logs. For the tuition
day, we predicted the 95th percentile; for the enrolment, we pre-
dicted the highest-spike, which is a more robust variant of the
sharpest-spike (instead of locating the spike with the sharpest
increase, it detects a spike pattern around the peak load). We applied
this aggregation because we found that the tools used calculated
forecasts that lead to wrongly predicted sharpest spikes (see results
section). (2) Similar to before, we forecasted the intensities individu-
ally and in total. (3) We used the Telescope [4] and Prophet [54] tools
for computing the intensity forecasts. (4) We expect the context
to improve the intensity forecast. For validating this hypothesis,
we supported the forecasting tools with the context or executed it
purely, i.e., without context. In the enrolment case with context, we
defined a special enrolment from 9:30 to 11:00 using the context
section of the LCtL.

For analyzing the load test results, we compared the requests and
sessions executed by the tests with the corresponding ones from the
two days. For the course enrolment, we aligned the intensity peaks
of the load tests and the reference. For the tuition, we extracted the
95th percentile.

5.5.2 Experiment Setup. Similar to Section 5.4.2.

5.5.3 Results per Scenario.

Tuition Percentile. Table 1 provides a summary of the load test
results. The request and session metrics are in a similar range as
for the tests with perfect forecasting, but higher, e.g., the average ρ
for the test with Telescope and individual forecast considering the
context is 6.297, as opposed to 2.338 for its counterpart with perfect
forecasting. In general, Telescope generates more representative
workload predictions than Prophet. An exception is the request
gap, which is smaller for Prophet than for Telescope. However, all
metric values for the two tools are close to each other.

The individual forecast has the strongest effect on the request
metrics. It reduces ρ by 48% to 71% compared to the total fore-
cast. Also, the request gap is smaller with individual forecasting
compared to total forecasting, with differences between 8% and
25 %. The data basis has a small effect. In all cases except one, using
the context reduces ρ by 2% to 39%. For the test with Telescope
applied to the total intensities, the context slightly increases ρ by
6 %. However, the context reduces the request gap in all cases.

As before, the total forecast produces smaller session metrics,
with Q-Q plots similar to Fig. 5d. Besides, Telescope predicts work-
loads with slightly smaller session metric values than Prophet does
in most cases. As all tests’ workloads significantly differ from the
reference workload, we cannot deduce significant differences be-
tween Telescope and Prophet regarding the session metrics.

Enrolment Spike. Predicting the sharpest spike during the course
enrolment appeared to be challenging for the forecasting tools. For
Telescope with total forecasting and Prophet with the pure data
basis, the predicted workload did not contain a notable spike. In
these cases, the sharpest spike patterns contained in the forecasts
lasted between ten and twenty hours. Therefore, we only analyze
the remaining test scenarios. The resulting metrics (see Table 1)
show high variation among the tests. The most representative work-
load was predicted by Telescope with individual forecasting, using
the context. Its metrics are close to the enrolment spike predicted

with perfect forecasting. The request metrics are even lower. With
Prophet, both tests have a similar request gap, but the individual
forecast generates a better ρ.

However, as Fig. 6b illustrates, the curve shape of the number of
concurrent sessions generated by the tests differs significantly from
the reference. Mainly, there is an extremely sharp increase shortly
after the start, which does not exist in the reference. The increase
correlates with the start of the special enrolment. Still, Telescope
predicted the peak intensity accurately when using the context.

5.6 Discussion of Research Questions
5.6.1 RQ1—Expressiveness. Due to its flexibility, LCtL is suitably
expressive for workload scenarios of the SIS. For one, we were able
to express all scenarios from the expert survey. In few cases, we
had to extend the language with further clauses, for selecting week-
days and for a specific aggregation. Additionally, we could define
unusual scenarios arising from the COVID-19 pandemic. Here, the
mix of quantitative and qualitative forecasting was required for
estimating the impact of the online tuition. A limitation of LCtL is
non-representative workloads, such as fault-inducing [24], which
our framework does not cover by design.

5.6.2 RQ2—Describing FutureWorkload. The incrementally learned
workload model describes the reference workload accurately, ex-
cept for two influences. First, the think time specifications have
too large variance, which induces a significant request gap. As the
user groups are affected differently, the request mix and, thus, the
ρ metric are affected, too. Taking that into account, the workload
model perspective learned just before the forecast phase, in combi-
nation with individual forecasting, generates representative load
tests, while especially total forecasting gives a worse result. Hence,
predicting the workload mix is superior over predicting the total in-
tensity only. The fact that the sessions of the individually forecasted
tests tend to be longer than the reference, while the tests with total
forecasts have shorter sessions, supports this finding, as Markov
chains have generally been found to generate long sessions [57].
Second, the workload model is limited regarding predictions of
sharp spikes. While the corresponding load tests executed the cor-
rect number of concurrent sessions, the request rate and mix were
different from the reference. A reason might be that the think times
during the spike differ from other phases.

Future work needs to address the mentioned limitations by better
integrating the think times into the workload model. For instance,
the session clustering should consider them, for reducing the vari-
ance. Also, this might improve predictions of sharp spikes, as such
modified clustering can recognize a different user behavior during
the spike.

5.6.3 RQ3—Representativeness with Forecasting. Load tests with
forecasted intensities can be mostly as representative as with per-
fect forecasting when considering the context and per-group inten-
sities. For steady-state workloads, the tests are only slightly less
representative compared to perfect forecasting. Here, the individual
forecasts made the largest difference. When predicting spikes, it is
crucial to use the context, as all other tests did not contain a notable
spike. We presume that, on the one hand, the context helps the
forecasting tool separating the spikes from anomalies, while, on
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the other hand, the group’s individual intensities allow detecting
the spike better, as it occurs differently in different groups.

A limitation of the spike forecast is predicting transitions be-
tween context facet states, e.g., open to special course enrolment,
which can cause a sharp change in the intensity curve. We presume
the reason is that the tool learns the average influence of a specific
state in the past and applies it to the whole state in the future. For
our purposes, we rather need a forecasting approach that also learns
the change in the intensity curve, which needs to be addressed by
future work.

Regarding the forecasting tools used, Telescope predicts slightly
more representative workloads than Prophet does. For steady-state
workloads, this is mainly reflected in the request metrics. For spike
workloads, Telescope also predicts intensity curves that are closer
to the reference, even if it suffers from the context transitions
and the uncorrelated request rates. However, Telescope necessarily
requires the context and individual per-group intensities, while
Prophet performs better on total intensities.

5.7 Threats to Validity
5.7.1 Conclusion Validity. We have not applied statistical testing
for assessing the representativeness of the generated load tests.
Statistical tests are not suited for comparing predicted workload
scenarios with a reference workload, as the predictions naturally
deviate from the reference. Instead, we have measured the distance
to the reference with metrics introduced and successfully applied
in existing work [52, 57].

5.7.2 Internal Validity. During three short-term (up to few hours)
periods of the session clustering, we lost a low percentage (< 1 %) of
data due to platform issues and clock change. However, the losses
are negligible compared to the total size of the dataset. During
test execution, we prevented interactions between the load driver
and the system under test by using separate machines. Also, we
validated that the load driver did not run into overload situations
by correlating the request gap with the intensity. For applying
real forecasting, we augmented the SIS dataset, which might have
influenced the forecasts. Using a dataset with a longer period of
data available would be beneficial. However, to the best of our
knowledge, the SIS dataset is unique regarding the information
content and extent of real-world session-based workloads. Also,
time series augmentation is commonly applied [61].

5.7.3 Construct Validity. We identified several limitations of exist-
ing workload modeling and forecasting approaches, which are rea-
sonable, as we have chosen state-of-the-art concepts and tools that
have extensively been evaluated [4, 54, 57]. Particularly, Markov
chains have been assessed a reasonable modeling concept for load
tests [26]. Also, the limitations do not stem from our implementa-
tions, as they are related to the session clustering andMarkov-chain-
based workload modeling introduced by Menascé et al. [31] and
Vögele et al. [57], and time-series forecasting, which we have ap-
plied as a black box. Besides, our framework allows using different
tools, which can be evaluated in future work.

5.7.4 External Validity. The SIS dataset has particular character-
istics, such as semester phases sharply differing in the workload.
The workloads of other systems can have different characteristics

leading to different results. Therefore, future work should aim at
finding more datasets related to the one used in this paper and
evaluate our framework on them.

6 CONCLUSION
In this paper, we introduce a framework for generating load tests tai-
lored to the varying workload scenarios and workload-influencing
contexts of session-based applications. The framework provides an
end-to-end approach that allows users to describe context-tailored
load tests in the Load Test Context-tailoring Language (LCtL),
which abstracts from the technical details of the load test genera-
tion. For automated processing of an LCtL instance, the framework
integrates incremental session clustering based on existing work
and forecasting tools.

Applied to the Charles University’s SIS, we evaluated LCtL to be
suitably expressive for real-world load test scenarios. Besides, we
conclude that the framework is suited for generating representative
load tests that replay past or future workload scenarios. Notably,
we have found the context and separation of the workload into user
groups to improve the workload predictions significantly. However,
some limitations of existing workload characterization and fore-
casting concepts, such as think time modeling and predictions of
sharp spikes, reduce the representativeness of the generated tests.

Therefore, future work needs to find solutions for these limita-
tions. We suggest investigating session clustering algorithms that
integrate the think times and, thus, can react to short-term changes
in the session timings, such as during workload spikes. Besides,
modeling an open instead of closed workload [43]— i.e., considering
the session arrival rates instead of concurrent sessions—might help
to predict spikes, which, however, requires careful modeling of the
session length and duration. As our and previous evaluations [57]
indicate, Markov chains might not be suited for that. Finally, future
work should address multivariate time series forecasting that can
predict the shape of sharp spikes.
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