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ABSTRACT
Workflows are patterns of orchestrated activities designed to de-

liver some specific output, with application in various relevant

contexts including software services, business processes, supply

chain management. In most of these scenarios, durational proper-

ties of individual activities can be identified from logged data and

cast in stochastic models, enabling quantitative evaluation of time

behavior for diagnostic and predictive analytics. However, effective

fitting of observed durations commonly requires that distributions

break the limits of memoryless behavior and unbounded support

of Exponential distributions, casting the problem in the class of

non-Markovian models. This results in a major hurdle for numeri-

cal solution, largely exacerbated by the concurrency structure of

workflows, which natively subtend concurrent activities with over-

lapping execution intervals and a limited number of regeneration

points, i.e., time points at which the Markov property is satisfied

and analysis can be decomposed according to a renewal argument.

We propose a compositional method for quantitative evaluation

of end-to-end response time of complex workflows. The workflow

is modeled through Stochastic Time Petri Nets (STPNs), associating

activity durations with Exponential distributions truncated over

bilateral firmly bounded supports that fit mean and coefficient of

variation of real logged histograms. Based on the model structure,

the workflow is decomposed into a hierarchy of subworkflows, each

amenable to efficient numerical solution through Markov regen-

erative transient analysis. In this step, the grain of decomposition

is driven by non-deterministic analysis of the space of feasible

behaviors in the underlying Time Petri Net (TPN) model, which

permits efficient characterization of the factors that affect behavior

complexity between regeneration points. Duration distributions

of the subworkflows obtained through separate analyses are then

repeatedly recomposed in numerical form to compute the response

time distribution of the overall workflow.

Applicability is demonstrated on a case from the literature of

composite web services, here extended in complexity to demon-

strate scalability of the approach towards finer grain composition

schemes, and associated with a variety of durations randomly se-

lected from a data set in the literature of service oriented computing,
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so as to assess variability of accuracy and complexity of the overall

approach with respect to specific timings.
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1 INTRODUCTION
Workflows of orchestrated activities arise in the practice of a wide

variety of application contexts, with a structure reflecting designed

or discovered artifacts, such as a Bill of Materials (BOM) [17], a

Business Process Model (BMP) [1], or the Business Process Execu-

tion Language (BPEL) specification of a composed web service [15].

Individual activities in the workflow can often be enriched with

durational properties derived from operation data [11, 37], accept-

able assumptions [26], or Quality of Service (QoS) contracts [46],

so as to obtain a stochastic model that opens the way to transient

analysis for quantitative evaluation of time behavior, which in turn

enables diagnostic, predictive, and prescriptive analytics.

As a common trait of all these scenarios, the validity of stochas-

tic characterization normally requires that observed durations be

described by general distributions (GEN) beyond the limit of memo-

ryless EXP variables, and the representation of firm synchronization

constraining concurrency often requires that durations be associ-

ated with a bounded support. Besides, the structure of concurrency

of the workflow normally results in activities with overlapping exe-

cution intervals, limiting the number of regeneration points where

the Markov condition is satisfied. The combination of these aspects

casts the underlying stochastic process of the model in the class

of Generalized Semi Markov Processes (GSMPs), which impairs

efficient numerical solution techniques.

If the workflow model never reaches a state where two GEN

activities overlap their durations, i.e., if it satisfies the so-called

enabling restriction, then transient analysis can still resort to nu-

merical solution techniques [14, 21, 40], also with the support of

various tools [2, 41, 52]. Numerical methods have been formulated
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to overcome the enabling restriction for models with determinis-

tic (DET) and EXP timers [28, 30], though, in the practice, com-

plexity again limits applicability to models with at most one DET

timer enabled in each state. Yet, the structure of concurrency of

a workflow normally includes different branches each with GEN

durations starting at different time points. Multiple concurrent

GEN durations can be managed by approximation through Contin-

uous PHase type (CPH) distributions [8, 24, 35, 36], which brings

back the model in the class of Markovian behavior at the cost of

a state space expansion that trades accuracy for complexity and

prevents representation of firmly bounded duration constraints.

Following a different approach, transient analysis of workflows

with concurrent overlapping activities with GEN durations can be

performed through the method of stochastic state classes [23, 34],

which achieves efficiency through symbolic manipulation of the an-

alytical form of (multivariate) Probability Density Functions (PDFs),

but requires that the degree of parallelism among concurrent GEN

transitions remains limited, which is often not the case in tree-like

or graph-like structured workflows.

Various compositional approaches have been proposed to face

the problem, mainly with reference to workflows structured as

trees, attaining different trade-offs between approximation and

complexity. In [13], a stochastic fault tree where times to failure of

leaf nodes are expolynomially distributed over a possibly bounded

support is analyzed in bottom-up order by repeated derivation of

the analytical form of the times to failure of intermediate nodes,

fighting complexity through the pruning of expolynomial terms

that are negligible within a given time window of prediction. In [4],

attack trees with Erlang (and EXP) distributed activity durations

combined according to Boolean and sequence gates are analyzed by

approximating times with Acyclic Phase-Type (APH) distributions,

while keeping a bounded complexity through a compression algo-

rithm that controls the number of phases in the distribution. In [19],

a stochastic tree with Erlang distributed times to failure of leaves

is analyzed by approximating times to failure of intermediate gates

with complexity-scaled distributions, while maintaining a stochas-

tic order that guarantees safe approximation. In [50], semi-Markov

models of composite web services with failures and restarts are

analyzed to derive the closed-form of mean and variance of the

end-to-end response time, also in the specific case that durations

of atomic services are fitted through APH distributions [31].

In this paper, we propose a compositional approach for quantita-

tive evaluation of the time behavior of complex workflows combin-

ing concurrent and sequential activities with generally distributed

durations over bounded supports. Theworkflow ismodeled through

Stochastic Time Petri Nets (STPNs) where the duration of each ac-

tivity is characterized by a shifted truncated EXP distribution.

The model structure drives the decomposition of the workflow

into a hierarchy of subworkflows amenable to efficient solution

by Markov regenerative transient analysis based on the method of

stochastic state classes. To this end, nondeterministic analysis of the

Time Petri Nets (TPNs) underlying the subworflows is performed

to enumerate the space of possible behaviors, characterizing the

degree of concurrency among activities and the number of events

occurring while an activity is being executed. In turn, these features

open the way to the definition of heuristics that are able to estimate

the complexity of deriving a measure of probability associated with

possible behaviors, determining whether regenerative analysis is

affordable or the subworkflows need to be decomposed further.

Then, the duration distributions of the decoupled subworflows

obtained through separate regenerative analyses are repeatedly

recomposed in numerical form, computing the end-to-end response

time distribution of the overall workflow.

Application of the approach is motivated and demonstrated ad-

dressing the evaluation of the end-to-end response time distribution

of composite web services, assuming that concurrency effects due

to multiple users are negligible given that individual services can

be horizontally scaled. Specifically, a case from the literature [11] is

considered, characterizing the execution times of activities through

shifted truncated EXP distributions that fit mean and variance of

real logged histograms obtained from the WS-DREAM data set [51],

widely used in the literature of web services. Notably, the model

is extended in complexity to illustrate scalability of the approach,

and experimented with different classes of timings.

The rest of the paper is organised in five sections. In Section 2, we

provide an overview of the overall approach. In Section 3, we recall

preliminary concepts on STPNs, Markov regenerative transient

analysis, and nondeterministic analysis. In Section 4, we specify

the addressed class of workflows. In Section 5, we develop the

solution approach, describing decompostion of the model structure

and recomposition of results, characterizing the main factors of

complexity. In Section 6, we illustrate application with reference

to the context of composite web services. In Section 7, we draw

conclusions and discuss next directions. For the sake of readability,

formal syntax and semantics of STPNs are recalled in the Appendix.

2 APPROACH OVERVIEW
Fig. 1 shows the Data Flow Diagram (DFD) of the overall approach

which consists of three steps implemented in a toolchain available

at https://doi.org/10.5281/zenodo.4519118:

• Distribution derivation (processes 1– 3, Section 4.2).The
parameters of the shifted truncated EXP distributions of in-

dividual activities are selected so as to fit mean and variance

of logged histograms (process 3) which, in turn, are derived

from theWS-DREAMdata set by parsing data (process 1) and

removing outliers through the Inter-Quartile Range (IQR)

rule, also known as Tukey’s rule of thumb [42] (process 2).

• Model generation (processes 4– 7, Section 4.1).The STPN
model of the workflow is generated by specifying the work-

flow structure as a Petri Net (PN) made of places, untimed

transitions, and directed arcs (processes 4 and 5), and associ-

ating each transition modeling a workflow activity with an

execution time distribution, randomly selected among those

obtained at the previous step (processes 6 and 7).

• Model evaluation (processes 8– 12, Section 5). The end-
to-end response time CDF of the overall workfow is obtained

by decomposing it into subworkflows (process 8), performing

regenerative transient analysis of the corresponding STPNs

(process 9), and recomposing in numerical form the obtained

response time CDFs of subworkflows (process 10). Accuracy

measures are computed by comparing the obtained results
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Figure 1: DFD of the approach. Processes in blue derive du-
ration distributions; processes in red address model genera-
tion; processes in green perform model decomposition and
evaluation, and numerical recomposition of results.

with a ground truth (process 12) derived through stochastic

simulation of the workfloW STPN (process 11).

The approach is implemented in a toolchain that relies on Java 9,

exploiting the SIRIO library [39] of the ORIS tool [34] to perform

analysis and simulation of STPN models, and makes a limited use

of Wolfram Mathematica (to derive the parameters of the execution

time distributions) and Python (to parse data and plot results).

3 PRELIMINARIES
In this section, we provide background concepts on: STPNs (Sec-

tion 3.1), used to specify workflows made of concurrent activities

with bounded GEN duration; Markov regenerative transient analy-

sis based on the method of stochastic state classes (Section 3.2), used

to evaluate the response time distribution of the sub-workflows;

and, nondeterministic analysis of TPNs (Section 3.3), used to enu-

merate the space of possible behaviors of the sub-workflows, which

supports the characterization of the main factors that determine

the complexity of regenerative transient analysis.

3.1 Stochastic Time Petri Nets
STPNs are a variant of non-Markovian stochastic Petri nets model-

ing stochastic timed systems where multiple concurrent events can

be constrained to occur within bounded time intervals. Specifically,

in an STPN, transitions (depicted as vertical bars, as in Fig. 2) repre-

sent events, places (depicted as circles) containing tokens (depicted
as dots) model logical conditions that enable events, and directed

arcs from input places to transitions and from transitions to out-

put places determine token moves performed at the occurrence

of events. A transition becomes enabled when all its input places

contain at least a token, sampling a time to fire from a probability

distribution possibly with bounded support. The transition with

minimum time to fire is selected, removing a token from each of

its input places and adding a token to each of its output places.

The choice among transitions with equal time to fire is solved by a

random switch determined by probabilistic weights. In so doing, an

STPN decorates its underlying TPN through probability distribu-

tions and weights of transitions, thus associating the set of timed

behaviors of the TPN with a measure of probability.

3.2 Regenerative transient analysis
STPNs with multiple concurrent GEN transitions can be analyzed

with relative efficiency if the model satisfies the Markov property

always with probability 1 at specific time instants, termed regenera-
tion points. In this case, the model subtends a Markov Regenerative

Process (MRP) [25], which can be solved numerically provided that

the process is characterized in terms of a local kernel, describing the
behavior until the first regeneration, and a global kernel, describ-
ing sequencing and timing of visits to subsequent regenerations.

Solutions for evaluation of kernels have been consolidated under

various restrictions, the most notable being the enabling restriction,
requiring that GEN durations never overlap their activity cycles [9],

and the bounded regeneration restriction, requiring a bounded num-

ber of firings between consecutive regeneration points [7].

Transient analysis of STPNs that subtend an MRP satisfying the

bounded regeneration restriction can be performed through regener-
ative analysis based on the method of stochastic state classes [12, 23].
Given a sequence of firings, a stochastic state class encodes the

marking plus the joint domain and (symbolically) the joint PDF of

the absolute elapsed time and the times to fire of the enabled tran-

sitions. The joint domain can be efficiently encoded as a Difference

Bounds Matrix (DBM) [18, 45], i.e., the solution space of a set of lin-

ear inequalities constraining the difference between pairs of timers.

The joint PDF takes a continuous piece-wise representation over a

partition of the domain in DBM zones and can be derived in closed-

form if all the transitions of the STPN have a distribution in the class

of expolynomial functions [41]. Enumeration of stochastic state

classes between any two regenerations enables the computation of

the local and global kernels. Then, numerical solution of Markov

renewal equations formulated in terms of the kernels [25] pro-

vides transient marking probabilities, i.e., 𝑝𝑚 (𝑡) := 𝑃{𝑀 (𝑡) = 𝑚}
∀ 𝑡 ∈ [0, 𝑡max], ∀𝑚 ∈ M, where𝑀 (𝑡) is the process describing the

marking of the STPN at time 𝑡 ∈ [0, 𝑡max], 𝑡max is the analysis time

limit, and M is the set of reachable markings.

The complexity of regenerative transient analysis significantly

depends on the occurrence of regeneration points in the MRP un-

derlying the STPN, which, in turn, depends on the degree of con-

currency of the model and on the length of behaviors (in terms of

number of firings) during which GEN transitions remain persistent.

On the one hand, the occurrence of regeneration points cannot

be easily controlled during the activity of model construction, so

that minor modeling choices may result in major variations in the

structure and complexity of the underlying MRP. On the other
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hand, the MRP structure and complexity may be reduced only at

the cost of significantly limiting the level of detail of the model,

which may yield too coarse-grained results for complex systems,

such as execution paths of web service architectures, industrial

production processes, or large-scale fault-tolerant architectures.

Therefore, efficient approaches are needed to decompose the model

into analyzable sub-models and to derive estimates of the measures

of interest from the results of separate analyses.

3.3 Nondeterministic analysis
Identification of the space of timed behaviors of the TPN underlying

an STPN can be performed through nondeterministic analysis based
on the method of state classes [45]. Given a sequence of transitions

which can be fired with different timings, a state class consists of

the marking reached through that firing sequence plus the joint

domain of the remaining times of the transitions enabled after that

firing sequence. The joint domain can be efficiently encoded and

manipulated as a DBM [18], with polynomial complexity with re-

spect to the number of the enabled transitions. Enumeration of state

classes yields a graph termed state class graph, largely exploited in

tools for verification of qualitative properties of concurrent timed

systems [5, 6, 16, 20, 34]. In particular, the state class graph is suffi-

cient to identify state classes that correspond to regeneration points

(which we term regenerative state classes) as well as to characterize

the concurrency degree of the GEN transitions and the number of

firings to which a GEN transition is persistent. In particular, regen-

erative state classes are state classes where all the GEN transitions

are newly enabled or DET or have a DET delay with respect to

a newly-enabled transition. Notably, the state class graph can be

proved to be finite under fairly general conditions, requiring in

particular that the number of reachable markings be finite and the

earliest and latest firing times of transitions be rational values [23].

4 STOCHASTIC MODEL
In this section, we illustrate the structure of concurrency of the

STPN model of a workflow (Section 4.1) and the derivation of its

stochastic parameters from available statistics of the execution

times of its activities (Section 4.2), and we define the response time

distribution of the workflow (Section 4.3).

4.1 Structure of concurrency
We consider workflows consisting of concurrent activities with

GEN execution time, composed according to the sequence, AND-
split (i.e., parallel split), AND-join (i.e., synchronization), XOR-split
(i.e., exclusive choice), andXOR-join (i.e., simplemerge) patterns [44].

Workflows can be modeled by STPNs, which support the represen-

tation of sequential, concurrent, and alternative behaviors with

GEN duration, according to the considered control flow patterns.

To illustrate the elements of structural complexity, Fig. 2 shows the

STPN of a workflow with 5 sequences (modeled by transitions t4
and t7, t5 and t8, t6 and t9 , t21 and t23, t22 and t24); 3 AND-
splits (modeled by transitions t1, t13, t15); 6 AND-joins (modeled

by transitions t11, t19, t20, t25, t26); 1 XOR-split (modeled by

transitions t2, t3); and, 1 XOR-join (modeled by transition t10).
Split-join patterns can be nested inwell structured constructs [43].

In particular, an AND-join (or XOR-join) collects all the paths origi-

nated from the last unjoined AND-split (or XOR-split). For instance,

the IMM transitions t10 and t11 account for an XOR-join and an

AND-join, respectively, collecting all the paths originated from the

XOR-split represented by transitions t2 and t3 and the AND-split

represented by transition t1, respectively. Conversely, the IMM

transition t25 accounts for an AND-join collecting independent

paths, i.e., not originated from the same unjoined AND-split.

Note that a token is contained in the input place of each GEN

transition representing an initial activity of the workflow and in

the input place of each IMM transition representing an XOR-split

among initial activities of the workflow, which we term initial places
of the STPN of the workflow, e.g., the workflow represented in Fig. 2

has 3 initial activities represented by the GEN transitions t0, t21,
and t22, whose input places p0, p24, and p27, respectively, contain
one token each. Moreover, the GEN transitions that represent a

possible final activity of the workflow and the IMM transitions that

represent a join of possible final activities of the workflow have

the same output place, which we term final place of the STPN of

p12

p28
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[0.2,1.0] expol

p15

[1.2,12.5] expol

p11

p32
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p2 p21

t12

t19
t15p10

p4t2

t6

p5

t18

[0.3,2.1] expol

p22t9

[0.2,0.9] expol

p9

[0.5,2.4] expolt5
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Figure 2: STPN model of a workflow consisting of 5 sequences, 3 AND-splits, 5 AND-joins, 1 XOR-split, and 1 XOR-join. The
model is decomposed into the blocks 𝑏3, 𝑏6, and 𝑏7 (tick-border boxes). In turn, 𝑏3 and 𝑏6 are derived as the composition of the
blocks 𝑏1, 𝑏2 and 𝑏4, 𝑏5, respectively (dashed-border blocks). Times are expressed in s.
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the workflow, e.g., the workflow of Fig. 2 has a single final activity

modeled by transition t27 with output place p32.

4.2 Stochastic parameters
We fit the duration distribution of each activity from a histogram

of logged samples. As often done in statistical analysis of time

series data, we first eliminate outliers, i.e., values that fall outside

the overall pattern of the histogram and would distort the fitted

distribution. To this end, we apply the IQR rule [42]. Specifically,

given a sample vector x of durations, we discard values that are

lower than𝑄1−1.5 𝐼𝑄𝑅 or larger than𝑄3+1.5 𝐼𝑄𝑅, where𝑄1 is the

first quartile,𝑄3 is the third quartile, and 𝐼𝑄𝑅 := 𝑄3−𝑄1 is the inter-

quartile range. Let y be the obtained sample vector, where min{y}
is the minimum sample, max{y} is the maximum sample, and |y| is
the number of samples. Then, we derive the histogram ℎ : W → N
with support [𝑎, 𝑏] and 𝑁 equal-width bins, where 𝑎 = min{y},
𝑏 = max{y}, W = {𝑤1,𝑤2, . . . ,𝑤𝑁 } is the set of bins, and ℎ(𝑤𝑛)
is the number of elements of x falling in bin 𝑤𝑛 ∀𝑛 ∈ {1, . . . , 𝑁 }.
And, we compute the histogram

¯ℎ : W → R representing relative

frequencies of bins, i.e.,
¯ℎ(𝑤𝑛) = ℎ(𝑤𝑛)/(𝜔 ·∑𝑁𝑛=1

ℎ(𝑤𝑛)).
To fit the obtained histogram

¯ℎ with a duration distribution hav-

ing firmly bounded support, we extend the approximants of [47],

which fit the sample mean and the sample variance with a shifted

EXP distribution, a hypo-EXP distribution, an EXP distribution, or

a hyper-EXP distribution depending on whether the sample coeffi-

cient of variation is lower than 1/
√

2, between 1/
√

2 and 1, nearly 1,

or larger than 1, respectively. Given that the duration histograms

of the WS-DREAM data set [51] considered in the experiments

exhibit coefficient of variation lower than 1/
√

2 (before and after

outliers elimination), we extend the shifted EXP distribution of [47]

into a shifted truncated EXP distribution. Specifically, we consider

a PDF 𝑓 (𝑥) = 𝑒−𝜆 𝑥 𝑒𝛿 𝜆/(1 − 𝑒−𝑏+𝛿 ) with support [𝛿, 𝑏], where 𝛿
and 𝜆 are selected by numerically solving a system of equations

imposing that mean and variance of 𝑓 (𝑥) are equal to the mean 𝜇

0.5 1.0 1.5 2.0
0.0

0.2

0.4

0.6

0.8

1.0

Figure 3: A shifted truncated EXP CDF that fits mean and
variance of a histogram of web service durations obtained
from the WS-DREAM data set [51]. The CDF is associated
with transition t0 in Fig. 2. Times are expressed in s.

and the variance 𝜎 of histogram
¯ℎ, respectively:

−1 − 𝛿𝜆 + (1 + 𝑏𝜆) 𝑒 (−𝑏+𝛿)𝜆

𝜆 (−1 + 𝑒 (−𝑏+𝛿)𝜆)
= 𝜇

𝑒2𝑏𝜆 + 𝑒2𝛿𝜆 − (2 + 𝑏2𝜆2 − 2𝑏𝛿𝜆2 + 𝛿2𝜆2) 𝑒 (𝑏+𝛿)𝑙𝑙

𝜆2 (𝑒𝑏𝜆 − 𝑒𝛿𝜆)2

= 𝜎

(1)

In a similar manner, shifted truncated EXP distributions could be

used also to extend the approximants of [47] in the cases that the

coefficient of variation of the observed data is larger than 1/
√

2.

Note that associating each transition with a shifted truncated

EXP distribution casts the resulting STPN model in the class of

Deterministic and Stochastic Petri Nets (DSPNs) [29]. Notably, while

the complexity of solution techniques developed for DSPNs limits

applicability to models with at most one DET transition enabled in

each state [28, 30], STPN models where multiple transitions with

shifted truncated EXP distribution are concurrently enabled can be

efficiently solved through regenerative transient analysis based on

the method of stochastic state classes [23].

As an example of application, Fig. 3 plots the shifted truncated

EXP approximant of a histogram of web service durations ob-

tained from the WS-DREAM data set [51]. Specifically, the ini-

tial vector x contains 7467 samples between 0.2 s and 20 s, with

𝑄1 = 0.5 s, 𝑄3 = 1.2 s, and 𝐼𝑄𝑅 = 0.7 s. The elimination of out-

liers yields a vector y consisting of 6427 samples between 0.2 s and

2.3 s, which is used to derive histogram
¯ℎ. In turn,

¯ℎ has support

[𝑎, 𝑏] = [0.2, 2.3] s, mean 𝜇 = 0.7 s, standard deviation 𝜎 = 0.4 s,

and coefficient of variation cv= 0.5. Finally, mean and standard

deviation of 𝜎 are fitted with a shifted truncated EXP distribution

with support [𝛿, 𝑏] = [0.3, 2.3] s and rate 𝜆 = 2.4.

4.3 Measure of interest
We evaluate the response time distribution Γ(𝑡) of the workflow,
i.e., Γ(𝑡) := 𝑃{𝛾 ≤ 𝑡}, where 𝛾 is the time needed to perform the

overall workflow. If regenerative transient analysis of the STPN of

the workflow can be afforded, Γ(𝑡) can be computed as the transient

probability of the final place of the STPN:

Γ(𝑡) = 𝑝𝑚fin (𝑡) ∀ 𝑡 ∈ [0, 𝑡max] (2)

where𝑚
fin

is the marking that assigns one token to the final place

and no token to any other place, and 𝑝𝑚fin (𝑡) is the probability of

marking𝑚
fin

at time 𝑡 , computed as discussed in Section 3.2. For

instance, in the example of Fig. 2,𝑚
fin
(p32) = 1 and𝑚

fin
(p) = 0

∀𝑝 ∈ 𝑃 \ {p32}, where 𝑃 is the set of places of the STPN.

Conversely, if regenerative transient analysis is not viable, which

occurs for complexworkflows such as those considered in this paper,

then a compositional approach becomes necessary to evaluate Γ(𝑡).

5 SOLUTION TECHNIQUE
In this section, we present a compositional approach to evaluate

the response time distribution of complex workflows (Section 5.1),

exploiting nondeterministic analysis to characterize the main factor

of complexity of regenerative transient analysis (Section 5.2) and

drive decomposition into a hierarchy of sub-workflows (Section 5.3).

Then, we discuss the complexity of the approach (Section 5.4).
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5.1 Overview
A workflow can be decomposed into a hierarchy of subworflows,

exploiting the structure of its STPN model to identify submodels

termed blocks, and using nondeterministic analysis to determine

whether the obtained blocks are amenable to efficient regenerative

transient analysis or need to be decomposed further. As recalled

in Section 3.1, an STPN is a directed bipartite graph, where places

and transitions represent nodes, pre-conditions and post-conditions

account for directed arcs, and directed paths consist of alternat-

ing sequences of places and transitions, linked by pre-condition

and post-condition relations. Based on the structure of concurrency

described in Section 4.1, the STPNmodel of a workflow (or subwork-

flow) is a Directed Acyclic Graph (DAG), which can be explored

starting from the places that contain a token, i.e., the input places

of the GEN transitions modeling the initial activities of the work-

flow and the input places of the IMM transitions accounting for an

XOR-split among alternative initial activities of the workflow.

Definition 1. A block of an STPN is a set of directed paths that

have a common final place termed final place of the block. Similarly,

the initial places of the paths are termed initial places of the block.

Definition 2. A single-entry block of an STPN is a block whose

paths have a common initial place and a common final place, which

are termed initial and final place of the block, respectively.

Definition 3. A composite block of an STPN is the composition of

two single-entry blocks, either in sequence or in parallel.

• The sequence of two single-entry blocks 𝑏1 and 𝑏2 is a block

such that the final place of 𝑏1 is the initial place of 𝑏2, so that

the initial place of 𝑏1 and the final place of 𝑏2 are the initial

place and the final place of the composite block, respectively.

• The parallel composition of two single-entry blocks𝑏1 and𝑏2

is a block such that the final place of both 𝑏1 and 𝑏2 is an

input place of an IMM transition 𝑡 having a single output

place 𝑝 , so that the initial places of 𝑏1 and 𝑏2 are the initial

places of the composite block, while 𝑝 is its final place.

For instance, in Fig. 2, 𝑏1 is a single-entry block collecting paths

⟨p0, t0, p1, t1, p2, t2, p4, t4, p6, t7, p9, t10, p10, t11, p12⟩, ⟨p0,
t0, p1, t1, p2, t3, p5, t5, p7, t8, p9, t10, p10, t11, p12⟩, and ⟨p0, t0,
p1, t1, p3, t6, p8, t9, p11, t11, p12⟩; 𝑏2 is also a single-entry block;

and, 𝑏3 is a composite block obtained as the series composition

of 𝑏1 and 𝑏2. Conversely, 𝑏6 is a composite block obtained as the

parallel composition of the single-entry blocks 𝑏4 and 𝑏5.

The approach repeatedly performs a top-down decomposition of

the STPN model of the workflow into a hierarchy of blocks that

can be efficiently evaluated through regenerative transient analysis

(see Sections 5.2 and Section 5.3 for details). The analysis of each

block 𝑏 yields the numerical form of the response time CDF Γ𝑏 (𝑡)
of the block, computed according to Eq. (2). Then, the approach

repeatedly performs a bottom-up recomposition of the results of

these separate analyses, combining the response time CDFs of pairs

of blocks (either composed in sequence or in parallel) in order to

evaluate the response time of the overall workflow.

• Given two blocks𝑏1 and𝑏2 with response time CDF Γ1 (𝑡) and
Γ2 (𝑡), respectively, and response time PDF 𝛾1 (𝑡) and 𝛾2 (𝑡),
respectively, the response time CDF Γ𝑠 (𝑡) of the sequence of

𝑏1 and 𝑏2 is derived from the convolution of 𝛾1 (𝑡) and 𝛾2 (𝑡):

Γ𝑠 (𝑡) =
∫ 𝑡

0

∫ 𝜏

0

𝛾1 (𝑥) 𝛾2 (𝜏 − 𝑥) 𝑑𝑥 𝑑𝑡 ∀ 𝑡 ∈ [0, 𝑡max] (3)

• Given two blocks 𝑏1 and 𝑏2 with response time CDF Γ1 (𝑡)
and Γ2 (𝑡), respectively, the CDF Γ𝑝 (𝑡) of the response time

of the parallel composition of 𝑏1 and 𝑏2 through an AND-

split&join pattern is the CDF of the maximum between the

response times of 𝑏1 and 𝑏2, which is derived as the product

of Γ1 (𝑡) and Γ2 (𝑡) given that the response times of 𝑏1 and 𝑏2

are independent random variables:

Γ𝑝 (𝑡) = Γ1 (𝑡) Γ2 (𝑡) ∀ 𝑡 ∈ [0, 𝑡max] (4)

• Given two blocks𝑏1 and𝑏2 with response time CDF Γ1 (𝑡) and
Γ2 (𝑡), respectively, the CDF Γ𝑥 (𝑡) of the response time of the

parallel composition of 𝑏1 and 𝑏2 through an XOR-split&join

pattern with probabilities 𝑝1 and 1 − 𝑝1, respectively, is de-

rived as the weighted sum of Γ1 (𝑡) and Γ2 (𝑡):

Γ𝑥 (𝑡) = 𝑝1 Γ1 (𝑡) + (1 − 𝑝1) Γ2 (𝑡) ∀ 𝑡 ∈ [0, 𝑡max] (5)

For instance, the STPN model of Fig. 2 is decomposed into blocks

𝑏3, 𝑏6, and 𝑏7, where 𝑏3 is identified as the series of blocks 𝑏1 and

𝑏2, and 𝑏6 as the parallel composition of blocks 𝑏4 and 𝑏5. Regen-

erative transient analysis of 𝑏3 and 𝑏6 yields the numerical form

of their response time CDF Γ3 (𝑡) and Γ6 (𝑡), respectively. Then, the
response time CDF Γ3−6 (𝑡) of their parallel composition is derived

as the product of Γ3 (𝑡) and Γ6 (𝑡) according to Eq. (4). Given that

𝑏7 contains the GEN transition t27 only, the numerical form of its

response time CDF Γ7 (𝑡) is obtained by sampling the CDF 𝐹t27 (𝑡)
of t27. Finally, the response time CDF Γ(𝑡) of the workflow is ob-

tained through Eq. (3) from the convolution of the PDFs 𝛾3−6 (𝑡) and
𝛾7 (𝑡) corresponding to the CDFs Γ3−6 (𝑡) and Γ7 (𝑡), respectively.

5.2 Estimating the computational complexity
of regenerative transient analysis of a block

As recalled in Section 3.2, regenerative transient analysis [23] of

an STPN model consists of three steps: i) the enumeration of sto-

chastic state classes; ii) the derivation of the local and the global

kernels from the enumerated classes; and, iii) the solution of the

Figure 4: State class graph of block 𝑏1 in Fig. 2. Regenerative
state classes are highlighted in orange.
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Markov renewal equations formulated in terms of the kernels. The

complexity of each step mainly depends on the following factors.

(1) As illustrated by the experimental results reported in [38],

the number of the enumerated stochastic state classes and the

complexity of each of them (in terms of the number of DBM

zones and expmonomial terms of the piecewise joint PDF)

depend on the concurrency degree of the GEN transitions

(i.e., the number of concurrently enabled GEN transitions),

the number of firings to which a GEN transition remains

persistent (i.e., the number of firings after which a transition

remains enabled), and the number of expmonomial terms of

the PDFs associated with the GEN transitions. In particular,

the number of DBM zones is polynomial in the number of

persistent transitions. Moreover, at each firing, the number

of expmonomial terms of the joint PDF increases linearly

with the polynomial degree. And, for the fired transition and

for each disabled transition, the polynomial degree increases

by one if the joint PDF contains no exponential factor.

(2) The kernels derivation and the solution of the Markov re-

newal equations have linear complexity in the number of

stochastic state classes as well as in the number of DBM

zones and expmonomial terms of the joint PDF of each class.

(3) The kernels derivation and the solution of the Markov re-

newal equations have linear and quadratic complexity, re-

spectively, in the number of time points (i.e., the number of

times that the time step is contained in the time limit).

Notably, the factors of complexity of regenerative transient anal-

ysis of an STPN can be characterized by inspecting the state class

graph of the underlying TPN. In particular, based on the concur-

rency structure of a block, the number of stochastic state classes

can be derived from the number of state classes according to a

polynomial relation. Moreover, the concurrency degree of the GEN

transitions can be derived from the number of transitions that are

enabled in the state classes; the number of firings to which a GEN

transition remains persistent can be computed as the length of

paths such that the transition is persistent in each state class of the

path; and, the number of DBM zones and the polynomial degree

of the joint PDF of a stochastic state class can be derived from the

sequence of firings that leads to the underlying state class. Overall,

this characterization opens the way to the definition of heuristics
that efficiently estimate the complexity of regenerative transient

analysis of a block by exploiting nondeterministic analysis of the

underlying TPN. Though multiple of the mentioned factors of com-

plexity could be considered, including the level of DBM partitioning,

the number of expmonomial terms, and polynomial degree of the

joint PDFs, this strategy would yield conservative and thus un-

practical criteria. Therefore, we rather resort to a heuristics that

considers regenerative transient analysis of a block affordable if

the maximum concurrency degree of the GEN transitions is not

larger than a threshold 𝐷 and the maximum number of consecutive

firings from the initial state class is not larger than a threshold 𝐸.

For instance, Fig. 4 shows the state class graph of block 𝑏1 de-

picted in Fig. 2. The state class graph consists of 36 state classes,

including 7 regenerative state classes (highlighted in orange). The

GEN transitions have maximum concurrency degree equal to 3 in

state class S3, which has marking p2 p3 and 3 newly-enabled tran-

sitions (i.e.,t2, t3, and t6). The maximum number of consecutive

firings from the initial state class is equal to 9. Note that, due to the

structure of concurrency of the STPNmodel of a workflow, the state

class graph of a block has a single terminal state class (i.e., S36).

5.3 Decomposition into blocks
The STPN of a workflow is repeatedly decomposed into blocks

until the response time CDF of each block can be efficiently eval-

uated through regenerative transient analysis. Decomposition is

performed based on the STPN structure, which is explored as a

DAG to identify split and join patterns. Specifically, a block 𝑏 to be

decomposed is explored starting from each place of a set 𝑃★:

• If𝑏 is the overall worflow, then 𝑃★ initially collects the places

of 𝑏 that contain a token, i.e., the input places of the GEN

transitions representing initial activities of the workflow and

the input places of the IMM transitions modeling an XOR-

split among initial activities of the workflow. For instance,

the visit of the STPN of Fig. 2 starts with 𝑃★ = {p0, p24, p27}.
• Otherwise, 𝑃★ initially consists of the initial place of 𝑏. For

instance, the visit of block 𝑏2 in Fig. 2 starts with 𝑃
★ = {p12}.

A visit of block𝑏 from a place 𝑝 ∈ 𝑃★ can be performed according

to the join strategy or the split strategy, which exploit an AND-join

pattern or an AND-split pattern, respectively, to identify a new

block of 𝑏, respectively. The two strategies operate as follows.

• Join strategy. In a visit of block𝑏 from place 𝑝 ∈ 𝑃★ through

the join strategy, a new block is identified as soon as one of

the following two conditions becomes true:

– Condition 1: a number of AND-join IMM transitions

(i.e., IMM transitions with multiple input places) is vis-

ited after the same number of AND-split IMM transitions

(i.e., IMM transitions with multiple output places).

In this case, the last visited IMM transition 𝑡 synchronizes

the sub-workflows originated from the first visited AND-

split construct, and thus the set of paths that start with

place 𝑝 ∈ 𝑃★ and end with the output place 𝑝 ′ of 𝑡 is a new
single-entry block. Moreover, to let block 𝑏 be explored

beyond the newly identified block, 𝑝 ′ is added to 𝑃★.

For instance, in a visit of the STPN of Fig. 2 from place p0,
the AND-join IMM transition t11 is visited after the AND-
split IMM transition t1. Therefore, block 𝑏1 is identified

and the output place p12 of t11 is added to 𝑃★.

– Condition 2: an AND-join IMM transition 𝑡 is visited

without having visited any AND-split IMM transition.

In this case, 𝑡 synchronizes independent sub-workflows,

and thus the set of paths starting with place 𝑝 and ending

with the input place 𝑝 ′ of 𝑡 is a new single-entry block. If

any other block synchronized by 𝑡 has been identified, the

effort needed to perform regenerative transient analysis

of the parallel composition of all the blocks is estimated:

if the analysis is affordable, then the set collecting the syn-

chronized blocks, transition 𝑡 , and its output place 𝑝 ′′ is a
new (analyzable) composite block, otherwise the synchro-

nized blocks remain distinct. In both cases, 𝑝 ′′ is added
to 𝑃★ to explore 𝑏 beyond the identified blocks.
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For instance, in a visit of the STPN of Fig. 2 from place p24,
the AND-join IMM transition t25 is visited without hav-

ing visited any AND-split transition, and thus block 𝑏4 is

identified. When also block 𝑏5 is identified (through a visit

of the STPN from place p27), the parallel composition of𝑏4

and 𝑏5 is identified as an analyzable composite block 𝑏6

(since it has maximum degree of parallelism equal to 2).

Moreover, the output place p30 of t25 is added to 𝑃★.

• Split strategy. In a visit of block 𝑏 from place 𝑝 ∈ 𝑃★

through the split strategy, multiple new blocks are identified

as soon as an AND-split transition 𝑡 is visited. By construc-

tion, 𝑡 has a single input place 𝑝𝑖 and multiple output places

𝑝𝑜1
, . . . , 𝑝𝑜𝑛 , used to identify the blocks connected by 𝑡 .

– First, the single-entry block that collects the paths starting

with 𝑝 ∈ 𝑃★ and ending with 𝑝𝑖 is identified as a new

block, unless the block contains an IMM transition only

(which occurs if 𝑝 is the input place of 𝑡 , i.e., 𝑝 = 𝑝𝑖 ).

– Then, for each place 𝑝𝑜 ∈ {𝑝𝑜1
, . . . , 𝑝𝑜𝑛 }, a visit of block 𝑏

is performed from 𝑝𝑜 until the AND-join IMM transition 𝑡 ′

that synchronizes the sub-workflows originated from 𝑡 ,

identifying the single-entry block that starts with 𝑝𝑜 and

ends with the input place of 𝑡 ′ that has just been visited.

– Finally, the output place of 𝑡 ′ is added to 𝑃★ to explore

block 𝑏 beyond the identified blocks.

For instance, if the analysis of block 𝑏1 in Fig. 2 were not

viable, then a visit of 𝑏1 from its initial place p0 according to
the split strategy would stop on the AND-split IMM transi-

tion t1, identifying the single entry-block with input place

p0 and output place p1. Then, a visit of 𝑏1 from places p2
and p3 would identify the single entry-block collecting the

paths starting with p2 and ending with p10 and the single

entry-block collecting the paths starting with p3 and ending

with p11, respectively. Finally, p12 would be added to 𝑃★.

In both strategies, when the considered block 𝑏 has been visited

starting from each place of 𝑃★, then the effort needed to perform re-

generative transient analysis of sequences of two identified blocks is

evaluated in order to identify possible analyzable composite blocks.

For instance, the concurrency degree among the GEN transitions is

equal to 2 and 3 for blocks 𝑏1 and 𝑏2 in Fig. 2, respectively, so that

their sequential composition has concurrency degree 3. Moreover,

the number of consecutive firings starting from the initial state class

is equal to 9, 7, and 16 for 𝑏1, 𝑏2, and their sequential composition,

respectively. Assuming thresholds 𝐷 = 3 and 𝐸 = 20, the sequence

of 𝑏1 and 𝑏2 is considered as an analyzable block.

We consider a heuristics that alternatively applies the join strat-

egy and the split strategy during the decomposition into blocks:

Specifically, the STPN of the workflow is decomposed according to

the join strategy. Then, if any of the identified blocks is too complex

to be analyzed, then, by construction, the block includes (at least)

an AND-split transition that boosts parallelism, which can be ex-

ploited to reduce complexity by decomposing the block according

to the split strategy. If any of the identified blocks is not analyzable,

it is decomposed according to the join strategy, and so on. In so

doing, the join strategy identifies behaviors that aggregate multiple

regeneration epochs, while the split strategy separates behaviors

of the same regeneration epoch that have different firing sequence.

In both strategies, if the path from the initial place of the block to

the first AND-join or AND-split transition contains unmerged XOR-

split transitions, then the portions of the model identified by the

XOR-split and the XOR-join transitions are considered as separate

blocks. For instance, in Fig. 2, if 𝑏1 could not efficiently be analyzed,

its decomposition would yield 4 blocks containing transition t0
and the series of transitions t4,t7 and t5,t8 and t6,t9.

5.4 Computational complexity
The solution technique performs tree steps: i) top-down decom-

position of the STPN model of the whole workflow into blocks;

ii) regenerative transient analysis of each block; and, iii) bottom-up

recomposition of the results of these separate analyses. Specifically:

(1) The decomposition of the STPN model of a workflow into

blocks requires to explore the model structure and to per-

form nondeterministic analysis of all the identified blocks, as

discussed in Sections 5.2 and 5.3. On the one hand, the com-

plexity of a visit of the model through the join and the split

strategies requires linear complexity in the number of places

and transitions, which is relatively small even for complex

workflows. On the other hand, nondeterministic analysis of

all the identified blocks can be performed very efficiently.

Therefore, the complexity of the decomposition of the STPN

of a workflow into blocks turns out to be very limited.

(2) As discussed in Section 5.2, the complexity of regenerative

transient analysis of a block mainly depends on the maxi-

mum concurrency degree of the GEN transitions, the maxi-

mum number of firings to which a GEN transition remains

persistent, and the number of time points where the response

time CDF of the block is computed. While the impact of the

first two factors is limited by the heuristics that estimates

whether the analysis of a block is affordable, the number of

time points remains themain (quadratic) factor of complexity

of regenerative transient analysis.

(3) The recomposition of the analysis results consists in perform-

ing sums/products of the response time CDFs and convolu-

tions of the response time PDFs of pairs of blocks, yielding

linear and quadratic complexity, respectively, in the number

of time points used to represent CDFs in numerical form.

According to this, the number of time points comprises the main

(quadratic) factor of complexity of the overall approach.

6 CASE STUDY
In this section, we demonstrate the approach with reference to the

context of Service-Oriented Architectures (SOA), where the work-

flow abstraction naturally captures the concept of an application

built by composition of independent, self-contained, loosely coupled

services [48]. In this context, time behavior is a key figure of the QoS,

driving various stages of development and operation, including

early evaluation of design or deployment choices [3, 32], dynamic

selection and compositions adapted to runtime conditions [11] or

to a specific user profile [49], or optimized within a multi-objective

QoS model [3], or cast within a problem of quantitative verification

supporting service selection and resource provisioning [10].
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In particular, we experiment the approach on the TravelPlan
composite service example [11], which we extend in complexity by

considering a finer granularity of composed services (Section 6.1)

with the twofold aim of demonstrating scalability of the proposed

approach and advocating its suitability in the ongoing evolution

towards finer-grained composition schemes promoted by the emer-

gence of microservice and RESTful architectures [22] (Section 6.2).

To this end, we consider a variety of durations selected from the

WS-DREAM data set [51], widely used in the literature on service

oriented computing, and we test different combinations of dura-

tions of individual services to assess accuracy and complexity of

results with respect to different timings. Moreover, we rely on the

assumption that individual services are horizontally scaled, which

allow to evaluate the response time of the composite web service,

without concerning about multiple requests and queue effects.

Experiments have been performed on a single core of an Intel(R)

Xeon(R) Gold 5120 CPU 2.20 GHz equipped with 32.0 GB RAM.

6.1 Model of a composite web service
6.1.1 Structure of concurrency. The TravelPlan process presented

in [11] is a composite web service aimed to plan a travel, providing

a solution that includes choices for flights to a given city, hotels

near a given attraction, and transports from the airport to the hotel

(either cab or shuttle depending on the arrival time of the flight

and the latest possible hotel check-in) and from the hotel to the

attraction (either car rental or metro depending on the distance of

the hotel from the attraction). Fig. 5 shows the STPN model of an

extension of the TravelPlan process, where the granularity of the

composed services is increased including different entity searching

services that operate with different filtering options (e.g., searching

both the cheapest and the best ranked hotels, modeled by tran-

sitions getCheapestHotels and getBestRankedHotels, respec-
tively), and geographical information retrieval services (e.g., getting

the position of metro stops, modeled by transition getMetroStops)
used by other services (e.g., getting hotels near a metro stop close

to an attraction, modeled by transitions getHotelsNearStop and
getAttractionsNearMetroStops, respectively).

6.1.2 Stochastic parameters. The execution times of the activities

of the workflow of Fig. 5 are obtained from theWS-DREAM data set,

which collects the response times of 4500 web services, invoked by

142 users in 64 different time slices, for a total amount of 40 896 000

available durations. We consider data related to 100 services, inde-

pendently of the user and the time slice, and we derive a duration

histogram for each service. To this end, as illustrated in Section 4.2,

outliers are discarded according to the IQR rule [42], rejecting val-

ues lower than 𝑄1 − 1.5 𝐼𝑄𝑅 or larger than 𝑄3 + 1.5 𝐼𝑄𝑅, where

𝑄1, 𝑄3, and 𝐼𝑄𝑅 are the first quartile, the third quartile, and their

inter-quartile range, respectively. For each service, the remaining

samples are collected in a 64-bin histogram.

Table 1 shows the statistics of the obtained histograms. As typical

of web service response times, histograms have tight support, with

width ranging between 0.37 s and 10.61 s, and equal to 1.75 s on

average. The lower bound 𝑎 of the support is comprised between

Table 1: Average value avg, standard deviation SD, coeffi-
cient of variation CV, minimum value min, and maximum
value max of the expected value 𝜇, the standard deviation 𝜎 ,
the coefficient of variation 𝜎/𝜇, the support lower bound 𝑎,
the support upper bound𝑏, and the support width𝑏−𝑎 of 100

histograms of web service durations obtained from the WS-
DREAM data set [51] through the approach of Section 4.2.

avg SD CV min max
𝜇 0.525 s 0.842 s 1.605 0.054 s 7.799 s

𝜎 0.101 s 0.303 s 2.988 0.004 s 2.441 s

𝜎/𝜇 0.179 0.137 0.766 0.016 0.574

𝑎 0.157 s 0.239 s 1.522 0 s 1.943 s

𝑏 1.901 s 1.722 s 0.904 0.372 s 12.555 s

𝑏 − 𝑎 1.749 s 1.561 s 0.892 0.372 s 10.612 s
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Figure 5: STPN model of an extended version of the TravelPlan composite web service [11]. The model is decomposed into
the analyzable blocks 𝑏3, 𝑏4, and 𝑏5 (thick border boxes), where 𝑏3 is derived as the composition of the smaller blocks 𝑏1 and
𝑏2 (dashed border boxes). Timings, expressed in s, are those of the experiment with best accuracy.

Session 5: Service-based Systems  ICPE ’21, April 19–23, 2021, Virtual Event, France

185



0 s and 1.94 s, with expected value equal to 0.16 s and low standard

deviation equal to 0.24 s. The upper bound 𝑏 of the support takes

values in a larger interval between 0.37 s and 12.56 s, with expected

value equal to 1.90 s and low standard deviation equal to 1.72 s. On

average, sample durations have expected value 𝜇 = 0.53 s, standard

deviation 𝜎 = 0.10 s, and coefficient ot variation equal to 0.18. Note

that the maximum value of the coefficient of variation is equal to

0.57 < 1/
√

2, enabling fitting of each histogram through a shifted

truncated EXP distribution, as discussed in Section 4.2.

6.2 Experimental results
Experimentation aims at evaluating the accuracy and the computa-

tional complexity of the proposed approach with respect to specific

duration distributions associated with the workflow activities. To

this end, the approach is repeatedly applied to evaluate the response

time distribution of 1000 workflows whose STPNmodel has the con-

currency structure of Fig. 5 and is made of GEN transitions whose

duration distributions are randomly selected among 100 shifted

truncated EXP distributions fitting mean and variance of web ser-

vice response time histograms obtained from the WS-DREAM data

set [51]. IMM transitions of the STPN have weight 1, so that alter-

native behaviors of XOR-split patterns are equiprobable. In the step

of model decomposition, the complexity of regenerative transient

Figure 6: Response time CDFs of the workflow of Fig. 5 de-
rived by the proposed analysis process with time tick 0.1 s,
0.05 s, 0.025 s, and 0.0125 s and by simulation with tick 0.0125 s.

Table 2: Average value avg, standard deviation SD, coeffi-
cient of variation CV, minimum value min, and maximum
value max of the JS divergence of the obtained results from
the simulation results, for different time tick values.

tick avg SD CV min max
0.1 s 0.0169 0.0070 0.4151 0.0065 0.0533

0.05 s 0.0060 0.0013 0.2215 0.0037 0.0140

0.025 s 0.0034 0.0007 0.1954 0.0021 0.0061

0.0125 s 0.0028 0.0008 0.3000 0.0014 0.0056

analysis of a block is estimated assuming a threshold 𝐷 = 3 on the

maximum concurrency degree of the GEN transitions and a thresh-

old 𝐸 = 10 on the maximum number of consecutive firings from the

initial state class, decomposing the model into blocks 𝑏3, 𝑏4, and

𝑏5 illustrated in Fig. 5. The overall analysis process is repeated for

different values of the time tick equal to 0.1 s, 0.05 s, 0.025 s, and

0.0125 s. At each repetition, the time limit used by regenerative

transient analysis of each block and by numerical computations

performed to recompose the results of these separate analyses is

computed based on the supports of the workflow activities.

The response time CDF of each workflow evaluated by the ap-

proach is compared with a ground truth obtained by performing

stochastic simulation of the workflow STPN, using the Jensen-

Shannon (JS) divergence [27, 33] to determine both the number

of simulation runs and the accuracy of the analysis results. Specif-

ically, the JS is a symmetric measure evaluating the discrepancy

between two random variables defined over the same probability

space. Specifically, given the PDFs 𝑓a and 𝑓s of the workflow re-

sponse time computed by the proposed approach and by simulation,

respectively, obtained by derivation of the corresponding CDFs, the

JS divergence 𝐷 𝐽 𝑆 (𝑓a | | 𝑓s) of 𝑓a from 𝑓s is defined as:

𝐷 𝐽 𝑆 (𝑓a | | 𝑓s) =
1

2

𝐷𝐾𝐿 (𝑓a | | 𝑍 ) +
1

2

𝐷𝐾𝐿 (𝑓s | | 𝑍 ) , (6)

where 𝑍 (𝑡) = 1

2
(𝑓a (𝑡) + 𝑓s (𝑡)) ∀ 𝑡 ∈ Ω is the random variable that

averages the input variables, Ω is a set of equidistant time points

covering the support of 𝑓a and 𝑓s, and 𝐷𝐾𝐿 (· | | ·) is the Kullback-
Leibler divergence(KL) [27, 33] defined as

𝐷𝐾𝐿 (𝑓a | | 𝑓s) =
∑
𝑡 ∈Ω

𝑓a (𝑡) · log

(
𝑓s (𝑡)
𝑓a (𝑡)

)
. (7)

Note that the symmetry property holds for the JS divergence, i.e.,

𝐷 𝐽 𝑆 (𝑓a | | 𝑓s) = 𝐷 𝐽 𝑆 (𝑓s | | 𝑓a), but not for the KL divergence, i.e.,

𝐷𝐾𝐿 (𝑓a | | 𝑓s) ≠ 𝐷𝐾𝐿 (𝑓s | | 𝑓a). According to this, 𝐷 𝐽 𝑆 (· | | ·) turns
out to be a symmetrized and smoothed version of 𝐷𝐾𝐿 (· | | ·).

To derive the ground truth, 5000, 10 000, 15 000, . . . , 50 000 simula-

tion runs are performed with time tick equal to 0.0125 s, computing

the JS divergence of the workflow response time CDF evaluated by

the 5000-run, . . . , 45 000-run simulation with respect to the 50 000-

run simulation. On average, the JS divergence is nearly equal to

0.0157 for the 5000-run simulation and converges to 0.0043 for the

Table 3: Average value avg, standard deviation SD, coeffi-
cient of variation CV, minimum value min, and maximum
value max of the computation times of the proposed ap-
proach and of simulation, for different time tick values.

Analysis times
tick avg SD CV min max
0.1 s 0.1795 s 0.0670 s 0.3730 0.0320 s 0.5210 s

0.05 s 0.3883 s 0.1533 s 0.3949 0.0780 s 1.1260 s

0.025 s 0.9393 s 0.4375 s 0.4358 0.1820 s 2.8170 s

0.0125 s 3.1536 s 2.4648 s 0.7816 0.5450 s 17.0310 s

Simulation times
tick avg SD CV min max

0.0125 s 48.9412 s 2.4869 s 0.0508 44.1120 s 58.1200 s
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45 000-run simulation, showing that the results of the 50 000-run

simulation can be considered as the ground truth.

Table 2 shows, for each time tick value, the statistic of the JS

divergence of the analysis results from the ground truth, computed

over the mentioned 1000 experiments. As expected, the minimum,

maximum, average value, and standard deviation decrease with the

time tick, which is the only parameter that introduces approxima-

tion error in results, both in sub-workflow analysis and in numerical

recomposition. Results are accurate already with the most coarse-

grained time tick 0.1 s, with divergence value not larger than 0.0533

and equal to 0.0169 on average. As the time tick decreases nearly by

one order of magnitude, also the divergence value decreases by one

order of magnitude, being not larger than 0.0056 and equal to 0.0028

on average for the most fine-grained time tick 0.0125 s. This trend

is also evident from the plots of the response time CDFs shown

in Fig. 6, where the curves computed by the proposed approach

rapidly converge to the simulation curve as the time step decreases.

Table 3 shows the statistics of the observed computations times.

Specifically, as the time tick halves, the average computation time

of the proposed approach increases at least by a factor of 2, being

0.1795 s for the most coarse-grained time tick 0.1 s and 3.1536 s for

the most fine-grained time tick 0.0125 s. The same trend is observed

for the standard deviation, minimum, and maximum, showing that

the approach is able to efficiently evaluate the response time CDF

of complex workflows. In particular, for the most fine-grained time

tick 0.0125 s, the computation time is lower than the simulation

time by more than an order of magnitude on average, and by more

than a factor of 3 in the worst case. Note that simulation is facilitated

by the assumption of shifted truncated EXP distributions, which

can be efficiently sampled by the inverse transformation method.

To fairly compare analysis with simulation, we consider the

analysis with time tick 0.0125 s, requiring 3.1536 s on average, and

the 5000-run simulation with the same time tick, requiring 4.499 s.

Results show that, with comparable computation time, the analysis

accuracy is on average one order of magnitude better than that of

simulation: in fact, the JS divergence from the ground truth is equal

to 0.0157 for the 5000-run simulation, while, for the analysis, it is

equal to 0.0028 on average and to 0.0056 in the worst case.

7 CONCLUSIONS
We have presented an end-to-end compositional approach for the

evaluation of the response time CDF of complex workflows starting

from samples of the execution times of individual activities. To

this end, the workflow is represented through STPNs, associating

activity execution times with shifted truncated EXP distributions

that fit mean and standard deviation of real logged histograms.

Then, theworkflow is decomposed into a hierarchy of subworkflows

that can be efficiently analyzed through regenerative transient

analysis based on the method of stochastic state classes, using the

state class graph of the underlying TPNs to characterize the main

factors of complexity of regenerative transient analysis and thus

to drive the level of decomposition. Finally, the execution time

CDFs of the identified subworkflows, computed through separate

analyses, are repeatedly recomposed in numerical form to derive

the response time CDF of the overall workflow.

Experiments address the quantitative evaluation of the response

time of a composite web service of the literature, extended in com-

plexity, to illustrate the scalability of the approach with respect to

finer-grained composition schemes, and associated with a variety

of durations randomly selected from a data set in the literature

of service oriented computing, to assess variability of results with

respect to specific timings. The obtained results show that the ap-

proach achieves high accuracy and good performance with respect

to a ground truth estimated through stochastic simulation, as well

as with respect to a simulation with comparable computation time.

The proposed approach is open to various extensions. On the one

hand, the model expressivity could be extended to include non-free

choice constructs, considering loops and other control-flow pat-

terns that break the well-formed structure considered in this paper.

On the other hand, any distribution in the class of expolynomial

functions could be used to fit the observed duration histograms,

with bounded or unbouded support, with a unique analytical form

over the entire domain or piecewise defined. In particular, shifted

truncated EXP distributions could be used to extend the approx-

imants of [47] in the cases that the coefficient of variation of the

observed data is larger than 1/
√

2. Moreover, the approach could be

applied in a variety of relevant contexts that go beyond the specific

domain of software services considered in this experimentation, e.g.,

supply chain management, business processes, physical processes.

REFERENCES
[1] Ruth Sara Aguilar-Saven. 2004. Business process modelling: Review and frame-

work. Int. Journal of production economics 90, 2 (2004), 129–149.
[2] Elvio Gilberto Amparore, Gianfranco Balbo, Marco Beccuti, Susanna Donatelli,

and Giuliana Franceschinis. 2016. 30 years of GreatSPN. In Principles of Perfor-
mance and Reliability Modeling and Evaluation. Springer, 227–254.

[3] Danilo Ardagna and Barbara Pernici. 2007. Adaptive service composition in

flexible processes. IEEE Trans. on Software Engineering 33, 6 (2007), 369–384.

[4] Florian Arnold, Holger Hermanns, Reza Pulungan, and Mariëlle Stoelinga. 2014.

Time-dependent analysis of attacks. In Proc. Int. Conf. on Principles of Security
and Trust. Springer, 285–305.

[5] Gerd Behrmann, Alexandre David, Kim Guldstrand Larsen, Paul Pettersson, and

Wang Yi. 2011. Developing Uppaal over 15 years. Softw. Pract. Exper. 41, 2 (Feb.
2011), 133–142.

[6] Bernard Berthomieu, P.-O. Ribet, and François Vernadat. 2004. The tool TINA –

construction of abstract state spaces for Petri Nets and Time Petri Nets. Interna-
tional Journal of Production Research 42, 14 (2004).

[7] Marco Biagi, Laura Carnevali, Marco Paolieri, Tommaso Papini, and Enrico Vi-

cario. 2017. Exploiting Non-deterministic Analysis in the Integration of Transient

Solution Techniques for Markov Regenerative Processes. In Proc. Int. Conf. on
Quantitative Evaluation of Systems. Springer, 20–35.

[8] Andrea Bobbio, András Horváth, and Miklós Telek. 2005. Matching three mo-

ments with minimal acyclic phase type distributions. Stochastic models 21, 2-3
(2005), 303–326.

[9] Andrea Bobbio and Miklos Telek. 1995. Markov regenerative SPN with non-

overlapping activity cycles. In Proc. Int. Comput. Perf. and Depend. Symp. 124–133.
[10] Radu Calinescu, Lars Grunske, Marta Kwiatkowska, Raffaela Mirandola, and

Giordano Tamburrelli. 2010. Dynamic QoS management and optimization in

service-based systems. IEEE Trans. on Software Engineering 37, 3 (2010), 387–409.
[11] Gerardo Canfora, Massimiliano Di Penta, Raffaele Esposito, and Maria Luisa

Villani. 2005. QoS-aware replanning of composite web services. In Proc. IEEE Int.
Conf. on Web Services. IEEE, 121–129.

[12] Laura Carnevali, Leonardo Grassi, and Enrico Vicario. 2009. State-density func-

tions over DBM domains in the analysis of non-Markovian models. IEEE Trans-
actions on Software Engineering 35, 2 (2009), 178–194.

[13] Laura Carnevali, Lorenzo Ridi, and Enrico Vicario. 2009. Stochastic Fault Trees

for cross-layer power management of WSN monitoring systems. In Proc. Int.
Conf. on Emerging Technologies & Factory Automation. IEEE, 1–8.

[14] Hoon Choi, Vidyadhar G Kulkarni, and Kishor S Trivedi. 1994. Markov regenera-

tive stochastic Petri nets. Performance evaluation 20, 1-3 (1994), 337–357.

[15] Francisco Curbera, Yaron Goland, Johannes Klein, Frank Leymann, Dieter Roller,

Satish Thatte, and Sanjiva Weerawarana. 2002. Business process execution

language for web services.

Session 5: Service-based Systems  ICPE ’21, April 19–23, 2021, Virtual Event, France

187



[16] Conrado Daws, Alfredo Olivero, Stavros Tripakis, and Sergio Yovine. 1995. The

Tool KRONOS. In Hybrid systems III. 1066, Springer.
[17] Ton G de Kok and Jan C Fransoo. 2003. Planning supply chain operations:

definition and comparison of planning concepts. Handbooks in operations research
and management science 11 (2003), 597–675.

[18] David L Dill. 1989. Timing assumptions and verification of finite-state concurrent

systems. In Proc. Int. Conf. on Computer Aided Verification. Springer, 197–212.
[19] Jean-Michel Fourneau and Nihal Pekergin. 2015. A numerical analysis of dy-

namic fault trees based on stochastic bounds. In Proc. Int. Conf. on Quantitative
Evaluation of Systems. Springer, 176–191.

[20] G. Gardey, D. Lime, M.Magnin, and O.(H.) Roux. 2005. Roméo: a tool for analyzing

Time Petri Nets. CAV’05 (2005).
[21] Reinhard German and Christoph Lindemann. 1994. Analysis of stochastic Petri

nets by the method of supplementary variables. Perf. Eval. 20, 1-3 (1994), 317–335.
[22] Robert Heinrich, André van Hoorn, Holger Knoche, Fei Li, Lucy Ellen Lwakatare,

Claus Pahl, Stefan Schulte, and Johannes Wettinger. 2017. Performance engi-

neering for microservices: research challenges and directions. In Proc. of the 8th
ACM/SPEC on Int. Conf. on Performance Engineering Companion. 223–226.

[23] András Horváth, Marco Paolieri, Lorenzo Ridi, and Enrico Vicario. 2012. Transient

analysis of non-Markovian models using stochastic state classes. Performance
Evaluation 69, 7-8 (2012), 315–335.

[24] András Horváth and Miklós Telek. 2002. PhFit: A General Phase-Type Fitting

Tool. In Proc. Int. Conf. on Comput. Perf. Eval., Modelling Tech. and Tools. 82–91.
[25] V. Kulkarni. 1995. Modeling and analysis of stochastic systems. Chapman & Hall.

http://www.crcpress.com/product/isbn/9781439808757

[26] H Dharma Kwon, Steven A Lippman, and Christopher S Tang. 2010. Optimal

time-based and cost-based coordinated project contracts with unobservable work

rates. Int. Journal of Production Economics 126, 2 (2010), 247–254.
[27] Jianhua Lin. 1991. Divergence measures based on the Shannon entropy. IEEE

Transactions on Information theory 37, 1 (1991), 145–151.

[28] Christoph Lindemann. 1995. DSPNexpress: a software package for the efficient

solution of deterministic and stochastic Petri nets. Perf. Eval. 22, 1 (1995), 3–21.
[29] Christoph Lindemann. 1998. Performance modelling with deterministic and

stochastic Petri nets. ACM SIGMETRICS Perf. Eval. Review 26, 2 (1998), 3.

[30] Christoph Lindemann and Axel Thümmler. 1999. Transient analysis of deter-

ministic and stochastic Petri nets with concurrent deterministic transitions. Perf.
Eval. 36 (1999), 35–54.

[31] Yanjie Liu, Zheng Zheng, and Jiantao Zhang. 2019. MarkovModel ofWeb Services

for Their Performance Based on Phase-Type Expansion. In Proc. DASC-PICOM-
CBDCOM-CYBERSCITECH. IEEE, 699–704.

[32] Daniel A Menascé. 2004. Response-time analysis of composite Web services.

IEEE Internet computing 8, 1 (2004), 90–92.

[33] Frank Nielsen. 2019. On a generalization of the Jensen-Shannon divergence and

the JS-symmetrization of distances relying on abstract means. arXiv preprint
arXiv:1904.04017 (2019).

[34] Marco Paolieri, Marco Biagi, Laura Carnevali, and Enrico Vicario. to appear. The

ORIS Tool: Quantitative Evaluation of Non-Markovian Systems. IEEE Transactions
on Software Engineering (to appear).

[35] Philipp Reinecke, Tilman Krauß, and Katinka Wolter. 2012. Cluster-based fitting

of phase-type distributions to empirical data. Computers & Mathematics with
Applications 64, 12 (2012), 3840–3851.

[36] Philipp Reinecke, Tilman Krauß, and Katinka Wolter. 2013. Phase-Type Fitting

Using HyperStar. In Proc. Europ. Perf. Eng. Workshop. 164–175.
[37] Andreas Rogge-Solti, Wil MP van der Aalst, and Mathias Weske. 2013. Discover-

ing stochastic petri nets with arbitrary delay distributions from event logs. In

Proc. Int. Conf. on Business Process Management. Springer, 15–27.
[38] Luigi Sassoli and Enrico Vicario. 2007. Close form derivation of state-density

functions over DBM domains in the analysis of non-Markovian models. In Proc.
Int. Conf. on Quantitative Evaluation of Systems. IEEE, 59–68.

[39] SIRIO Library. 2020. https://github.com/oris-tool/sirio.

[40] Miklós Telek and András Horváth. 2001. Transient analysis of Age-MRSPNs by

the method of supplementary variables. Perf. Eval. 45, 4 (2001), 205–221.
[41] Kisho S Trivedi and Robin Sahner. 2009. SHARPE at the age of twenty two. ACM

SIGMETRICS Performance Evaluation Review 36, 4 (2009), 52–57.

[42] John W Tukey. 1977. Exploratory data analysis. Vol. 2. Reading, MA.

[43] Wil Van Der Aalst, Kees Max Van Hee, and Kees van Hee. 2004. Workflow
management: models, methods, and systems. MIT press.

[44] Wil MP van Der Aalst, Arthur HM Ter Hofstede, Bartek Kiepuszewski, and

Alistair P Barros. 2003. Workflow patterns. Dist.&paral. datab. 14, 1 (2003), 5–51.
[45] Enrico Vicario. 2001. Static analysis and dynamic steering of time-dependent

systems. IEEE transactions on software engineering 27, 8 (2001), 728–748.

[46] Changzhou Wang, Guijun Wang, Haiqin Wang, Alice Chen, and Rodolfo San-

tiago. 2006. Quality of service (QoS) contract specification, establishment, and

monitoring for service level management. In Proc. IEEE Int. Enterprise Distributed
Object Computing Conference Workshops. IEEE, 49–49.

[47] Ward Whitt. 1982. Approximating a point process by a renewal process, I: Two

basic methods. Operations Research 30, 1 (1982), 125–147.

[48] Elyas BenHadj Yahia, Laurent Réveillere, Yérom-David Bromberg, Raphaël Cheva-

lier, and Alain Cadot. 2016. Medley: An event-driven lightweight platform for

service composition. In Int. Conf. on Web Engineering. Springer, 3–20.
[49] Yilei Zhang, Zibin Zheng, and Michael R Lyu. 2011. WSPred: A time-aware

personalized QoS prediction framework for Web services. In IEEE Int. Symp. on
Software Reliability Engineering. IEEE, 210–219.

[50] Zheng Zheng, Kishor S Trivedi, Kun Qiu, and Ruofan Xia. 2015. Semi-markov

models of composite web services for their performance, reliability and bottle-

necks. IEEE Transactions on services computing 10, 3 (2015), 448–460.

[51] Zibin Zheng and M. R. Lyu. 2008. WS-DREAM: A distributed reliability assess-

ment Mechanism for Web Services. In Proc. IEEE Int. Conf. on Dependable Systems
and Networks With FTCS and DCC. 392–397.

[52] Armin Zimmermann. 2017. Modelling and performance evaluation with

TimeNET 4.4. In Int. Conf. on Quantitative Eval. of Systems. Springer, 300–303.

APPENDIX: STOCHASTIC TIME PETRI NETS
An STPN is a tuple ⟨𝑃,𝑇 ,𝐴−, 𝐴+, 𝐸𝐹𝑇 , 𝐿𝐹𝑇 , 𝐹,𝑊 ⟩: 𝑃 and 𝑇 are dis-

joint sets of places and transitions, respectively; 𝐴− ⊆ 𝑃 ×𝑇 and

𝐴+ ⊆ 𝑇 × 𝑃 are sets of pre-condition and post-condition relations,

respectively; 𝐸𝐹𝑇 and 𝐿𝐹𝑇 associate each transition 𝑡 ∈ 𝑇 with an

earliest firing time 𝐸𝐹𝑇 (𝑡) ∈ Q⩾0
and a latest firing time 𝐿𝐹𝑇 (𝑡) ∈

Q⩾0
∪ {∞} such that 𝐸𝐹𝑇 (𝑡) ≤ 𝐿𝐹𝑇 (𝑡); 𝐹 associates each transi-

tion 𝑡 ∈ 𝑇 with a CDF 𝐹𝑡 for its duration 𝜏 (𝑡) ∈ [𝐸𝐹𝑇 (𝑡), 𝐿𝐹𝑇 (𝑡)],
i.e., 𝐹𝑡 (𝑥) = 𝑃{𝜏 (𝑡) ≤ 𝑥}, with 𝐹𝑡 (𝑥) = 0 for 𝑥 < 𝐸𝐹𝑇 (𝑡) and
𝐹𝑡 (𝑥) = 1 for 𝑥 > 𝐿𝐹𝑇 (𝑡);𝑊 associates each transition 𝑡 ∈ 𝑇 with

a weight𝑊 (𝑡) ∈ R⩾0
. If omitted, we assume𝑊 (𝑡) = 1 ∀ 𝑡 ∈ 𝑇 .

A place 𝑝 is termed input or output place for a transition 𝑡 if

(𝑝, 𝑡) ∈ 𝐴−
or (𝑡, 𝑝) ∈ 𝐴+

, respectively. A transition 𝑡 is termed

immediate (IMM) if 𝐸𝐹𝑇 (𝑡) = 𝐿𝐹𝑇 (𝑡) = 0 and timed otherwise. A

timed transition is termed exponential (EXP) if 𝐹𝑡 (𝑥) = 1− 𝑒−𝜆𝑥 for

some rate 𝜆 ∈ R>0, or general (GEN) if 𝐹𝑡 is a non-EXP distribu-

tion. A GEN transition 𝑡 is termed deterministic (DET) if 𝐸𝐹𝑇 (𝑡) =
𝐿𝐹𝑇 (𝑡) > 0. For each transition 𝑡 with 𝐸𝐹𝑇 (𝑡) < 𝐿𝐹𝑇 (𝑡), we as-
sume that 𝐹𝑡 can be expressed as the integral function of a PDF

𝑓𝑡 , i.e., 𝐹𝑡 (𝑥) =
∫ 𝑥
0

𝑓𝑡 (𝑦) 𝑑𝑦. Similarly, an IMM or DET transition

𝑡 ∈ 𝑇 is associated with the generalized distribution of a Dirac delta

function 𝑓𝑡 (𝑦) = 𝛿 (𝑦 − 𝑦) with 𝑦 = 𝐸𝐹𝑇 (𝑡) = 𝐿𝐹𝑇 (𝑡).
A transition 𝑡 is enabled by amarking𝑚 ∈ M if𝑚 assigns at least

one token to each of its input places, i.e.,𝑚(𝑝) > 0 ∀𝑝 | ⟨𝑝, 𝑡⟩ ∈ 𝐴−
.

The state of an STPN is a pair ⟨𝑚, ®𝜏⟩ where𝑚 ∈ M is a marking,

𝐸 (𝑚) is the set of transitions enabled by𝑚, and ®𝜏 is a vector assign-
ing a time to fire ®𝜏 (𝑡) ∈ R⩾0

to each enabled transition 𝑡 ∈ 𝐸 (𝑚).
A transition 𝑡 is firable in a state 𝑠 = ⟨𝑚, ®𝜏⟩ if it is enabled by𝑚

and has minimum time to fire. A transition 𝑡 that is firable in 𝑠 is

selected to fire with probability 𝑝𝑡 =𝑊 (𝑡)/(∑𝑢∈𝐸min
𝑊 (𝑢)), where

𝐸min is the set of transitions that are firable in 𝑠 .

The firing of transition 𝑡 in state 𝑠1 = ⟨𝑚1, ®𝜏1⟩ yields a new

state 𝑠2 = ⟨𝑚2, ®𝜏2⟩, where: i)𝑚2 is derived from𝑚1 by (1) removing

a token from each input place of 𝑡 and (2) adding a token to each

output place of 𝑡 ; ii) ®𝜏2 is obtained from ®𝜏1 by sampling the time to

fire of each new-enabled transition 𝑡 ′ according to distribution 𝐹𝑡 ′ ,

i.e., ®𝜏2 (𝑡 ′) ∼ 𝐹𝑡 ′ , and reducing the time to fire of each persistent
transition 𝑡 ′ by the sojourn time in 𝑚, i.e., ®𝜏2 (𝑡 ′) = ®𝜏 (𝑡 ′) − ®𝜏 (𝑡),
where a transition 𝑡 ′ enabled by 𝑚2 is termed persistent if it is

distinct from 𝑡 and enabled by𝑚1 and by the intermediate markings

after steps (1) and (2), and it is termed newly-enabled otherwise.
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