
Network Performance Influences of Software-defined Networks
on Micro-service Architectures

Axel Busch
axel.busch@ibm.com

IBM Germany Research & Development
Boeblingen, Germany

Martin Kammerer
martin.kammerer@de.ibm.com

IBM Germany Research & Development
Boeblingen, Germany

ABSTRACT
Modern business applications are increasingly developed as micro-
services and deployed in the cloud. Due to many components in-
volved micro-services need a flexible and high-performance net-
work infrastructure. To ensure highly available and high perfor-
mance applications, operators are increasingly relying on cloud
service platforms such as the OpenShift Container Platform on Z. In
such environments modern software-defined network technologies
such as Open vSwitch (OVS) are used. However, the impact of their
architecture on network performance has not yet been sufficiently
researched although networking performance is particularly crit-
ical for the quality of the service. In this paper, we analyse the
impact of the OVS pipeline and selected OVS operations in detail.
We define different scenarios used in the industry and analyse the
performance of different OVS configurations using an IBM z14
mainframe system. Our analysis showed the OVS pipeline and its
operations can affect network performance by up to factor 3. Our
results show that even the use of virtual switches such as OVS,
network performance can be significantly improved by optimizing
the OVS pipeline architecture.

CCS CONCEPTS
• Networks → Network performance analysis; Network man-
agement; Programmable networks.

KEYWORDS
micro services, virtual switches, openshift on z, performance, open-
flow, open vswitch
ACM Reference Format:
Axel Busch andMartin Kammerer. 2021. Network Performance Influences of
Software-defined Networks on Micro-service Architectures. In Proceedings
of the 2021 ACM/SPEC International Conference on Performance Engineering
(ICPE ’21), April 19–23, 2021, Virtual Event, France. ACM, New York, NY,
USA, 11 pages. https://doi.org/10.1145/3427921.3450236

1 INTRODUCTION
Flexible software services are nowadays increasingly designed
based on the concept of micro-service architectures. Micro-services

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICPE ’21, April 19–23, 2021, Virtual Event, France
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8194-9/21/04. . . $15.00
https://doi.org/10.1145/3427921.3450236

have the advantage, among other things, of functionally represent-
ing small, self-contained components to be used in broader contexts.
These services are made available via interfaces to the outside world
to be used for instance in Native Cloud Applications (NCA).

Smaller components providing their services via interfaces ad-
vantage in being more fail-safe and scalable. These services are
typiclly running on container technologies to be used in cloud
environments. Container technologies are often used as the basis
for deploying services in separate resource areas, monitoring their
availability and scaling them. However, container technologies and
their possibilities for (automatic) monitoring and scaling create
new requirements, especially for the cloud provider’s network in-
frastructure. When running containers with different services on
the same physical resources, various aspects have to be considered
such as managing network security.

Both requirements on network infrastructure and security can
be implemented and automated using Software Defined Networks
(SDN). SDNs introduce a virtual network layer providing the au-
tomatic setup of subnets for network isolation of services, control
of packet flow within subnets, load balancing of resources, auto-
matic assignment of IP addresses to containers or providing security
functions such as anti-ARP spoofing.

Such requirements tend to influence each other. Some of them
can influence each other in a negative manner. Let us consider op-
erationalized quality requirements such as security features. Such
requirements have been shown their negative influence e.g. on
usability and performance [2]. Additional virtual layers of the SDN,
however, introduce overhead in terms of CPU time and thus in-
fluence reponse time and throughput. Especially in micro-service
architectures with many interdependent services, the latency of the
individual components adds up quickly and thus leads to higher
response times of the entire service. Therefore the latency (and
also the throughput) of each individual component is particularly
critical to meet quality requirements regarding service response
time.

The RedHat OpenShift Container Platform1 (OCP) enables the
automatic deployment of container-based services in the cloud.
OpenShift’s SDN provides a variety of features to ensure network
isolation and automatic network management. One of the central
units is the Open vSwitch2 (OVS), which introduces a virtual net-
work switch on top of the phsyical network layer to dynamically
manage networks and coordinate data flows. The additional layers
and features introduce overhead and thus can increase response
time and reduce throughput. Therefore in performance critical ser-
vices a trade-off must be made between features and performance.

1https://www.openshift.com/
2https://www.openvswitch.org/

Session 5: Service-based Systems ICPE ’21, April 19–23, 2021, Virtual Event, France

153

https://doi.org/10.1145/3427921.3450236
https://doi.org/10.1145/3427921.3450236

Figure 1: RedHat OpenShift Container Platform architec-
ture overview [5]

In this paper, we analyse the influence of the OVS architecture
used in OpenShift’s SDN and some of its features on the network
latency and throughput. As our contribution we demonstrate in
detail how the OVS architecture of typical SDN setups influence
performance of network workloads, which can be used as a basis for
drawing conclusions about the performance of micro-services. As
hardware and software stack we use a state-of-the-art mainframe
IBM system z14 running uperf3. uperf is an in industry widely used
network performance analysis tool, used as load driver for network
performance measurements.

The remainder of this paper is as follows: With Section 2 we in-
troduce OCP and its internal architecture. In Section 3 we introduce
software-defined networks with the focus on OVS used in OCP4.
Section 4 describes the experiment setup. We introduce infrastruc-
ture and software setup as well as workloads and metrics used for
the analysis. In Section 5 we perform the baseline analysis and
continue with the performance analysis of the Open vSwitch and
OpenFlow, its features and thus the flow of data packets through
the pipeline. Section 6 presents related work, while we conclude in
Section 7 and present future work.

2 REDHAT OPENSHIFT CONTAINER
PLATFORM

The OpenShift Container Platform orchestrates cloud technolo-
gies enabling on-premise platform services. It allows and supports
typical tasks such as the development, deployment, management,
and operation of cloud applications without having the expert
knowledge around container technologies and the management
and orchestration of Kubernetes services. This section introduces
the software architecture and hardware architecture of OCP recom-
mended by RedHat. Large parts of the description were collected
through expert interviews, domain knowledge or workshops or
from referenced sources.

3http://uperf.org/

Master #1

OCP Cluster

Master #2 Master #3

Worker #1 Worker #2 Infra #2

Infra #1

Infra #3

Bastion
HAProxy

OCP Network

Figure 2: OCP nodes setup schematical overview

2.1 Software Architecture
Figure 1 shows an overview about the OCP software architecture.
The architecture is comprised of 5 layers. These layers enable the
4 core tasks mentioned before. The developer services support
the software development with automated builds and CI/CD build
pipelines. Different programming languages can be combined and
different core repositories can be used.

Using Kubernetes and various automated operations, i.e. layer 2
and 3, applications are automatically fetched from the code reposi-
tories, built and rolled out using containers. When the application
is running, it is automatically scaled to handle peak loads and repli-
cated to improve service reliability.

Layer 1 is about managing the system: Resources such as phys-
ical machines, virtual machines, or resources provided by public
or private clouds are automatically managed and the software in-
frastructure is set up. In addition, infrastructure services are au-
tomatically installed and configured, such as the virtual network
(OpenShift-SDN).

Various cluster services and application services support the op-
eration of the cluster and applications by monitoring and logging
of software and hardware. The network and its topology are config-
ured so that various network policies and services are automatically
available at network level.

2.2 Hardware Architecture
OCP requires several machines to provide its services. Figure 2
shows a high level overview of the OCP nodes setup as recom-
mended by RedHat. At least 3 so-called master nodes and at least 5
worker nodes are required. The master nodes can also be used as
worker nodes at the same time, resulting in a minimum requirement
of 2 additional worker nodes. However, to improve performance
master nodes should not be used as worker nodes at the same time.
For optimal performance there is a third class of nodes namely
the infrastructure nodes running CPU and memory intensive ser-
vices such as the monitoring services or router. In the following we
describe the types of nodes in detail:

• Master nodes: Master nodes must be replicated for load bal-
ancing and availability purposes. Therefore, 3 master nodes
are required for running OCP. The core components of the

Session 5: Service-based Systems ICPE ’21, April 19–23, 2021, Virtual Event, France

154

OCP cluster run on the master nodes. These components are
responsible for configuring and managing the cluster, and
carry out the deployment and replication of applications on
worker nodes. One of the core components is etcd. etcd is a
database that stores the state of the master nodes. The state
stored in etcd is used by other services to synchronize their
own state. [8]

• Worker nodes: On worker nodes OCP schedules user appli-
cations and services. Resources spent for worker nodes are
therefore critical in terms of the performance of services.
OCP requires at least two dedicated machines running as
worker nodes. If no (optional) infrastructure node is present
in the OCP cluster, worker nodes take over the role of the
infrastructure nodes. However, since infrastructure services
are resource intensive this may slow down the performance
of the application containers.

• Infrastructure nodes: Infrastructure nodes run all the infras-
tructure containers such as monitoring services, routers or
registry services. Especially the monitoring services are CPU
and memory intensive. Therefore, when running the cluster
without infrastructure nodes these resource intensive con-
tainers place an additional resource demand on the worker
nodes. This additional load may slow down the workers.
Infrastructure nodes can reduce that effect. However infras-
tructure nodes are optional, if possible, at least 3 of them
should run in the cluster.

In addition to the previously mentioned master, worker, and in-
frastructure nodes, OCP needs a load balancer in front of the cluster.
All traffic and access to the cluster (e.g. by command line interface)
is handled by the load balancer. Either hardware load balancers or
software load balancers such as HAProxy4, i.e. a high performance
TCP/HTTP load balancer can be used. HAProxy requires a dedi-
cated machine running outside the cluster. This machine is called
Bastion node. The Bastion node serves as a central access point, a
perimeter network access point for incoming and outgoing traffic
as well as access point for the configuration of the cluster.

3 ROLE OF SOFTWARE-DEFINED NETWORKS
The term software-defined network has been developing since 1996,
originally used to describe the user-managed control of forwarding
packets to network nodes. Since then, the term and the concept
SDN have been evolved and adapted to the requirements of modern
networks.

Network configurations and installations became more and more
complex, difficult to understand and therefore cost expensive. Ap-
proaches to simulate network topologies became more and more
complex and required special knowledge [21]. Recently, functional
and quality requirements such as highly dynamic networks coupled
with container technologies, resource-efficient scaling of hardware
and service replication to improve reliability have made traditional
network concepts impossible. In addition containers of cloud ser-
vices come and go dynamically and allowed routes, i.e. the logical
paths between containers and the outside world, change over time.
Such flexible networks necessitate an automated, dynamically adap-
tive network layer.
4http://www.haproxy.org/

Controller Controller

Port

Port Port

Port

OpenFlow
Channel

OpenFlow
Channel

Flow Table Flow Table Flow Table

OpenFlow protocol

Ctrl
channel

….
Pipeline

OpenFlow Switch

Figure 3: Schematical representation of OpenFlow switch

Modern SDN technologies fill this gap. They allow highly dy-
namic and flexible network topologies, which can be automatically
adapted to the conditions of the current cluster configurations (e.g.,
with the help of Open vSwitch). In addition, new protocols, such as
OpenFlow, allow rules to be defined to control the packet flow [16].
This means that services previously defined at application level,
such as firewalls [15], can be implemented directly in the network
layer. However the concept of SDN is highly driven by different
implementations such as Open vSwitch. Using the Open Network
Foundation’s SDN [18] definition we derive four key features of
SDNs:

(1) Separation of networking concerns: Data plane is separated
from control plane what means forwarding of packets and
control of packet flow is separated.

(2) Controller: Centralized controller manages and configures
the switch.

(3) Abstraction: Network infrastracture layer separated from
application layer.

(4) Application layer functions: Application layer functions such
as firewalls can be integrated directly into network layer.

These features automatically allow networks to dynamically adapt
to changing environments. In the following we introduce one of the
main components of the OpenShift-SDN namely the Open vSwitch
implementing the OpenFlow switch.

3.1 OpenFlow Switch
Figure 3 shows a schematical representation of the OpenFlow
switch. Themain parts relevant for this paper are the control channel
and the pipeline. In the control channel the controller communicates
with the OpenFlow channel via the OpenFlow protocol. Through
this connection the controller manages and configures the Open-
Flow switch. There can be several controllers and several switches
configured by the controller for switching in distributed networks.

The pipeline is comprised of flow tables. Each packet passes
through the pipeline from incoming ports to outgoing ports. Each
table contains any number of rules that are applied to the packets
one by one. The rules define how packets are forwarded to the next
pipeline level. By applying rules one by one the packet finds its way
to its destination. To keep rules updated the OpenFlow channel
updates the OpenFlow rules in the flow tables of the pipeline.

Session 5: Service-based Systems ICPE ’21, April 19–23, 2021, Virtual Event, France

155

3.2 OpenFlow Rules
OpenFlow rules determine how packets should be routed through
the switch. Rule 1 shows the example of an OpenFlow rule. An
OpenFlow rule is comprised of three parts namely priority (green),
match (orange), and action (blue). The key word table indicates the
flow table in which the rule is applied.

table = 0,priority = 100,nw_src = 10.0.0.1,
nw_dst = 10.0.0.2, ct_state = −trk,action = ct(table = 1) (1)

In the following we describe the properties of OpenFlow rules in
detail:

• Priority: Priority determines the order in which rules are
applied to incoming packets. Any number of rules with dif-
ferent priorities can be placed in a flow table. The rules with
highest priority that matches the packet is applied to the
packet. A higher value means a higher priority.

• Match:Match defines properties a packet must satisfy so that
a rule can apply. The match section can be defined from a
very generic expression to a very specific expression.

• Action: Action defines the activities applied to the packets
on match.

3.2.1 OpenFlow Match. The match section can be comprised of
several fields to allow a fine-grained definition of OpenFlow rules.
The OpenFlow switch specification defines more than 40 fields on
the match of packets [18]. This paper focusses on packet source
nw_src and destination nw_dst, incoming port in_port, and con-
nection tracking state ct_state. Fields important for this paper are
desribed in the following:

• nw_src & nw_dst: nw_src and nw_dst define addresses from
which packets enter and leave the switch respectively. With
this field packet flows can be controled on service granular-
ity.

• in_port: in_port defines onwhich incoming port of the virtual
switch the packet arrives. With this field packet flows can
be controlled on machines/nodes or subnet granularity.

• ct_state: ct_state is a feature implemented byOVS. It supports
tracking of packets on stateful or stateless protocols. ct_state
supports the tracking for new, already existing, and related
(to an existing) connections. Further reply (i.e. the way back),
invalid and already tracked packets can be matched.

3.2.2 OpenFlow Action. The action section defines what to do with
packets or connections matching the rule. The OpenFlow switch
specification defines more than 25 fields on the action on matching
packets. For this paper connection tracking changes (ct(..)) and goto
actions are relevant:

• Contrack action: The ct action activates the connection tracker
that can be used to match on the TCP, UDP, ICMP state of
connections. The following arguments are relevant for this
paper:
– commit: Commits the connection of a packet in the con-
nection tracker over the lifetime of the package.

– table=number: Creates a copy of the current packet in the
specified table and enables connection tracking for that
packet.

IBM System z14

workload
server

workload
client

Hypervisor

OCP 4.2

Figure 4: High level overview of experiment setup

LPAR 1 LPAR 2

z/OS

PR/SM (Hypervisor)

Linux

z/VM (Hypervisor)

IBM System z14

CPUs, RAM, NICs

170 usable cores,
32 TiB DDR4 Memory,
OSA Express 10 GbE/25 GbE

Linux z/OS
…

Figure 5: Schematical representation of IBM z14 mainframe

• Goto action: Goto action copies packets in the specified table
without connection tracker involved.

4 EXPERIMENT SETUP
The setup of the experiment is designed to analyse the network
performance of an OpenFlow switch in modern cloud environments
and to determine the costs of this technology in terms of perfor-
mance. This results in several requirements regarding hardware,
software and workloads used.

Figure 4 shows a high level overview of the setup. We use an
IBM z14 mainframe system, as state of the art cloud platform. Our
software stack is RedHat’s OpenShift Container Platform (OCP) 4.2
on Z. We use a benchmark as workload driver to simulate different
network workloads, whose network patterns are representative
for micro-service architectures. The benchmark is running in two
instances (one as client and one as server instance) in (different)
containers inside OCP. OCP runs in an environment virtualized in
multiple stages by several hypervisors.

Session 5: Service-based Systems ICPE ’21, April 19–23, 2021, Virtual Event, France

156

4.1 Infrastructure Setup
Figure 5 shows a schematical representation of the infrastructure
setup [3]. To run our OCP 4.2 cluster we use an IBM z14 mainframe
system equipped with a total of 170 cores usable for running work-
loads. In total the machine comes with 32 TiB DDR4 memory. Each
core has a clock speed of 5.2 GHz. The processing speed of the
instructions can be further accelerated with simulataneous multi-
threading (SMT) and single instruction multiple data (SIMD). From
the network side the z14 comes with several different Network
Interface Cards (NICs). Examples are NICs from Mellanox and IBM
Open Systems Adapter-Express (OSA-Express) devices with 10 GbE
and 25 GbE respectively [12]. In our setup, we use OSA-Express
devices.

System Z is a highly virtualized system to make the best possible
use of the resources available. In the case of our OCP setup, two
virtualization levels are used, namely the PR/SM hypervisor and the
z/VM hypervisor.

4.1.1 PR/SM Hypervisor. The PR/SM hypervisor enables logical
partitioning of the central processor complex, i.e. the resources of
a Z mainframe. A logical partition (LPAR) contains several CPUs,
memory and I/O paths. Furthermore it can be determined whether
processing resources are available exclusively or shared. In general
applications cannot be run natively but only on LPARs. In LPARs
different operating systems can be installed, such as the Z main-
frame operating system z/OS, a Linux on IBM Z adapted for the Z
mainframe from different distributors or other hypervisors such as
z/VM [11].

4.1.2 z/VMHypervisor. z/VM allows the virtualization of hundreds
to thousands of virtual servers within an LPAR. A common use case
for the z/VM hypervisor is therefore the consolidation of servers.
New instances of virtual servers can be quickly installed, which are
particularly necessary for cloud infrastructures. The z/VM hypervi-
sor can virtualize a mix of operating systems such as z/OS or Linux
on Z in parallel.

z/VM provides a virtual network that is used to connect the vir-
tual servers, i.e. z/VM guests, to each other and to the outside world.
Especially for the communication between the virtual servers, there
is no additional load on the physical network hardware, e.g. NICs.
For operation, OCP requires several server instances, which we
virtualize in our infrastructure with z/VM.

4.1.3 Network. In our infrastructure setup, we have two types of
networks: the z/VM VSWITCH included in z/VM, a virtual switch
for all guests to communicate with each other, and physical NICs
for external communication. The z/VM VSWITCH is connected
to the NIC to enable external communication, i.e. outgoing and
incoming network traffic from and to the OCP cluster. z/VM can
use a physical NIC either shared or in an exclusive manner.

4.2 Cluster Configuration
Figure 6 shows a schematical representation of the machine config-
uration. The graphic shows two logical parts: On the left side there
is the z/VM LPAR with 5 z/VM guests. The cluster has three master
nodes and two worker nodes. The operation system of each node
is a CoreOS 4, a lightweight operating system for cloud services
based on RedHat Enterprise Linux (RHEL) 8.1. In addition, the z/VM

VSWITCH is set up within z/VM as a virtual network layer that
virtualizes the OSA5 NIC. This z/VM VSWITCH virtualization has
the advantage that traffic within the OCP network, i.e. between
master nodes or worker nodes, does not put load on the physical
NIC and is handled in software. Outgoing traffic is forwarded from
the z/VM VSWITCH via the OSA5 NIC to the Bastion node.

The Bastion node (right) is a RHEL 8.1 installation on a separate
LPAR installation. This system serves among other things as load
balancer for the cluster network. For load balancing we use the
software solution HAProxy. The Bastion node uses a dedicated
OSA6 card. All traffic out of the cluster and into the cluster is routed
via the Bastion node. For better performance we have chosen a
higher performance OSA6 card since we expect much traffic passing
the Basion node. This ensures that there is no resource contention
due to the Bastion node’s NIC.

4.2.1 LPAR Setup. Figure 6 shows two LPARs involved in the ma-
chine configuration. The LPARs are configured with the following
hardware resources:

• z/VM LPAR: The LPAR with the z/VM installation running 5
OCP guests can use 28 cores with SMT resulting in 56 virtual
cores. The z/VM LPAR can use in total 96 GiB memory. Each
z/VM guest running an OCP master or worker node can use
parts of these resources. Each master node is configured so
that it uses 4 cores each and 16 GiB memory. Worker nodes
can use 8 cores and 32 GiB memory each.

• Bastion LPAR: The Bastion LPAR is equipped with 8 cores
and 32 GiB memory. As mentioned before it runs a RHEL 8.1
as operating system.

4.3 Open vSwitch & OpenFlow Configuration
Open vSwitch and OpenFlow are the main parts of the OpenShift-
SDN. OVS defines a bridge where all virtual cables of the containers
are plugged. The bridge is running in a so called fail-safe mode
secure. Secure fail-safe mode means the SDN controller takes care
about keeping OpenFlow rules up to date and consistent.

The SDN-controller defines several pipeline levels to route traffic
inside the cluster. In our scenario OVS defines six pipeline levels
each packet has to go through in order to reach the packet destina-
tion.

Figure 7 shows the six pipelines schematically. OVS pipeline
levels are organised as tables. Table 0 is the entry point all packets
arriving at the switch. Then they are forwarded according to the
rules they match. By applying rules to packets they find their way
through the pipeline and finally to their destination. The table
identifier such as table 0 or table 20 can be freely defined.

In our setup the SDN-controller injects about 120 OpenFlow
rules in the pipelines. For our scenario, about 10 rules are relevant
(see Figure 7) and apply to packets sent from client containers to
server containers on the same node. The rules are shown in the
following:

table = 0,priority = 300, ct_state = −trk, ip,

actions = ct(table = 0) (Rule 1)

table = 0,priority = 100, ip,actions = дoto_table : 20 (Rule 2)

Session 5: Service-based Systems ICPE ’21, April 19–23, 2021, Virtual Event, France

157

IBM z14

zVM LPAR

Master Node 1-3
CoreOS
zVM Guests 1-3

Worker Node 1
CoreOS
zVM Guest 4

Worker Node 2
CoreOS
zVM Guest 5

Bastion
RHEL 8.1 LPAR

OSA5#1 10.*

zVM VSWITCH

OSA6#2 10.*

HAProxy

OCP cluster

Figure 6: Overview of machine configuration

table=0

table=20

table=21

table=30

table=70

table=80

Rule #1 Rule #2

Rule #3 Rule #4

Rule #6 Rule #7

Rule #9 Rule #10Rule #5

Rule #8

Figure 7: Overview of OVS pipeline and rules

table = 20,priority = 100, ip, in_port = 5,nw_src = 10.131.0.4,
actions = load : 0− > NXM_NX_REG0[],дoto_table : 21

(Rule 3)

table = 20,priority = 100, ip, in_port = 6,nw_src = 10.131.0.5,
actions = load : 0− > NXM_NX_REG0[],дoto_table : 21

(Rule 4)

table = 21,priority = 200, ip,nw_dst = 10.128.0.0/14,
actions = ct(commit, table = 30)

(Rule 5)

table = 30,priority = 300, ct_state = +rpl, ip,nw_dst =
10.131.0.0/23,actions = ct(table = 70,nat)

(Rule 6)

table = 30,priority = 200, ip,nw_dst = 10.131.0.0/23,
actions = дoto_table : 70 (Rule 7)

table = 70,priority = 100, ip,nw_dst = 10.131.0.4,
actions = load : 0− > NXM_NX_REG1[],
load : 0x5− > NXM_NX_REG2[],дoto_table : 80

(Rule 8)

table = 80,priority = 200, ct_state = +rpl, ip,
actions = output : NXM_NX_REG2[] (Rule 9)

table = 80,priority = 300,nwsrc = 10.131.0.5, ip,
actions = output : NXM_NX_REG2[] (Rule 10)

4.3.1 Rule 1. Enables connection tracking for all packets that are
not yet monitored by the connection tracker and copies the packet
again to table 0.

4.3.2 Rule 2. Re-routes all packets in table 20.

4.3.3 Rule 3 & 4. Match on packets coming from specific ports and
specific source addresses, redirect them to table 21 and load ports
into the appropriate registers for later use.

4.3.4 Rule 5. Matches on all packets to be transferred to subnet
10.128.0.0/14. The packets are committed on the connection tracker
and forwarded to table 30.

4.3.5 Rule 6 & 7. Matches all packets with connection tracking
state +rpl, i.e. packets that travel in the opposite direction than initi-
ated by the connection and originally routed to subnet 10.131.0.0./23.
A NAT is performed in connection tracker (NAT is necessary be-
cause the packet is traveling in the opposite direction and the packet
headers need to be updated) and transfers the respective packets to
table 70.

4.3.6 Rule 8. Loads ports (source and sink) for a given destination
address into the corresponding registers and forwards packets to
table 80.

Session 5: Service-based Systems ICPE ’21, April 19–23, 2021, Virtual Event, France

158

4.3.7 Rule 9 & 10. Both rules route out of the packets that have
been completely handled by the connection tracker and are en route
to the destination address or are en route in the opposite direction.
Destination port is the port that was previously loaded into the
register.

4.4 Workload Driver
In this section we introduce the workload driver and the workloads
we use for our analysis. The benchmarks and workloads we use
help to understand typical scenarios from industry environments
and also to evaluate high load scenarios.

4.4.1 Uperf Benchmark. The Unified Performance Tool for Net-
working (uperf), an open source software, is a network performance
measurement tool that supports execution of workload profiles and
offers a variety of network protocols and connection setups.

A typical measurement setup consists of a uperf client and a up-
erf server. Uperf has a powerfull workload definition language. The
language is used to define fine grained workload profiles in order
to build complex workload patterns to be able to model network
responses of typical real-world applications. Using the workload
definition language performance analysts define workloads that
contain information like protocol, target system, amount of pro-
cesses or threads, number of connections, duration and data sizes.
The server will be put into listen mode and then the client initiates
the workload according to this profile.

In this paper we use twomain types of workloads namely request-
response and streaming. While request-response simulates packet
round trips sending and receiving a certain amount of data, e.g. a
typical web server network workload, while streaming workloads
are considered to be unidirectional, e.g. traffic from a content deliv-
ery network [10].

4.4.2 Request-Response Workloads. The transactional profile is set
up such that a request of x bytes will be sent from the client to
the server and a response of y bytes will be sent back from the
server to the client. This request-response workload is repeated
for the specified duration time and number of connections. The
connections stay open during the entire test period.

In the profile for smaller transactions, which is typical for web
server applications, we set the parameters to request 200 byte,
response 1000 byte (TCP), number of connections to 50 or 250 and
duration to 5 minutes.

In another profile for bigger transactions that could represent
database queries we keep all parameters as described for small
transactions except the response parameter which we increase to
30 KiB, cf. [13].

4.4.3 Streaming Workloads. The traffic of the streaming profile is
passing in one direction only. Possible directions are either writing
data to the server or reading data from the server. The parameters
define a data direction (i.e. read or write), a counter value, and
a data size of certain bytes. The streaming workload is repeated
for the specified duration time and number of connections. The
connections stay open during the entire test period.

We define the streaming profile with data transfer direction as
write, count to 640, data size to 30 KiB, number of connections to
50 or 250, and duration to 5 minutes, cf. [13].

Figure 8: Overview of experiment scenarios

4.5 Metrics
The uperf benchmark provides a variety of throughput, counting,
timing, and accompanying resource utilization data as results after
successful execution.

For transactional workloads (request-response) we chose transac-
tion times or latency as most important performance result, which
measure how long it takes to finish one transaction completely.
Similarly we could have chosen number of transactions per second.
Throughput in Gbps is less interesting in this scenario as smaller
transactions will not overload the network capacity of the net-
work hardware. The result data is taken from the uperf output, Txn,
column avg.

Typically, in micro-service architectures services are divided
into several parts. In clusters such as OCP, these micro-services
are therefore distributed in separate container instances. In order
to deliver the service, many parts must work together as latencies
therefore quickly add up to higher values. Micro-service architec-
tures in particular benefit from low latencies, which is why the
latency metric is particularly relevant to evaluate micro-service
performance.

For streamingworkloads the throughput inMbps or Gbps as aver-
age over the entire measurement duration is one of the key aspects.
We do not execute a high number of transactions but transfer the
maximum possible amount of data. The result data can be gathered
from the uperf output, Run Statistics, column Throughput [13].

5 PERFORMANCE INFLUENCES OF OPEN
VSWITCH

This section introduces the performance influencees of OVS. We
introduce the experiment setup, our scenarios and the results of
our analysis.

5.1 Experiment Scenarios
Overall, we consider two scenarios. Figure 8 shows both scenarios
schematically.

Session 5: Service-based Systems ICPE ’21, April 19–23, 2021, Virtual Event, France

159

0.280.32
0.50.630.61

1
0.26

0.32

0.49

0.610.59

1

0.24
0.35

0.53
0.690.71

1
0.26

0.37

0.58

0.72

0.78

1

rr1c−200x1000−50 rr1c−200x1000−250 rr1c−200x30k−50 rr1c−200x30k−250

la
te

nc
y

OCP Baseline

Shortcut #1

Shortcut #2

Shortcut #3

Shortest Path

Podman

Figure 9: Latency of uperf request response workloads (rr1c), OVS pipeline levels evaluation, intra worker scenario. Each
group of bars represents another workload configuration. Each scenario requests 200 bytes, while either 1000 b or 30kb are
responded. 50 or 250 connections are open in parallel (*-50 or *-250). The value of the latency of each shortcut within a group
is shown relative to the OCP baseline, i.e. the OCP delivery configuration.

The first scenario considers intra-worker communication, i.e. com-
munication within one worker node. The second scenario analyses
the inter-worker, i.e. communication between two worker nodes.

5.2 Scenario I.I: OVS Shortcuts
Scenario I.I focusses on the intra-worker communication. In this
kind of communication there is only the Open vSwitch involved.
We evaluate six configurations regarding pipeline levels:

5.2.1 Baseline. The first configuration represents the baseline sce-
nario. In the baseline scenario, the packets go through all pipeline
levels as described in Section 4.3. By doing so, we evaluate the OCP
delivery configuration after a fresh installation.

5.2.2 Shortcut #1. Rule 1 specifies all packets entered the pipeline
are reinserted in table 0 after activating connection tracking. Short-
cut #1 cuts this step and skips the reinsertion of all packets in table 0.
After activation of the connection tracker the packets are forwarded
directly to table 20.

5.2.3 Shortcut #2. Shortcut #2 extends Shortcut #1 and skips table
20 in addition.

5.2.4 Shortcut #3. Shortcut #3 skips in addition to Shortcut #2
tables 21 and 30. All packets are inserted into table 70 after they
have been processed in table 0. A further shortcut inserting packets
from table 0 into table 80 is not possible (without changing rules)
because otherwise ports would not be loaded into the necessary
registers.

5.2.5 Shortest Path. To better classify the performance of the short-
cuts, we have additionally analysed the performance of the shortest
path. In the shortest path, packets arrive in OVS and are forwarded

directly to their destinationwithout beeing processed in the pipeline
levels. In other words, all pipeline levels are skipped and are for-
warded to the destination address.

5.2.6 Podman Loopback. The scenario Podman Loopback goes one
step further and skips the entire OVS. This scenario shows the
theroretical performance without OVS. Packets are transferred
via the loopback device. Such an experiment shows the general
overhead of OVS.

5.3 Scenario I.II: OVS Operations
Scenario I.II analyses several configuration options regarding con-
nection tracking operations:

5.3.1 Baseline + no connection tracking. We analyse the perfor-
mance of the connection tracker in detail. The pipeline remains
unchanged (baseline), while the connection tracker is deactivated.

5.3.2 Shortcut #3 + no connection tracking. In this scenario, we
build on Shortcut #3 and consider the case when connection track-
ing is disabled.

5.3.3 Baseline + no trk check. The scenario is based on the baseline
and does not check whether packets are already monitored by the
connection tracker (+trk operation). In this scenario connection
tracking is enabled.

5.4 Scenario II: OVS Shortcut
Scenario II focusses on the inter-worker communication. In addition
to the OVS the z/VM VSWITCH is involved. We evaluate three
configuration options regarding pipeline levels:

Session 5: Service-based Systems ICPE ’21, April 19–23, 2021, Virtual Event, France

160

1
1

1.42 1.31.46
1.22

1.7

1.34

2.03

1.56

2.45

1.56

str−writex30k−50 str−writex30k−250

th
ro

ug
hp

ut

OCP Baseline

Shortcut #1

Shortcut #2

Shortcut #3

Shortest Path

Podman

Figure 10: Throughput of uperf streaming workloads (str),
OVS pipeline levels evaluation, intra worker scenario, 30 kb
request size, 50 and 250 connections in parallel.

5.4.1 Baseline. As before, the baseline corresponds to the standard
configuration of OVS configured by the OCP’s SDN-controller. The
pipeline for the worker to worker communication is three pipeline
levels more than the pipeline shown in Section 4.3.

5.4.2 Shortcut #3. Shortcut #3 of this scenario cuts the pipeline
similar to Shortcut #3 from Section 5.2. Those three additional
pipeline levels make the pipeline longer than in the first scenario.

5.5 Scenario I.I: Results
Figures 9 and 10 show the results of latency and throughput for
Scenario I.I (see Section 5.2). In the analysis we focus on two work-
load configurations introduced in Section 4.4. The two groups of
bars on the left in the graphic represent the values for a standard
workload that could be found at customer side. The two groups
on the right represent a heavy networking workload to stress the
infrastructure at most.

Overall, shortening the OVS pipeline shows significant per-
formance improvements by several factors, both in latency and
throughput. Latency can be increased by up to a factor of 3.125,
while throughput can be improved by up to a factor of 2.01. These
improvements are achieved for the shortest path.

Further analysis and comparison of the shortest path with the
Podman results show using OVS in general affects performance not
much in terms of latency and throughput. Also there is not much
additional overhead for the 250 connection streaming workload
case. It is also noticeable that Shortcut #2 shows no further, or only
an insignificant improvement in latency and throughput compared
to Shortcut #1.

An overall analysis shows each pipeline level has a negative
impact on latency and throughput. Conversely, a shortening by
a level results in an average of 49 % improvement in latency and
45 % improvement in throughput for average leveled workloads.
For heavy demanding workloads the improvement is about 41 %
for latency and 36 % for throughput.

It is also noteworthy that Shortcut #1 represents a sweet spot
within the measurement series. The functionally similar shortcut

1

1

1

1

0.68

0.67

0.79

0.84

0.37

0.36

0.41

0.42

0.7

0.65

0.71

0.68

rr1c−200x1000−50 rr1c−200x1000−250 rr1c−200x30k−50 rr1c−200x30k−250

la
te

nc
y

OCP Baseline
Baseline
+ no con track
Shortcut #3
+ no con track
Baseline
+ no trk chk

Figure 11: Latency of uperf request response workloads
(rr1c), OVS operations evaluation, intra worker scenario,
1000 b and 30kb request size, 50 and 250 connections in par-
allel.

(compared to the OCP baseline) improves the latency by 41 % in
the best case. The throughput can be increased by 42 % in best case,
in the worst case by 30 %.

5.6 Scenario I.II: Results
Figures 11 and 12 show latency and throughput for Scenario I.II
(see Section 5.3). Overall, the analysis shows that both disabling
connection tracking, as well as removing the check for connection
tracking (+trk) in table 0 can improve performance, in some cases
significantly. Disabling connection tracking reduces the latency
between 23 % and 16 % (compared to baseline). +trk operates with
an overhead between 29 % and 35 %.

The comparison of Shortcut #3 with and without connection
tracking enabled shows interesting results: Shortcut #3 with con-
nection tracking enabled reduces latency by about 50 % (analysing
the 200x1000-50 workload), while disabling connection tracking
improved latency by about 63 %. Connection tracking therefore
operates with an overhead of 13 %.

We can also see differences in throughput: The baseline with
connection tracking disabled improves throughput by 10 % (for
heavy workloads) and by 28 % for average workloads. Disabling
connection tracking check (+trk) improves throughput by between
17 % and 34 %.

The comparison of Shortcut #3 with and without activated con-
nection tracking shows the following results: At average workload,
throughput without connection tracking can be improved by 31 %
(compared to the baseline).

5.7 Scenario II: Results
Figure 13 shows the throughput for Scenario II (see Section 5.4). A
shortening of the pipeline can also improve throughput, namely
up to a factor of 1.65 with 250 parallel connections compared to
the OCP baseline. The latency, however, can only be improved
slightly, namely by a factor of 1.18, when having larger packet sizes
(200x30 KiB) and many connections (250 connections).

Thus, communication between nodes benefits less from shorten-
ing the pipeline. However, there may be more room for research
in this area, as the pipeline is longer than for connections within a
node.

Session 5: Service-based Systems ICPE ’21, April 19–23, 2021, Virtual Event, France

161

1
1

1.28 1.1

2.01

1.49

1.34 1.17

str−writex30k−50 str−writex30k−250

th
ro

ug
hp

ut OCP Baseline
Baseline
+ no con track
Shortcut #3
+ no con track
Baseline
+ no trk chk

Figure 12: Throughput of uperf streaming workloads (str),
OVS operations evaluation, intra worker scenario, 30 kb re-
quest size, 50 and 250 connections in parallel.

1

1

1.09

1.65

str−writex30k−50 str−writex30k−250

th
ro

ug
hp

ut

OCP Baseline

Shortcut #3

Figure 13: Throughput of uperf streaming workloads (str),
OVS pipeline levels evaluation, inter worker scenario, 30 kb
request size, 50 and 250 connections in parallel.

5.8 Discussion
The OVS pipeline and OpenFlow rules have a significant impact
on the overall performance of typical networking workloads. In
particular, we were able to show the performance impact of each
pipeline level in an inter-node scenario.

The latency can be reduced by up to a factor 3 by shortening
the pipeline. Most of the performance loss is obviously due to the
use of deep pipelines. Depending on the architecture, this kind of
setup might be mandatory. However, a trade-off decision between
architecture with regard to maintainability, comprehensibility, func-
tionality, and performance must be made.

The latency advantage becomes more apparent the more com-
ponents are required by the service. In micro-service architectures,
latencies quickly multiply to clearly noticeable latencies. The re-
duction in latency for the overall application is correspondingly
high when the pipeline architecture is short.

The latency but also network throughput can be improved. The
analysis shows an improvement in throughput by up to factor 2 by
shortening the pipeline. Thus, the pipeline depth is also relevant
for throughput intensive workloads.

The analysis of OVS features such as connection tracking shows
the following: In our scenarios, connection tracking causes over-
head in the range of 10-20%. Therefore, architects must weigh up
whether the feature is necessary or whether it can be switched off
for performance-critical applications.

In the intra-node scenario only a small improvement by shorten-
ing the pipeline can be observed with respect to latency. However,
the network throughput can benefit significantly with up to factor
1.65. Throughput critical services can also benefit from optimiz-
ing the pipeline length if the network architecture can be adapted
accordingly.

6 RELATEDWORK
Most of related work in the field of software defined networks
considers the advantages of SDNs in terms of scalability, flexibility,
how they enable cloud applications, and what problems SDNs solve
compared to traditional network concepts. Such topics are covered
and summed up by the survey from Hu et al. [9]. They show ad-
vantages but also drawbacks of SDNs. However, the authors do
not take a closer look at the network performance of SDNs. They
express doubts about the QoS control implemented during their
research work.

Rad et al. [19] analyse latency of SDNs in the field of high per-
formance clouds. They study the InfiniBand Low Latency Software
Defined Network (integrated in OpenStack) together with SR-IOV,
a technology to minimize virtualization overhead. They conclude
SR-IOV does only introduce an overhead of a fraction of a mil-
lisecond. However, they do not consider OpenFlow SDN rules and
pipeline levels introduced by OVS or similar technologies.

Several papers [1],[14] consider high performance computing
in general. Gupta et al. [6],[7] consider networking beside other
resources. They combine several applications with different com-
puting profiles for more efficient consolidation. During their study,
they analyse performance of computing, storage and network re-
sources using OpenStack. They use KVM as hypervisor and use
different network virtualization drivers such as rtl8139, eth1000,
and virtio-net. However, they do not analyse network performance
in isolation but use a mix of workloads to stress several resource
types at the same time.

Performance of SDNs and Open vSwitch has been investigated
by several other papers [4]. Yan et al. [22] found Vxlan shows
comparatibly low performance. Vxlan is used for incoming and
outgoing traffic.

Sattar and Matrawy [20] analysed the delay of OVS and build a
model for simulation and further analysis purposes. Yang et al. [23]
proposed a similar approach to mode OVS performance including
the characteristics of the system OVS runs on.

Mian et al. [17] found in their analysis an increased latency when
using OVS, but did not investigate the OVS pipeline and operations
in detail. Further, they rely on ping for their analysis. Using ping,
however, is often not sufficient since packet sizes and number of
connections can not be taken into account in required detail and has
been shown to significantly influence both latency and throughput.

Session 5: Service-based Systems ICPE ’21, April 19–23, 2021, Virtual Event, France

162

7 CONCLUSIONS & FUTUREWORK
In this paper, we described in detail the architecture of typical
SDN setups using the OpenShift-SDN as an example. We analysed
the impact of the SDN architecture on the performance of typical
network workloads that are representative for micro-service ap-
plications. The analysis showed that complex OVS pipelines can
highly influence both latency and throughput. Especially network
performance-critical workloads or complex micro-service architec-
tures with a high number of components may require architects
to make trade-off decisions regarding pipeline length and perfor-
mance. Longer pipelines quickly lead to higher latencies by several
factors.

Especially our inter-node scenario confirms this statement: each
extension of the pipeline length can increase the latency by 49%
on average. Similar results can be derived for throughput: each
pipeline level can reduce the throughput by 45 % on average. How-
ever, for architects it is worthwhile for their workloads to analyse
the pipeline length and OVS features used in more detail. Our anal-
ysis revealed at least one sweet spot that already enabled up to 41 %
lower latency with only minimal changes in the architecture.

In the intra-node scenario only minor performance improve-
ments could be shown by shortening the pipeline. However, the
pipeline is longer and there is still room for research regarding
shortening the pipeline. Furthermore, the OVS features have to be
considered in more detail.

In addition, there is a need for further research regarding another
scenario, namely the analysis including the physical network hard-
ware. The influence of the NIC was not considered, but is relevant
whenever network traffic is routed out of the cluster. Furthermore,
no functions such as hardware offloading were considered, which
could influence the performance in such scenarios too.

ACKNOWLEDGEMENTS
Thank you to all members of the Linux on Z Performance team in
Böblingen for fruitful discussions around OpenShift performance
and input to this work. Special thanks go to Christian Bram and
Michael Stetter for great administrative support around this publi-
cation.

REFERENCES
[1] A. I. Avetisyan, R. Campbell, I. Gupta, M. T. Heath, S. Y. Ko, G. R. Ganger, M. A.

Kozuch, D. O’Hallaron, M. Kunze, T. T. Kwan, K. Lai, M. Lyons, D. S. Milojicic,
H. Y. Lee, Y. C. Soh, N. K. Ming, J. Luke, and H. Namgoong. 2010. Open Cirrus: A
Global Cloud Computing Testbed. Computer 43, 4 (2010), 35–43.

[2] Axel Busch. 2019. Quality-driven Reuse of Model-based Software Architecture
Elements. Ph.D. Dissertation. Institut für Programmstrukturen und Datenorgani-
sation (IPD), Karlsruher Institut für Technologie, Karlsruhe, Germany. https:
//publikationen.bibliothek.kit.edu/1000097163

[3] Axel Busch, Qais Noorshams, Samuel Kounev, Anne Koziolek, Ralf Reussner, and
Erich Amrehn. 2015. Automated Workload Characterization for I/O Performance

Analysis in Virtualized Environments. In Proceedings of the ACM/SPEC Interna-
tional Conference on Performance Engineering (ICPE ’15). ACM, New York, NY,
USA, 265–276. https://doi.org/10.1145/2668930.2688050 Acceptance Rate (Full
Paper): 15/56 = 27%.

[4] H. Chen, Z. Qiao, and S. Fu. 2019. Applying SDN based data network on HPC
Big Data Computing – Design, Implementation, and Evaluation. In 2019 IEEE
International Conference on Big Data (Big Data). 6007–6009.

[5] Jaafar Chraibi. 2020. Enterprise Kubernetes with OpenShift. https://www.
openshift.com/blog/enterprise-kubernetes-with-openshift-part-one. [Online;
accessed 25-Aug-2020].

[6] A. Gupta, L. V. Kalé, D. Milojicic, P. Faraboschi, and S. M. Balle. 2013. HPC-Aware
VM Placement in Infrastructure Clouds. In 2013 IEEE International Conference on
Cloud Engineering (IC2E). 11–20.

[7] A. Gupta, O. Sarood, L. V. Kale, and D. Milojicic. 2013. Improving HPCApplication
Performance in Cloud through Dynamic Load Balancing. In 2013 13th IEEE/ACM
International Symposium on Cluster, Cloud, and Grid Computing. 402–409.

[8] Red Hat. 2019. Kubernetes Infrastructure. https://docs.openshift.com/enterprise/
3.0/architecture/infrastructure_components/kubernetes_infrastructure.html.
[Online; accessed 25-Aug-2020].

[9] F. Hu, Q. Hao, and K. Bao. 2014. A Survey on Software-Defined Network and
OpenFlow: From Concept to Implementation. IEEE Communications Surveys
Tutorials 16, 4 (2014), 2181–2206.

[10] IBM. 2016. KVMNetwork Performance -Best Practices and TuningRecommendations.
Technical Report. International Business Machines Corporation. http://public.
dhe.ibm.com/software/dw/linux390/perf/ZSW03346USEN.pdf

[11] IBM. 2019. Processor Resource/Systems Manager Planning Guide, SB10-7169-02,
Level 02a. https://www.ibm.com/support/pages/node/6018640

[12] IBM. 2019. Systems Hardware Data Sheet - IBM z14. https://www.ibm.com/
downloads/cas/O4VDMBV2. [Online; accessed 03-Sep-2020].

[13] IBM. 2020. IBM Knowledge Center - Uperf. https://www.ibm.com/support/
knowledgecenter/linuxonibm/liaag/wkvm/wkvm_c_workload.htm. [Online;
accessed 01-Sep-2020].

[14] A. Iosup, S. Ostermann, M. N. Yigitbasi, R. Prodan, T. Fahringer, and D. Epema.
2011. Performance Analysis of Cloud Computing Services for Many-Tasks Sci-
entific Computing. IEEE Transactions on Parallel and Distributed Systems 22, 6
(2011), 931–945.

[15] P. Krongbaramee and Y. Somchit. 2018. Implementation of SDN Stateful Firewall
on Data Plane using Open vSwitch. In 2018 15th International Joint Conference on
Computer Science and Software Engineering (JCSSE). 1–5.

[16] Y. Li and M. Chen. 2015. Software-Defined Network Function Virtualization: A
Survey. IEEE Access 3 (2015), 2542–2553.

[17] A. N. Mian, A. Mamoon, R. Khan, and A. Anjum. 2014. Effects of Virtualization
on Network and Processor Performance Using Open vSwitch and Xen Server.
In 2014 IEEE/ACM 7th International Conference on Utility and Cloud Computing.
762–767.

[18] ONF. 2012. Software-Defined Networking: The New Norm for Networks. Techni-
cal Report. Open Networking Foundation. https://www.opennetworking.org/
images/stories/downloads/sdn-resources/white-papers/wp-sdn-newnorm.pdf

[19] P. Rad, R. V. Boppana, P. Lama, G. Berman, and M. Jamshidi. 2015. Low-latency
software defined network for high performance clouds. In 2015 10th System of
Systems Engineering Conference (SoSE). 486–491.

[20] D. Sattar and A. Matrawy. 2017. An empirical model of packet processing delay of
the Open vSwitch. In 2017 IEEE 25th International Conference on Network Protocols
(ICNP). 1–6.

[21] S. Sezer, S. Scott-Hayward, P. K. Chouhan, B. Fraser, D. Lake, J. Finnegan, N.
Viljoen, M. Miller, and N. Rao. 2013. Are we ready for SDN? Implementation
challenges for software-defined networks. IEEE Communications Magazine 51, 7
(2013), 36–43.

[22] Y. Yan and H. Wang. 2016. Open vSwitch Vxlan performance acceleration in
cloud computing data center. In 2016 5th International Conference on Computer
Science and Network Technology (ICCSNT). 567–571.

[23] Runkai Yang, Xiaolin Chang, JelenaMišić, and Vojislav BMišić. 2020. Performance
Modeling of Linux Network System with Open vSwitch. Peer-to-Peer Networking
and Applications 13, 1 (2020), 151–162.

Session 5: Service-based Systems ICPE ’21, April 19–23, 2021, Virtual Event, France

163

https://publikationen.bibliothek.kit.edu/1000097163
https://publikationen.bibliothek.kit.edu/1000097163
https://doi.org/10.1145/2668930.2688050
https://www.openshift.com/blog/enterprise-kubernetes-with-openshift-part-one
https://www.openshift.com/blog/enterprise-kubernetes-with-openshift-part-one
https://docs.openshift.com/enterprise/3.0/architecture/infrastructure_components/kubernetes_infrastructure.html
https://docs.openshift.com/enterprise/3.0/architecture/infrastructure_components/kubernetes_infrastructure.html
http://public.dhe.ibm.com/software/dw/linux390/perf/ZSW03346USEN.pdf
http://public.dhe.ibm.com/software/dw/linux390/perf/ZSW03346USEN.pdf
https://www.ibm.com/support/pages/node/6018640
https://www.ibm.com/downloads/cas/O4VDMBV2
https://www.ibm.com/downloads/cas/O4VDMBV2
https://www.ibm.com/support/knowledgecenter/linuxonibm/liaag/wkvm/wkvm_c_workload.htm
https://www.ibm.com/support/knowledgecenter/linuxonibm/liaag/wkvm/wkvm_c_workload.htm
https://www.opennetworking.org/images/stories/downloads/sdn-resources/white-papers/wp-sdn-newnorm.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/white-papers/wp-sdn-newnorm.pdf

	Abstract
	1 Introduction
	2 RedHat OpenShift Container Platform
	2.1 Software Architecture
	2.2 Hardware Architecture

	3 Role of Software-defined Networks
	3.1 OpenFlow Switch
	3.2 OpenFlow Rules

	4 Experiment Setup
	4.1 Infrastructure Setup
	4.2 Cluster Configuration
	4.3 Open vSwitch & OpenFlow Configuration
	4.4 Workload Driver
	4.5 Metrics

	5 Performance Influences of Open vSwitch
	5.1 Experiment Scenarios
	5.2 Scenario I.I: OVS Shortcuts
	5.3 Scenario I.II: OVS Operations
	5.4 Scenario II: OVS Shortcut
	5.5 Scenario I.I: Results
	5.6 Scenario I.II: Results
	5.7 Scenario II: Results
	5.8 Discussion

	6 Related Work
	7 Conclusions & Future Work
	References

