
HLS_PRINT: High Performance Logging Framework on FPGA
Nupur Sumeet

Tata Consultancy Services - Research
Mumbai, Maharashtra, India

nupur.sumeet@tcs.com

Manoj Nambiar
Tata Consultancy Services - Research

Mumbai, Maharashtra, India
m.nambiar@tcs.com

ABSTRACT
FPGAs have been tipped to be useful for implementing low latency
transaction processing systems. Getting computationally powerful
over time, they are making their way into enterprise data cen-
ters. Another factor is the availability of C compilers for FPGAs as
opposed to hardware description languages (HDLs) that requires
special skills. However, data center operations staff were concerned
about real time troubleshooting in production. Tracing FPGA im-
plemented application execution require special skills and vendor
specific tools that can capture limited by the amount of data.

To address this, we designed and implemented a logging frame-
work on the FPGA. This paper presents the design and implemen-
tation of the framework. We present an algorithm that checks and
generates alerts for performance overheads introduced due to the
use of logging. Finally, experimental results are presented which
demonstrate zero or low overhead of the logging framework.

CCS CONCEPTS
• General and reference→ Evaluation; •Hardware→ Board-
and system-level test.

KEYWORDS
FPGA logging, High performance logging, HLS log framework

ACM Reference Format:
Nupur Sumeet and Manoj Nambiar. 2021. HLS_PRINT: High Performance
Logging Framework on FPGA. In Proceedings of the 2021 ACM/SPEC In-
ternational Conference on Performance Engineering (ICPE ’21), April 19–
23, 2021, Virtual Event, France. ACM, New York, NY, USA, 8 pages. https:
//doi.org/10.1145/3427921.3450238

1 INTRODUCTION
Recent availability of High-Level Synthesis (HLS) development
flow from FPGA vendors like Xilinx [18] and Intel [7] have sim-
plified hardware design development to a great extent. A HLS de-
sign development flow includes a compiler which can compile a
high-level language, such as C/C++, into the corresponding HDL
(Hardware Description Language) representation. However, this
includes limited support for the standard libraries that accompany
these languages. Nevertheless, one can expect to write application

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICPE ’21, April 19–23, 2021, Virtual Event, France
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8194-9/21/04. . . $15.00
https://doi.org/10.1145/3427921.3450238

functionality in C and have it implemented on an FPGA without
having to know RTL (Register Transfer Logic) design or HDL.

Developing applications usingHLSwould entice enterprise users,
given the simplicity of coding in a high-level language. However,
there was a practical problem that came up. The data center opera-
tions staff were very well used to monitoring software applications
in the data center. Almost all applications running in the data center
would log important data. This included the run time contextual
data, intermediate steps and final results - depending on the level
of logging in force. This information could serve many purposes
like auditing, data for machine learning or just troubleshooting
application execution issues. The last requirement is very essential
to ensure reduced downtime as availability issues could result in
significant loss in business. But this was not possible with FPGA
application developed even in HLS. Collecting data which involved
the run time execution context of applications on FPGA required
use of hardware vendor specific modules called integrated logic
analyzers (ILA)[16]. The following issues are associated with use
of ILAs:

1. Manual integration in the HDL representation that is tedious
and calls for automation.

2. The use of ILAs required connection with the FPGA’s In-
tegrated Development Environment (IDE). This requires
knowledge of HDL and the advantage that HLS enables is
lost.

3. The ILAs have an associated buffer which has an upper limit
on amount of data that can be captured. This limit is too less
for collecting information about events in production.

Addressing these issues, we built a logging framework which
would enable logging for FPGA implemented applications just as
they would for software-based applications. It would be simple to
use and the developers could have control on what data to log in the
C/C++ (HLS) code. The data would be available to operations staff
in similar form as software applications with regard to limitations
on the amount of data to be logged. The logging framework is very
similar to the use of printf function available in the C stdio library
that comes with standard C-based software compilers.

Given the parallelism available in the FPGAs, it was desirable
that the logging takes place in parallel with the hardware design
execution, thereby causing zero performance overhead to the ap-
plication. This is not the case for logging in software where there
is always some performance overhead associated. To this effect,
we have implemented an algorithm which checks for the loss of
performance due to logging and alerts the user in such a case. Also
included is the sizing of queuing resources used for logging to
minimize performance impact.

Session 4: Memory and Resource Management ICPE ’21, April 19–23, 2021, Virtual Event, France

145

https://doi.org/10.1145/3427921.3450238
https://doi.org/10.1145/3427921.3450238
https://doi.org/10.1145/3427921.3450238

Figure 1: FPGA Resource and Datacenter Ecosystem

Figure 2: The Application (loop-back
through AXI-Stream Data FIFO) com-
municating with the Host through
XDMA_IP

Figure 3: The Traditional HLS-HDL flow diagram.

In this paper, we propose a hardware-software solution to enable
print functionality in the HLS design platforms to bridge the hard-
ware logging gap. The proposed framework, named as HLS_PRINT
enables print support and offers the possibility of zero latency over-
head on application. We use source-to-source transformations such
that the print statements in the source code results in HLS syn-
thesizable constructs. In addition to this, the HLS_PRINT offers a
push-button integration into an existing HDL project. The software
part of the framework receives data from FPGA and presents it in
human readable format.

The Key Contributions of this work are the following:

1. Development of a Logging Framework for HLS based FPGA
application with the following benefits
a. Completely automated –avoid developer’s engagement in

implementation complexities
b. Software-like Logging –enables software experienced de-

velopers to develop and troubleshoot on FPGA platforms
c. Alerts user for Performance overheads introduced by print-

ing using HLS_PRINT
2. Recommended configuration of the Framework to avoid per-

formance overheads while ensuring lossless printing.
3. Evaluation and Analysis of the HLS_PRINT on an indus-

trial transactional application and open-source MachSuite
Benchmarks.

The rest of the paper is organized as follows. The HLS_PRINT
framework is discussed in Section 3. In Section 4, MachSuite bench-
marks [14] and an industrial transactional application are used to

Figure 4: The conceptual flow diagram of HLS_PRINT
framework.

evaluate the proposed framework followed by related work in Sec-
tion 5. The Limitations of framework and Conclusion are discussed
in Sections 6 and 7, respectively.

2 BACKGROUND: FPGA CONCEPTS
In this section, we introduce few core FPGA concepts in brief. These
concepts are referred to at various places in the paper.

2.1 FPGA Resources and Data Center
Ecosystem

FPGAs have entered the datacenter space with CPUs and are in-
creasingly supporting complex algorithms on its own or through
hybrid systems. The representative diagram of a data center FPGA
is shown in Figure 1. The FPGA device, memories (on-chip and off-
chip), network ports etc. form an FPGA sub-system that interacts
with CPU and peripherals. The FPGA device is the programmable
silicon that realizes the desired functionality. This entails a matrix
of logic blocks (Look-up table (LUT) arrays, Block RAMs, Digital
Signal Processor (DSP), Flip-flops (FFs), Multiplexers) connected
through programmable interconnects and I/Os.

2.2 Traditional HLS+HDL Design Flow
Figure 3 shows the HLS+HDL design flow. The HLS compiler con-
verts application source code developed in high-level language to
low-level HDL implementation. The implemented HDL is packaged

Session 4: Memory and Resource Management ICPE ’21, April 19–23, 2021, Virtual Event, France

146

and exported as an Intellectual Property (IP) for use with HDL
design flow tools. The HDL design flow includes the low level inte-
gration of HLS_IPs with vendor-specific IPs to create an end-to-end
working design. Following the low-level integration, the design is
synthesized and implemented while meeting the desired frequency
for performance. The FPGA is then programmed with the generated
bitstream.

2.3 DMA Transfer: XDMA_IP as PCIe endpoint
The Xilinx DMA (XDMA_IP) Subsystem for PCI Express imple-
ments a high-performance DMA for use with the PCIe (Peripheral
Component Interface Express) Block. The XDMA_IP allows for
the bi-directional movement of data between Host memory and
the DMA (Direct Memory Access) subsystem. These DMA engines
can be mapped to individual Advanced eXtensible Interface (AXI)-
Stream interfaces [1] or a shared AXI4 memory mapped (MM)
interface to the user application.

2.4 AXI-Stream Data FIFO IP
The FIFO module is capable of providing temporary storage (a
buffer), with depth limit 16 to 32768, for logged data before trans-
mitting it to the CPU via the XDMA_IP. The input and output ports
of the FIFO can be configured to operate at independent frequencies.
This ensures that the application can be synthesized at a range of
frequencies and is not limited by XDMA_IP operating frequency i.e.
250 MHz. Figure 2 shows XDMA_IP connected to a transactional
application using AXI stream FIFOs.

3 THE PROPOSED HLS_PRINT FRAMEWORK
During synthesis, the HLS compiler ignores the print statements in
the source code. In our approach, we use source-to-source trans-
formations to pre-process the application code such that the HLS
compiler generates a synthesizable construct for print statements.
The conceptual flow diagram of the framework is shown in Fig-
ure 4. The source-to-source transformations are automated using a
code generation script. HLS_PRINT can be easily ported to other
HLS frameworks, commercial or otherwise as it works on at a
pre-compile stage.

3.1 User View: Source-to-Source
Transformation

HLS_PRINT takes the form of a new directive which contains the
name (-var) and type (-typ) of the print variable. It also supports the
field (-com) for string/sentence that the user wants to print along
with the print data. This feature enables greater user readability
and control over logging as the developer is able to draw a clear
correspondence between the print data received and the position
at which the print was inserted in the application code. A sample
application code is shown in Figure 5 (a), (b) and (c) as original,
developer’s print and synthesized print versions, respectively. The
developer adds the HLS_PRINT statements to the application code
(developer’s print version in Figure 5 (b)) and executes the code
generation script. The output of this script is the synthesizable
print version as shown in Figure 5 (c). The script identifies the
HLS_PRINT statements and pushes the copy of the variable to be
printed to the HLS stream variable. The variables (of type“stream”

in Figure 5 (c)) are also defined as arguments in the function. This
enables the HLS compiler to expose the stream variables as inter-
faces that can be connected to other modules of HLS_PRINT. In the
example shown in Figure 5, we are able to capture the changes in
the variable a and c as the code executes.

3.2 Types of variables supported for printing
The print framework supports a range of datatypes - char, short,
integer, double, float, fixed and arbitrary precision datatypes. In
case of fixed or arbitrary precision datatype variables, the value of
N is limited to 55bytes/stream as 9 bytes are kept for reserved for
print data annotations discussed in subsection 3.4.1. The structure
containing these data types are also supported. HLS_PRINT sup-
ports loop printing and the print data is pushed into the stream n
times where n denotes the loop count.

3.3 Methodology for supporting Print in HLS
compilers

Similar to software design, the application in hardware design is
generally broken into smaller pieces called modules where each
module is designated with a sub-task. The modules communicate
with each other through input/output ports and only the signals
forced on these ports are accessible for data/control transfers be-
tween modules. Following this concept, the application data that
needs to be printed must be forced on the output port of the mod-
ule. Using HLS pragma, the output port is further defined as AXI
stream interface [1] as it supports bulk transfer of data from FPGA
to Host/PC using the DMA (direct memory access) transfer. The
HLS compiler implements stream variables as First-In-First-Out
(FIFO) queue that permits one write/read per clock cycle. The RTL
diagram of print supported code, print data FIFOs for variables a
and c and the clock-wise operation scheduling is shown in Figure
6. The HLS compiler schedules operations to extracts maximum
parallelism. The variable value update and write to stream variable
operations are scheduled in the same clock cycle by the compiler as
it sees them as independent operations. We leverage this compiler
behavior for HLS_PRINT and thus, incur no additional latency for
printing.

3.4 HLS_PRINT: Hardware Architecture
In general, an ideal architecture for logging framework would en-
sure that all print records of all variables are printed (lossless print-
ing) with no additional latency to the applications run time. The
HLS_PRINT architecture is developed considering these primary
requirements.

Figure 7 is a representative hardware architecture of HLS_PRINT
framework. The HLS IP blocks represents C/C++ functions synthe-
sized with HLS compiler. Every variable printed by the function has
a dedicated FIFO. Because of separate interfaces for every print vari-
able, multiple stream variables can be updated without contention
and no latency overhead is encountered. The FIFOs are arbitrated
by the print multiplexing unit (PMU) (discussed in subsection 3.4.2)
for delivering logged data to host via the XDMA_IP. The FIFOs re-
ceiving the print data can become full when its writing rate exceeds
the reading rate. To ensure lossless print in such a situation, the

Session 4: Memory and Resource Management ICPE ’21, April 19–23, 2021, Virtual Event, France

147

1
2 void f unc_ foo () {
3 in t A=5 ,B=6 ,C=7 , i = 0 ;
4 p r i n t f (" Val A i s %d " ,A) ;
5 A=B+C ;
6 p r i n t f (" Change1 :A %d " ,A) ;
7 A=2∗A ;
8 p r i n t f (" Change2 :A %d " ,A) ;
9 while (i <10) {
10 C=C++; i ++ ;
11 p r i n t f (" Val C %d " ,C) ;
12 }
13 }

void f unc_ foo () {
in t A=5 ,B=6 ,C=7 , i = 0 ;
HLS_PRINT −var A −typ in t −com Val A
A=B+C ;
HLS_PRINT −var A −typ in t −com Change1 :A
A=2∗A ;
HLS_PRINT −var A −typ in t −com Change2 :A
while (i <10) {

C=C++; i ++ ;
HLS_PRINT −var C − typ in t −com Val C

}
}

void f unc_ foo (s t ream < int > prt_stm_A ,
s t ream < int > prt_stm_C) {

in t A=5 ,B=6 ,C=7 , i = 0 ;
prt_stm_A . wr i t e (A) ;
A=B+C ;
prt_stm_A . wr i t e (A) ;
A=2∗A ;
prt_stm_A . wr i t e (A) ;
while (i <10) {

C=C++; i ++ ;
prt_stm_C . wr i t e (C) ;

}
}

Figure 5: Sample Application code in (a) Original (b) Developer’s Print and,(c) Synthesizable Print versions.

Figure 6: RTL diagram for Print Supported Code.

application has to stall till there is space in the FIFO to continue
accepting print data. We discuss a scheme for FIFO sizing based
on its access rates in subsection 3.6 to ensure lossless print while
avoiding application stalls.

3.4.1 Print Record Format. Before writing the FIFOs, the print data
is annotated with <stream_id, APPCN, clock_cycle, print_data>. The
annotated print data is denoted as print record. A unique stream_id
is assigned to every variable for correlating the HLS_PRINT direc-
tivewith print data in the receiver software. The function invocation
(or call) number (APPCN) is implemented as a hardware counter
which is incremented once for every function call. The clock cycle
counter counts clock cycles starting from system reset. The value of
this counter is recorded every time data is pushed into the FIFO and
denotes the clock_cycle. Stream_id, APPCN and clock_cycle are
populated by HLS_PRINT using handshaking signals available in
HLS IP. The XDMA_IP takes 64 bytes print record in one clock cycle
out of which print data annotations takes 9 bytes and remaining 55
bytes are reserved for print data coming from the HLS_IP. The cycle
counter and APPCN counter are 32-bit wide. In case multiple HLS
functions contain HLS_PRINT directive, an additional function_id
can be appended to print record for print-function association.

3.4.2 Print Multiplexing Unit (PMU): Stream Combining Scheme.
The n FIFO queues are combined using Print Multiplexing Unit
(PMU). The purpose of multiplexing unit is to scan FIFOs for valid
data and forward it XDMA_IP for transfer. This is done based on
APPCN. The prints belonging to the same APPCN are combined
and transferred from FPGA. This helps ensure that the print record
passed to host over PCIe does not overlap function call invocations.
By doing this, we reduce the sorting complexities at the host end, as
the sorting needs to be done only within the APPCN. The n variable
FIFOs are scanned for valid data in round robin manner, based on

Figure 7: HLS_PRINT: Multiple Stream Configuration.

Algorithm 1 Print Multiplexing Unit
For a HLS function, n = # variable FIFOs, APPCNT = current
function invocation count, FIFO𝑗 = FIFO for print variable #j
Initialize record with print record and APPCNT to 1
while forever do

for j in n do
while record in FIFO𝑗 do

if record.APPCN == APPCNT then
Dequeue record; Enqueue to XDMA_IP

else
Break

end if
end while
APPCNT++

end for
end while

Algorithm 1. For simplicity, we assumed only one HLS function
with HLS_PRINT directive is present.

3.5 Host-side Software
The FPGA starts its computations when the bitstream is loaded into
it and data can be transferred over the PCIe interface using the a
Xilinx DMA driver.
Print Receiver Software Component: The receiver software re-
ceives the print data from the FPGA over PCIe in non blocking
mode and saves the data in binary files as they arrive.
Formatter Process: The second software component asynchronously
reads the binary files and processes them as shown in Algorithm 2.

Session 4: Memory and Resource Management ICPE ’21, April 19–23, 2021, Virtual Event, France

148

The print record annotations are used for sorting based on APPCN,
cycle counter and stream_id. Each queue has a unique stream_id
and hence can be correlated to its corresponding HLS_PRINT di-
rective. The -com field (shown in Figure 5) string can be printed
beside the print data gives a software-like print experience. Note
that the use of same FIFO for pushing updated values of a in Figures
6 and 5(c) is only for compact representation and the actual imple-
mentation contains dedicated FIFO for every HLS_PRINT directive.
Here again, we assumed only one HLS function with HLS_PRINT
directive is present.

Algorithm 2 Formatter Process
Initialize APPCNT to 0 and record_set to NULL
record = read first print record from file
while forever do
APPCNT = record.APPCN
while APPCNT == record.APPCN do

Add(record_set, record)
record = read next print record from file

end while
Sorted_records = Sort_on_cycle_count_field(record_set)
for k in sorted_records do

print k.clock_cycle, k.stream_id.comment, k.print_data
// k.stream_id.comment indicates -com field

end for
record_set = record // initialize record_set

end while

3.6 Variable print stream FIFO sizing
While ensuring that there is no loss of data to be logged, it is
also desirable that the inserts into the variable FIFO do not stall
the application execution. For this, it is essential to right size the
maximum depth of the variable FIFOs. Given the PMU functionality,
we approximated each variable FIFO as an M/M/1 queue [5]. At
the servicing end of the queue, XDMA_IP channel interface can
consume 1 print record of a printed variable (64 bytes regardless of
the size of the variable) every clock cycle. The XDMA_IP consume
8 print records at a stretch and introduces one unused cycles after
the transfer due to the XDMA_IP constraints [17]. So, the total
service rate for serving all the variable FIFOs combined is 𝜇= (8/9
× clock_period). In this case, clock_period is 4 ns owing to the
XDMA_IP which is synthesized to operate at 250 MHz. For a print
variable v𝑖 , c𝑖 denotes the print count of v𝑖 . Let’s also denote the
total number of print records in HLS function as y = Σ(c𝑖). Hence,
for a single variable FIFO, only a fraction of the service rate will be
applicable which can be represented as a weight w𝑖 of the variable.
This is calculated asw𝑖 = c𝑖 / (y). Therefore, the service rate available
for the variable FIFO is estimated as 𝜇𝑖 = 𝜇 x w𝑖 = (8 x w𝑖) / (9 x
clock_period).

The arrival rate of the variable FIFO can be calculated as highest
frequency at which HLS function invokes the printing v𝑖 , which we
denote as 𝜆𝑖 . If the minimum latency of the function is z clocks, then
𝜆𝑖 = (c𝑖)/ (z x clock_period). Please note that while the XDMA_IP
can operate at a fixed frequency 250 MHz, the HLS module can
be synthesized to operate at any frequency F MHz. For sizing the

variable FIFO, we need to express the arrival rate as observed by
the XDMA_IP. So, this latency is scaled by 250/F. So, the effective
latency zeff = z x 250/F. Therefore, the arrival rate 𝜆𝑖 = c𝑖 / (zeff x
clock_period).

Lets define 𝜌𝑖 = 𝜆𝑖 /𝜇𝑖 . For HLS_PRINT operation without inter-
rupting the application, we require 𝜌i < 1. This is the maximum
rate at which the function can be invoked, but we will use this as
the average arrival rate for use with M/M/1. For an M/M/1 queuing
system the mean number in the system is defined as 𝜌𝑖 /(1-𝜌𝑖). This
is a conservative measure as it can be seen that 𝜆𝑖 is not really an
average value, but a maximum value. For our variable FIFO 𝜌𝑖 =
(9 x y)/ (8 x zeff). We can see that this expression is the same for
all variables as the service rate is proportional to the arrival rate.
All variable FIFO can be set with max depth of (9 x y)/((8 x zeff)
- (9 x y)) print records. Let’s call this equation (1). Note that this
is dependent only on the total number of print records and the
effective latency of HLS function in context.

Revisiting Figure 5 (c), the variables a and c are stored on FIFO_0
and FIFO_1 (see Figure 6). 𝑐𝑎 is 3 and 𝑐𝑐 10 with the assumed
operating frequency of 200 MHz. We compute the arrival rates,
𝜆𝑎 (=46.15 records/𝜇sec) and 𝜆𝑐 (=153.85 records/𝜇sec). The total
arrival rate is 200 records/𝜇sec is less than service rate 𝜇i is 222.2
records/𝜇sec. Using equation (1) with z = 13 clocks, the optimal
queue size is 9-deep for both FIFOs.

3.7 HLS_PRINT Automation Algorithm
As can be seen from Figure 3, printing variables in HLS code in
an existing FPGA project is very tedious when done manually. To
address this, we have built an automation script that takes the fol-
lowing inputs (1) HLS_PRINT enabled Project folder Path (FPATH),
(2) Min frequency of operation (MINFREQ), (3) Expected (average)
call Rate (EXPCR), and (4) Expected # print variables in HLS func-
tion (EXPPRNT). We assume that the original project (without the
HLS_PRINT directives) has been successfully synthesized.

The flow chart of the automation script is shown in Figure 8. The
transformations step replace the HLS_PRINT directives with rele-
vant code as shown in Figure 5 (c). The application print bandwidth
(APPBW) is calculated as EXPCR × EXPPRNT. In case APPBW
exceeds the system PCIe transfer bandwidth, user is alerted of a
possible performance slowdown due to print support (pass deci-
sion box after “compute Print BW” branching to ‘no’ in Figure 8).
Low-level integration includes integration of HLS IP with FIFOs,
PMU and XDMA_IP (as in Figure 7) and setting pin constraints. The
algorithm assumes that all the variables being printed are in single
HLS module, in the project, however it can be extended to include
variables being printed from multiple modules HLS or otherwise
with additional module relevant inputs from the developer.

4 TESTS, RESULTS AND ANALYSIS
We evaluate the HLS_PRINT framework on MachSuite Benchmarks
[14] provided for accelerator design in HLS design environment.
We used the Vivado HLS 2019.2 for HLS and Vivado Design Suite
2019.2 for HDL design flow on Xilinx Alveo U280 FPGA board. The
HLS design flow offers C-simulation and co-simulation for design
analysis. Co-simulation provides hardware signal plot in the form
is waveforms, which is a typical way of analyzing hardware design

Session 4: Memory and Resource Management ICPE ’21, April 19–23, 2021, Virtual Event, France

149

Figure 8: HLS_PRINT automation Algorithm flow chart.

Figure 9: System-level test setup for Index Compute operation on FPGA.

Table 1: HLS_PRINT Resource Overhead

LUT FF BRAM
XDMA 65259 61532 124
FIFO_0/1
(104-bitx16-deep) 159 412 0

FIFO_2
(152-bitx16-deep) 191 532 0

Index compute∗ 17197 24651 5
Logic Analyzer@ 3928 7762 41
∗ marked is Application

execution. We evaluate the effect of HLS_PRINT on benchmark ker-
nel functionality and latency. We performed, the hardware testing
for industrial application and GEMM from MachSuite to further
corroborate our HLS results when the application is running in
real-time. For the purpose of performance testing, we added these
clock cycle counters as counters in the low-level HDL of application
under test. The counters are used to calculate the throughput and
latency of the functions on the FPGA. ILAs [16] are used to observe
the counters.

4.1 Index Compute Application
The stock exchange index compute is an industrial application that
operates in client-server based architecture as shown in Figure 9.
The expected response time of these applications is in 𝜇sec range.
Due to the increasing volume of requests and fast response require-
ments, a paradigm shift from software to hardware based solution
is observed. The IC algorithm details are proprietary nature and
hence can not be discussed in the paper. Instead we discuss the
index compute (IC) flow that consists typically of four stages. The
trade message is received and processed by extracting trade parame-
ters. The index compute algorithm is executed on the FPGA and the
updated index is sent back. We ported the index compute algorithm
to the FPGA using HLS to function as a server application. The trade
messages are synthetically generated by the client system and are
received by UDP offload engine [15] in the FPGA. The IC block con-
tains configurable weights and an index seed value. The incoming
trade messages contain various information such as token number,
trade volume, trade price, type of trade etc. which identifies the
traded stock. For the purpose of book-keeping, it may be necessary
to log the input packets, the computed index and the number of

trades processed. The logged data can be analyzed at the end of the
trade-day or can be used to analyze the daily trade-traffic on hourly
basis. In this test, we print incoming trade message (structure, 48
bytes), the number of processed trades (int) and index value (float)
in IC using HLS_PRINT, verify the functionality, check for any
change in overall performance and analyze the additional resource
usage on FPGA as a result compared to the implementation without
HLS_PRINT. The IC IP is synthesized at 156.25 MHz in HLS and
integrated with low-level IPs. The performance (latency) counter
accounts for cycles between receiving trade message and sending
computed index back to UDP offload engine. The latency of original
and HLS_PRINT supported index compute remains unchanged at
518.4 ns.

4.1.1 HLS_PRINT Resource Overhead on Index Compute. The HLS
_PRINT framework uses XDMA_IP and AXI stream data FIFOs
for low-level integration of HLS exported IP. The XDMA_IP is
used for initial configuration of the index compute module and is
the major resource contributor. We present the resource overhead
due to these IPs (indicated in boldface) in Table 1. For comparison,
we configured an ILA of 20 probes with 1024 depth and average
width 72. The LUT, FF and BRAM utilization is considerable for
ILA based logging. Though in comparison, HLS_PRINT consumes
most resources, it provides a much longer signal visibility and with
a higher transfer width of 512 bits.

4.2 MachSuite Benchmarks [14]
The MachSuite benchmarks [14] are synthesizable standard kernels
crafted to emulate varied practical applications based on custom
architectures and accelerator designs. MachSuite is a set of 19 bench-
marks spanning 12 different kernels. Because of their diversity and

Session 4: Memory and Resource Management ICPE ’21, April 19–23, 2021, Virtual Event, France

150

application coverage, we use the MachSuite benchmark kernels to
evaluate the HLS_PRINT framework.

4.2.1 HLS_PRINT results on MachSuite. The MachSuite kernels
are imported in Vivado HLS and synthesized for MOFREQ MHz
frequency. For simplifying the hardware testing, input data array
is hard coded into application code by minor changes in the code.
We choose various datatypes for print variables ranging from small
bit-width e.g. char (size-1 byte) to ap_uint<192> (size-192 bits). The
highest number of print variables (262k) and print volume of 4.5MB
per function call was configured in GEMM blocked kernel. The low-
est (2685 cycles) and highest (67M cycles) latencies were seen for
encryption and back-propagation benchmarks, respectively. Since
there is no pipelining in the benchmarks, the latency extremes also
indicates the throughput extreme cases. We test HLS_PRINT on all
benchmarks by HLS synthesis and co-simulation. From the tests,
we observe that the kernel functionality remains intact after adding
HLS_PRINT statements as the HLS compiler resolves dependencies
for print stream variable in the same way as it would do for any
other variable. We observe that HLS_PRINT does not cause any
reduction in MOFREQ with which the function was originally syn-
thesized. The latency (in terms of clock cycle, LTCC@MOFREQ) of
synthesizable print versions remained unaltered when MOFREQ
timing constraint was enforced. Additionally, we observe that the re-
quired print data bandwidth does not exceed the system supported
PCIe bandwidth for any kernel.

Among all MachSuite benchmarks, GEMM ncubedwas imple-
mented on hardware for 1k function calls. We observe that there
was no performance overhead and hardware results match with
co-simulation. HLS_PRINT statements do not affect the latency of
the GEMM kernel in real time measurements and the DMA transfer
of print data is also successful.

The FIFO queues required for logging in MachSuite benchmarks
are provisioned based on the optimal sizing guidelines discussed
in section 3.6. The high latency and serviceable throughput (< 16
GB/sec) ensures use of minimum sized (16-deep) FIFO queues for
MachSuite benchmark print variables. At this depth, the FIFO’s
utilize only LUTs and FFs. The maximum LUT and FF overheads
are observed for MD_Grid kernel as 812 and 271, respectively. This
amounts to negligible utilization of the available FPGA resources.
Based on the conducted tests, it is observed that the proposed
HLS_PRINT framework can support zero latency overhead prints
for a wide variety of application kernels while retaining the ker-
nel functionality. The stencil 3D kernel had the highest MOFREQ
(1524 MHz and highest print bandwidth requirement of 4.5Gbits/s.
Among all cases, we observe that tested HLS_PRINT configuration
does not affect the latency or throughput of the original applica-
tion. The results reinforces the confidence in use and configuration
HLS_PRINT to support lossless logging with zero performance and
minimal resource overhead.

5 RELATEDWORK
We discuss related work based on two categories - 1. methods to
transfer data between FPGA and host 2. methods enabling print in
HLS designs. The comparison of HLS_PRINT with the related work
is shown in Table 2.

Table 2: Comparisonwith State-of-the-Methods forMonitor-
ing FPGA Application variables.

Tran DE LL Int OL Mont R.Logs

Logic Analyzers [16] × HDL M ×
Xillybus[19] × HDL, HLS M ×
RIFFA[8] × HDL, HLS M ×
Calagar et. al[2] SC HLS × × ×
Goeders et. al[6] SC HLS × × ×
Jamal et. al[9] SC HLS × × ×
Monson et. al[11] S2S HLS × × ×
HLS_PRINT S2S HDL, HLS Auto

Tran - Transformation used; DE - Design Environment; LL Int - Low-level Integration
support; OL Mont - Online Monitoring; R.Logs - Readable Logs; SC - Source-code; S2S
- Source-to-source; M - Manual; Auto - Automated;

Various PCIe based commercial products (by vendors Xillybus
[19], PLDA) are available for seamless data transfer between FPGA
and server. The Xillybus platform [19] interacts with the design’s
FIFO interface and facilitates data transfer. Authors in [8] presents
an open source integration framework (RIFFA) for high perfor-
mance FPGA accelerators. However, these solutions do not extend
logging in the HLS environment. Their use in data transfer re-
quires familiarity with complex low-level implementation details
and time-consuming manual effort. HLS_PRINT provide automatic
integration of print signals with low-level IPs. This makes the data
transfer scheme fast and reduces human errors. The received data
is annotated and presented in a human-readable format for a hassle-
free software-like print experience. Additionally, none of these
papers discuss impact on performance effect of these data transfer
frameworks on high-throughput applications.

We discuss recent literature on enabling debug in HLS designs.
Though debugging and logging are not equivalent, but design sig-
nals can be monitored (possibly for limited time-span) using debug
tracing techniques. Recent works on extending debug feature in
HLS compilers use source-level transformations [2, 6, 20] to gain
visibility into design signals and monitors the mismatches between
hardware and software executions. Authors in [6, 9, 10] use trace-
buffer optimizations to capture signals for long time. These works
use the intermediate representation (IR) of design to extract in-
formation required to introduce the debug circuitry in HDL. This
limits their use to open-source HLS compilers only. None of the
mentioned works, except for [9], extend debug support in pro-
duction environments. Authors in [11], adopts source-to-source
transformation to monitor debug signals. Their framework pro-
vides automation to bring signals embedded deep into HLS designs
to the top module and mark them for debug. The user has to be
familiar with abstract syntax tree representation of a program in
order to use their framework. Additionally, work in [11] does not
orchestrate the HLS-HDL integration, unlike HLS_PRINT which
fully automates the task after the user adds HLS_PRINT directives
in the code. The lack of a simple familiar easy to use interface like
printf and full automation that will enable logging on FPGA with-
out requiring developers and data center operations staff to have
HDL skills motivated the development of HLS_PRINT.

Another interesting logging framework is SoCLog[13]. It gener-
ates activity logs that aids designers to identify performance bottle-
necks andmake efforts for load balancing, workload partitioning etc.

Session 4: Memory and Resource Management ICPE ’21, April 19–23, 2021, Virtual Event, France

151

for HLS/HDL developed accelerators. The SoCLog scope is limited
to performance logging whereas HLS_PRINT generates functional
logs formatted by the developer and data center operations staff to
record values of HLS variables implemented in the FPGA and can
be easily used in data center production environments.

While we have discussed work related to logging in FPGA hard-
ware implementations, there are well known logging frameworks
in software. elog [12] supports c/c++ applications while log4j [3] is
a popular logging framework for Java. The performance of log4j
has been discussed in [4]. The 99%ile latency is reported to be 250
𝜇s while the latency is negligible for most measurements. This can
be expected in software logging implementations where there are
system call and data copy overheads which always add to the appli-
cation latency. On the FPGA with HLS_PRINT we have seen that it
is possible to have zero latency logging overhead.

6 LIMITATIONS AND FUTUREWORK
We address the limitations of our work in this section with pri-
mary focus on the performance limiting compromises. We intend
to address these limitations in future work

• Frequency Compromise: Case when original application (OA)
is unable to sustain the synthesis (or implementation) fre-
quency (SF) after print functionality (APIPF) in added. This
could happen due to high resource utilization and high vol-
ume of print variables.

• Latency Compromise: The latency compromise indicates, the
APIPF takes more clock cycles (CC) than that of the OA. HLS
compiler will schedule 2 BRAM assignments in a clock cycle.
Due to steam data type limitation, only one array assignment
per clock cycle can be made. Additionally, HLS compiler will
not schedule variable update and write to stream operations
in one clock if they are far apart in the source code.

• Throughput Limitations: This limitation happens when the
APIPF cannot be invoked at the same rate at the OA limited
by the available system PCIe bandwidth.. Large number print
variables and high print volume per function invocation can
contribute to this.

• An unused DMA channel is required to implement the print
functionality.

• Printing of stream variables (a data type available in HLS
which represents a FIFO queue) is not supported at this time.
The primary reason being that reading stream variable could
cause it to be removed from the stream, thereby affecting
application functionality.

• Inefficient use of PCIe bandwidth for pushing print data as
discussed in subsection 3.6. It is possible to combine several
print records into one, which is left for future work.

• Printing of arrays and elements larger than 55 bytes not yet
supported.

7 CONCLUSION
In this paper, we discuss a Logging framework, HLS_PRINT, de-
veloped to support real-time logging in HLS applications ensur-
ing minimum impact on application latency and throughput. The
HLS_PRINT framework logging scheme is very similar to logging

in software-applications. HLS_PRINT uses source code transforma-
tions and can operate with various HLS compiler without using
compiler internals knowledge. The framework provides automa-
tion at various stages to ensure easy use and integration which
can be easily used by a software engineer and operations staff at
data centers without having hardware engineering skills. Moreover,
the clock cycles information printed in the logs can be useful for
performance analysis. The MachSuite benchmarks are used to eval-
uate the developed print framework where we study the effect on
latency as well as the print traffic generated by the diverse kernels,
under various printing configurations. We further report results on
a transactional application and we can see from the hardware exper-
iment results that it is possible to achieve zero latency impact prints
making it a suitable candidate for logging in FPGA applications
implemented using HLS.

REFERENCES
[1] ARM. 2010. AMBA 4 AXI4-Stream Protocol Version: 1.0. Retrieved June 15, 2020

from https://static.docs.arm.com/ihi0051/a/IHI0051A_amba4_axi4_stream_v1_
0_protocol_spec.pdf

[2] N. Calagar, S. D. Brown, and J. H. Anderson. 2014. Source-level debugging
for FPGA high-level synthesis. In Int. Conf. on Field Programmable Logic and
Applications. 1–8.

[3] The Apache Software Foundation. 2020. Log4j. Retrieved December 15, 2020
from https://logging.apache.org/log4j/2.x/log4j-users-guide.pdf

[4] The Apache Software Foundation. 2020. Log4j. Retrieved December 15, 2020
from https://logging.apache.org/log4j/2.x/performance.html

[5] Natarajan Gautam. 2012. Analysis of Queues: Methods and Applications (1st
ed.). CRC Press, Inc., USA.

[6] J. Goeders and S. J. E. Wilton. 2017. Signal-Tracing Techniques for In-
System FPGA Debugging of High-Level Synthesis Circuits. IEEE Tran. on
Computer-Aided Design of Integrated Circuits and Systems 36, 1 (2017), 83–96.

[7] INTEL. 2019. INTEL® High Level Synthesis Compile. https://www.intel.in/
content/www/in/en/software/programmable/quartus-prime/hls-compiler.html

[8] Matthew Jacobsen, Dustin Richmond, Matthew Hogains, and Ryan Kastner. 2015.
RIFFA 2.1: A Reusable Integration Framework for FPGA Accelerators. ACM
Trans. Reconfigurable Technol. Syst. 8, 4, Article 22 (2015), 23 pages.

[9] Al-Shahna Jamal, Eli Cahill, Jeffrey Goeders, and Steven J. E. Wilton. 2020. Fast
Turnaround HLS Debugging Using Dependency Analysis and Debug Overlays.
ACM Trans. Reconfigurable Technol. Syst. 13, 1, Article 4 (2020), 26 pages.

[10] J. S. Monson and B. Hutchings. 2014. New approaches for in-system debug of
behaviorally-synthesized FPGA circuits. In Int. Conf. on Field Programmable
Logic and Applications. 1–6.

[11] J. S. Monson and B. Hutchings. 2015. Using source-to-source compilation to
instrument circuits for debug with High Level Synthesis. In 2015 Int. Conf. on
Field Programmable Technology. 48–55.

[12] Emanuele Oriani. 2020. elog. Retrieved December 15, 2020 from https://github.
com/Emanem/elog

[13] Ioannis Parnassos, Panagiotis Skrimponis, Georgios Zindros, and Nikolaos Bel-
las. 2016. SoCLog: A real-time, automatically generated logging and profiling
mechanism for FPGA-based Systems On Chip. 1–4.

[14] Brandon Reagen, Robert Adolf, Yakun Sophia Shao, Gu-Yeon Wei, and David
Brooks. 2014. MachSuite: Benchmarks for Accelerator Design and Customized
Architectures. In Intl. Sym.on Workload Characterization. 110–119.

[15] M. Ruiz, D. Sidler, G. Sutter, G. Alonso, and S. López-Buedo. 2019. Limago:
An FPGA-Based Open-Source 100 GbE TCP/IP Stack. In Intl. Conf. on Field
Programmable Logic and Applications. 286–292.

[16] Xilinx. 2014. Integrated Logic Analyzer v6.1 LogiCORE IP Product Guide. Re-
trieved July 10, 2020 from https://www.xilinx.com/support/documentation/ip_
documentation/ila/v6_1/pg172-ila.pdf

[17] Xilinx. 2016. UltraScale+ Devices Integrated Block for PCI Express v 1.3. Re-
trieved June 15, 2020 from https://www.xilinx.com/support/documentation/ip_
documentation/pcie4_uscale_plus/v1_3/pg213-pcie4-ultrascale-plus.pdf

[18] Xilinx. 2019. Vivado Design Suite - HLx Editions. https://www.xilinx.com/
products/design-tools/vivado.html

[19] Xillybus. 2020. Xillybus FPGA Designer’s Guide. Retrieved June 5, 2020 from
http://www.xillybus.com/downloads/doc/xillybus_fpga_api.pdf

[20] L. Yang, S. Gurumani, D. Chen, and K. Rupnow. 2016. AutoSLIDE: Auto-
matic Source-Level Instrumentation and Debugging for HLS. In Int. Sym. on
Field-Programmable Custom Computing Machines. 127–130.

Session 4: Memory and Resource Management ICPE ’21, April 19–23, 2021, Virtual Event, France

152

https://static.docs.arm.com/ihi0051/a/IHI0051A_amba4_axi4_stream_v1_0_protocol_spec.pdf
https://static.docs.arm.com/ihi0051/a/IHI0051A_amba4_axi4_stream_v1_0_protocol_spec.pdf
https://logging.apache.org/log4j/2.x/log4j-users-guide.pdf
https://logging.apache.org/log4j/2.x/performance.html
https://www.intel.in/content/www/in/en/software/programmable/quartus-prime/hls-compiler.html
https://www.intel.in/content/www/in/en/software/programmable/quartus-prime/hls-compiler.html
https://github.com/Emanem/elog
https://github.com/Emanem/elog
https://www.xilinx.com/support/documentation/ip_documentation/ila/v6_1/pg172-ila.pdf
https://www.xilinx.com/support/documentation/ip_documentation/ila/v6_1/pg172-ila.pdf
https://www.xilinx.com/support/documentation/ip_documentation/pcie4_uscale_plus/v1_3/pg213-pcie4-ultrascale-plus.pdf
https://www.xilinx.com/support/documentation/ip_documentation/pcie4_uscale_plus/v1_3/pg213-pcie4-ultrascale-plus.pdf
https://www.xilinx.com/products/design-tools/vivado.html
https://www.xilinx.com/products/design-tools/vivado.html
http://www.xillybus.com/downloads/doc/xillybus_fpga_api.pdf

	Abstract
	1 Introduction
	2 Background: FPGA Concepts
	2.1 FPGA Resources and Data Center Ecosystem
	2.2 Traditional HLS+HDL Design Flow
	2.3 DMA Transfer: XDMA_IP as PCIe endpoint
	2.4 AXI-Stream Data FIFO IP

	3 The proposed HLS_PRINT Framework
	3.1 User View: Source-to-Source Transformation
	3.2 Types of variables supported for printing
	3.3 Methodology for supporting Print in HLS compilers
	3.4 HLS_PRINT: Hardware Architecture
	3.5 Host-side Software
	3.6 Variable print stream FIFO sizing
	3.7 HLS_PRINT Automation Algorithm

	4 Tests, Results and Analysis
	4.1 Index Compute Application
	4.2 MachSuite Benchmarks machsuite

	5 Related Work
	6 Limitations and Future work
	7 Conclusion
	References

