
Courier: Real-Time Optimal Batch Size Prediction for Latency
SLOs in BigDL

Diego Albo Martínez
D.AlboMartinez@student.tudelft.nl
Student, Master Computer Science
Delft University of Technology

Delft, Netherlands

Sharwin Bobde
S.Bobde-1@student.tudelft.nl

Student, Master Computer Science
Delft University of Technology

Delft, Netherlands

Tomasz Motyka
T.T.Motyka@student.tudelft.nl

Student, Master Computer Science
Delft University of Technology

Delft, Netherlands

Lydia Chen
Y.Chen-10@tudelft.nl
Associate Professor

Delft University of Technology
Delft, Netherlands

ABSTRACT
Distributed machine learning has seen immense rise in popularity
in recent years. Many companies and universities are utilizing
computational clusters to train and run machine learning models.
Unfortunately, operating such a cluster imposes large costs. It is
therefore crucial to attain as high system utilization as possible.
Moreover, those who offer computational clusters as a service,
apart from keeping high utilization, also have to meet the required
Service Level Agreements (SLAs) for the system response time.
This becomes increasingly more complex in multitenant scenarios,
where the time dedicated to each task has to be limited to achieve
fairness. In this work, we analyze how different parameters of the
machine learning job influence the response time as well as system
utilization and propose Courier. Courier is a model that, based on
the type of machine learning job, can select a batch size such that
the response time adheres to the Service Level Objectives (SLOs)
specified, while also rendering the highest possible accuracy. We
gather the data by conducting real-world experiments on a BigDL
cluster. Later on, we study the influence of the factors and build
several predictive models which lead us to the proposed Courier
model.

KEYWORDS
Deep Learning, Distributed Systems, Hyperparameter optimization,
Resource Management, Provisioning, Scheduling
ACM Reference Format:
Diego Albo Martínez, Sharwin Bobde, Tomasz Motyka, and Lydia Chen.
2021. Courier: Real-Time Optimal Batch Size Prediction for Latency SLOs
in BigDL. In Proceedings of the 2021 ACM/SPEC International Conference on
Performance Engineering (ICPE ’21), April 19–23, 2021, Virtual Event, France.
ACM,NewYork, NY, USA, 12 pages. https://doi.org/10.1145/3427921.3450233

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICPE ’21, April 19–23, 2021, Virtual Event, France
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8194-9/21/04. . . $15.00
https://doi.org/10.1145/3427921.3450233

1 INTRODUCTION
Recent years have seen an unprecedented growth of both machine
learning (ML) research and applications incorporating machine
learning techniques. A natural consequence of such popularization
of ML is the rapid growth of data collection. Training datasets for
the most advanced ML applications can reach the size of terabytes.
The longer time of training ML models naturally steered engineers
towards using distributed systems for an increase of parallelization
and the total amount of I/O bandwidth.

One of the biggest issues with distributed machine learning is
how to effectively compute the gradient among the participating
nodes. Currently, synchronous strategies with data parallelism,
such as the Synchronous Stochastic Gradient Descent (S-SGD), are
widely utilized in distributed training of Deep Neural Networks
(DNNs). Its popularity is due mainly to easy implementation yet
promising performance. However, such an approach imposes few
additional constraints, in comparison with a single server ML, that
the engineers have to take into consideration. In systems where the
workers have different computational capabilities, the synchroniza-
tion forces them to wait for each other to move the computation
forward, which leads to higher training (response) time. Another
thing to consider is how often the synchronization of gradients
needs to happen. Gradient computation happens after each batch
and so the frequency of synchronization is highly dependent on
the batch size.

Another aspect to take into account is that usually distributed
ML systems are shared between different jobs. Given that the opera-
tional cost of such a system is quite high, one would like to achieve
the highest system utilization, resulting in lower operational costs.
This is most vital when talking about GPU clusters, being these
costly devices and often difficult to utilize to their full extent. How-
ever, there exist also systems that provide distributed deep learning
capabilities with different architectures, such as BigDL [4], in which
it is not so clear how resource usage, parallelism, and other factors
affect the response time and overall performance of the system.

In this work, we would like to study how the parameters like
batch size, number of concurrent jobs in the system, and the amount
of resources given to the job influence the ML job’s response time
and accuracy in BigDL. Furthermore, we also analyze, particularly

Session 4: Memory and Resource Management  ICPE ’21, April 19–23, 2021, Virtual Event, France

133

https://doi.org/10.1145/3427921.3450233
https://doi.org/10.1145/3427921.3450233


for BigDL, the impact that the load of the system has on I/O waiting
time, and its effect on the overall response time.

Our main contributions can be summarized as:
(1) Explore and assess the influence of different models and

hyperparameters on response time, accuracy and CPU load
in a BigDL cluster.

(2) Evaluate several models using different abstractions to pre-
dict the performance of BigDL clusters.

(3) Provide a model combining both response time and accu-
racy prediction for BigDL jobs, able to compute the optimal
batch size at runtime depending of the state of the system
and a latency objective with high accuracy, and assess its
performance gains.

The remainder of the paper is structured as follows, in Section 2
we summarize previous studies about DNN training in distributed
systems and the performance limitations of Spark, on which BigDL
relies. In Section 3 we report the configuration used in the experi-
ments and provide and visualize the results obtained, which will
provide us with the insights needed in our predictive models de-
scribed in Section 4. Finally, in Section 5 we describe the Courier
and evaluate its performance on a simulated scenario.

To guarantee reproducibility and help understanding the results,
we provide the code and notebooks used in our GitHub repository:
https://github.com/sharwinbobde/Courier-BigDL-Study.

2 BACKGROUND
The rise of popularity of deep learning in recent years has lead to
the huge diversification of directions in which one can optimize the
performance of deep learning models. Apart from hyper-parameter
optimization, researchers were addressing the problem of system
parameters optimization to improve the training efficiency. With
the introduction of distributed deep learning, the problems of pa-
rameter synchronization, efficient communication, and utilization
of computing clusters have emerged. We distinguish between the
previous works based on the type of optimization they perform.

System parameter optimization. ByteScheduler [20] uses a
Bayesian optimization approach. It specifically focuses on auto-tune
tensor credit, and partition size for different training models under
various networking conditions. ByteScheduler uses auto-tune algo-
rithms to find the optimal system-related configurations.

Hyperparameter optimization. Astra [25] is a framework
that exploits the unique repetitiveness and predictability of a deep
learning job, to perform an online exploration of the optimization
state space, in a work-conserving manner. STRADS [10] exposes pa-
rameter schedules and parameter updates as separate functions to
be implemented by the user. A parameter schedule identifies a sub-
set of parameters which a given worker should sequentially work
on. STRADSAP [11] extends STRADS to a distributed ML setting.
AutoKeras [7] enables Bayesian optimization to guide the network
morphism for efficient neural network architecture search. The
framework develops a neural network kernel and a tree-structured
acquisition function optimization algorithm to efficiently explore
the search space. The hyperparameter tuning is also offered as
a service in some industry-based packages. HyperDrive [21] is a

package offered in Azure Machine Learning services, which sup-
ports hyperparameter tuning. Amazon SageMaker [16] supports
automatic model tuning component that finds the best version of
a model by running many training trials on the dataset using the
algorithm and a grid of hyperparameters specified by the user.

Combined optimization. Many techniques, however, do not
consider the impact that certain hyperparameters and system pa-
rameters have on each other. PipeTune [22] strives to optimize
both the accuracy and training time of DNNs, while simultaneously
tuning the hyper and system parameters. Authors exploit the repet-
itive pattern of iterative stochastic gradient descent to achieve fast
system parameter tuning.

With the datasets being bigger and bigger the need for a distributed
approach to deep learning became evident. This approach generates
new challenges. In [24] the authors perform comprehensive study
of different distributed deep learning frameworks. They show that
loading large amounts of data with large size of the batch may be-
come a bottleneck in the case of more shallow networks. Different
system architectures for distributed machine learning may give dif-
ferent characteristics. [2] shows that when scaling Parameter Server
[14], the throughput fails to scale linearly and that Ring AllReduce
[18] achieves better performance due to the efficient use of net-
work bandwidth and overlapping computation and communication.

Communication optimization. The most common architec-
ture for parameter exchange in distributed machine learning is the
Parameter Server [14] architecture, which suffers from quite high
communication burden as in each step of the algorithm each worker
has to send the local gradient update. In [28] the authors proposed
a greedy algorithm for dynamically choosing the size of the batch
of parameter exchange to minimize the execution time. TicTac [5]
derives near-optimal schedules of parameter transfers through crit-
ical path analysis on the underlying computational graph. This
allows maximal overlap of computation and communication and
prevents stragglers arising from random order of parameter trans-
fers at workers. Parallax [12] combines Hyperparameter Server [14]
and AllReduce [18] architectures to optimize the amount of data
transfers according to the data sparsity. PipeDream [19] combines
interbatch pipelining and intrabatch parallelism to improve parallel
training throughput, resulting in better overlap of computation
with communication. In [29] the authors addressed the problem
of load imbalance in Deep Learning clusters resulting in workers
waiting for each other to perform weight update in Synchronous
Stochastic Gradient Descent, which is the standard algorithm to
train distributedly [1, 26]. To alleviate the problem, they proposed
a Dynamic Batch Size strategy for DNN training that guarantees
the load balance of the cluster during the whole time of training.
Such an approach could be useful to take in the context of BigDL.

Resource allocation. Another aspect arising from distributing
and parallelizing the computational workloads is how to assign
the number of computational resources (CPUs/threads) per worker
and how to tune the application parameters to achieve the highest
performance. Although the computational frameworks like Apache
Spark or BigDL take care of parallelization and scheduling of tasks

Session 4: Memory and Resource Management  ICPE ’21, April 19–23, 2021, Virtual Event, France

134

https://github.com/sharwinbobde/Courier-BigDL-Study


they leave the assignment of resources to the end user. This is not
so trivial question since the assumption "the higher the number,
the better" does not necessarily hold.

In [9] the authors studied how in Apache Spark, depending on
the type of application, the number of assigned threads influences
the performance. They showed that parts of the application that are
I/O bound actually benefit from lower amount of thread and assign-
ing too many threads can hurt the system utilization and hence the
performance quite badly. In the context of BigDL, which is built on
top of Apache Spark, their findings are consequently applicable. It
is not trivial to obtain low response time of distributed training of
Deep Neural Networks by simply assigning more computational re-
sources. Similarly to this work, we will model the system utilization
by measuring the percentage of CPU usage and total I/O waiting
time.

Model-based approach. Having in mind the complexity of dis-
tributed deep learning systems, many researchers try the model-
based approach in the attempt of describing such systems.

In [15] the authors present a solution to predict training through-
put from profiling traces collected from a single-node configuration.
In [8] they propose an approach in which they train a deep learning
network to predict the execution time for individual parts of a deep
learning network that when combined would predict the whole
execution time. In [17] they develop a performance model for esti-
mating the throughput of a distributed training job as a function
of the number of workers allocated to it. Such a model is used to
propose and evaluate heuristics for efficient resource utilization.

Cluster resource optimization. Lastly, many recently pub-
lished papers in the field of distributed machine learning pursue
maximizing the utilization of GPUs during DNN training [13, 23].
In systems of this kind, maximizing the usage of the GPUs can
both render a better system performance in terms of throughput,
while also meaning higher efficiency and cost-saving. Given the
inherent difference between GPU clusters and our BigDL cluster,
which relies on CPU computation and the network for shuffling
[4], we want to study how desirable the system utilization is in the
context of BigDL.

On another note, [23] also introduces the concept of a cluster
scheduler that is able to predict and condition the execution of DNN
models based on latency SLAs, which we also try to implement
here in the context of BigDL.

Performance Modeling in Apache Spark. Since BigDL was
implemented on top of Apache Spark, there have been some studies
trying to model the performance of different workloads on a Spark
Cluster. In [3] and [27] the authors propose and compare multiple
machine learning models to predict the response time of jobs. They
do this by considering a handful of system-related features, and do
not take into account multi-tenancy, a variable number of tasks,
or the usage of task-specific parameters in the optimization process.

In this paper, we characterize the performance of Deep Learning
jobs in BigDL and analyze different models and their ability to
predict the performance of the jobs. Unlike previous literature,
which focused on modeling the performance of Deep Learning

workflows in GPU clusters on one side, or plain Spark jobs on the
other, we tackle the modeling problem of running Deep Learning
workflows in a multitenant Spark cluster.

3 EXPERIMENTS
Motivated by the previous studies described in Section 2, we decided
to study 4 different factors in our experiments:

(1) CPU number. The total amount of CPUs assigned to a sin-
gle job. In Spark terminology, this is the same as the number
of Spark executors assigned to a Spark Job.

(2) Batch size. Batch size used for training the network.
(3) Number of jobs. Number of concurrent jobs running in the

system. These will all run with the same number of CPUs.
(4) Network topology. Topology of the deep neural network

that is being trained.

Factors Levels

Num. of CPU 1 2 4 8
Batch-size 64 128 256 512
Num. of jobs 1 3 5
Topology shallow deep

Table 1: Levels of each factor

As for the cluster used to conduct the experiments, we used four
nodes hosted on Google Cloud Platform (GCP), one master and
three workers. For the master node, we chose an e2-standard-8
instance, with 8 vCPUs and 32 GB of memory. As for the three
workers, we used e2-standard-16 instances, with 16 vCPUs and 64
GB of memory each. This makes our cluster amount to a total of 48
vCPUs (which in our system will be able to host 48 Spark executors)
and 192 GB of memory. We also allocated 3 GB of memory to each
Spark executor to be able to fit in all the larger experiments.

3.1 Methodology
To explore the significance and the scale of the interaction between
factors we will employ the ANOVA analysis [6]. ANOVA stands
for Analysis of Variance, and it is a frequently used tool when de-
signing experiments and analyzing their results. ANOVA allows
us to compare how multiple factors (i.e. CPU, batch size...) with
multiple levels or values each, as well as their interactions, affect
the outcome variables of the experiments, namely response time
and accuracy in our case.

From the different kinds of experiment designs, we chose to
perform two, the 2𝑘 factorial and the Full-Factorial design [6]. The
2𝑘 -factorial makes reference to the binary character of the design.
In this design, two values are chosen for each of the factors, with
these normally being the extremes of the search interval for that
factor. This limits the number of experiments to 2𝑘 , with k being
the number of factors. This allows us to get a grasp of the overall
behavior of the system with a limited number of experiments.

For a more in-depth analysis, we conduct the Full-Factorial de-
sign. In this design, all levels of all factors are combined, thus
resulting in a higher number of experiments, but providing a more
comprehensive view of the system performance.

Session 4: Memory and Resource Management  ICPE ’21, April 19–23, 2021, Virtual Event, France

135



64 512
Batch Size

0.85

0.90

0.95

1.00

A
cc

ur
ac

y

network
lenet5
simplenet

(a) Batch size vs Accuracy

1 5
Number of Jobs

0

20

40

60

C
PU

 U
til

iz
at

io
n 

(%
)

(b) Number of Jobs vs CPU Utilization

1 5 8 40
Number of Processes

0.85

0.90

0.95

1.00

A
cc

ur
ac

y

(c) Number of processes vs Accuracy

Figure 1: Plots summarizing the results of the 2𝐾 Experimental Design with the response time as output value

We conducted both 2𝑘 -factorial and full factorial experiments,
which were followed by ANOVA analysis. After some initial ex-
ploration of the results, we concluded that the accuracy was only
affected by the batch size in a significant way, as is shown in Fig-
ure 1. Hence, we report the ANOVA results only for the response
time. Each experiment was replicated 3 times. For the full results
of the study, covering all the factors, the reader can consult Appen-
dix A. Here, for the sake of simplicity, we present only the most
important ones.

3.2 2𝑘 Factorial
First, to get a general perspective of how influential are the consid-
ered factors, we performed a 2𝑘 -factorial analysis. Only the extreme
levels of each factor were taken into account. Having the replica-
tion equal to 3, this resulted in 48 single experiments (𝑁2𝑘 ). After
collecting the results, we ran the ANOVA analysis, whose results
are in Table 2.

𝑁2𝑘 = |𝑐 | · |𝑏 | · | 𝑗 | · |𝑡 | · 𝑟
= 2 · 2 · 2 · 2 · 3
= 48 𝑟𝑢𝑛𝑠

F 𝑃 >F t 𝑃 > |𝑡 | [0.025 0.975]
cpu 7.001 1.159e-02 0.449 0.656 -10.198 16.031
batch 9.063 4.50e-03 -3.204 0.003 -0.530 -0.120
njobs -0.004 1 0.344 0.733 -17.208 24.265
network 429.306 5.35e-23 -6.165 0 -302.834 -153.301

Table 2: ANOVA analysis 2𝑘 factorial.

By looking at only first order main factors, we can see that
only the batch-size and the network present a confidence interval
that does not include zero and thus presents significant variation
between the levels. That said, we provide further insights with more
levels per factor in the following analyses.

3.3 Full Factorial
Next, we conducted a full factorial experiment. Having 4 factors
with 4, 4, 3 and 2 levels respectively and the replication factor equal
to 3, it required 288 single experiments (𝑁𝑓 𝑢𝑙𝑙 ). After obtaining the
results, we did the ANOVA analysis, whose results are in Table 3.

𝑁𝑓 𝑢𝑙𝑙 = |𝑐 | · |𝑏 | · | 𝑗 | · |𝑡 | · 𝑟
= 4 · 4 · 3 · 2 · 3
= 288 𝑟𝑢𝑛𝑠

F 𝑃 >F t 𝑃 > |𝑡 | [0.025 0.975]
cpu 20.449 9.92e-06 -1.248 0.213 -30.170 6.768
batch 467.919 8.95e-57 -4.773 0 -0.987 -0.410
njobs 42.765 4.12e-10 -0.253 0.801 -28.124 21.728
network 5.108 2.47e-02 0.470 0.639 -64.841 105.437
cpu:njobs 15.7896 9.55e-05 4.634 0 7.309 18.124

Table 3: ANOVA analysis full factorial.

It can be seen that only the batch-size and the combination
cpu:njobs have values of 𝑃 > |𝑡 | smaller than 0.05. This means
that at the 95% confidence level only those factors have significant
differentiating power. We also extract multiple insights from the
full experiment data, these we summarize in Figure 2. From now
on in the paper we will refer to the combination of the cpu and
njobs factors as the processes factor, since it will be a constantly
used feature in our models.

In Figure 2a we can observe the same as we saw in the 2𝑘 factorial
design, the batch size and the network are the two main predictors
for the accuracy. In terms of system utilization, we see in Figures 2b
and 2c that the CPU usage is mainly influenced by the interaction
of the number of CPUs and the number of jobs. This also results in
an increase in the time spent waiting for IO, as seen in Figure 2d,
which can be explained by the more extensive synchronization with
many Spark executors in the job, and for the contention for disk
resources with more jobs in the system. We will use these insights
to model the jobs in an analytical way using operational laws in
Section 4.2.

Finally, we also relate the number of processes, and thus the
CPU utilization, to the response time in Figure 2e. Showing that in
the case of BigDL, workflows with smaller batch sizes scale much
worse than bigger batches. This can be due to the highest number of
synchronization steps for small batch sizes, which in the presence
of higher contention for resources like disk or network I/O, can
result in lengthy delays in execution time.

4 PREDICTIVE MODELS
After getting the results from the ANOVA analysis and understand-
ing the relationship and dependencies within the data, we analyze

Session 4: Memory and Resource Management  ICPE ’21, April 19–23, 2021, Virtual Event, France

136



64 128 256 512
Batch Size

0.85

0.90

0.95

1.00

A
cc

ur
ac

y

network
lenet5
simplenet

(a) Batch Size vs Accuracy.

1 3 5
Number of Jobs

0

25

50

C
PU

 U
til

iz
at

io
n 

(%
)

(b) Number of jobs vs CPU mean utilization

20 21 22 23 24 25

Number of Processes

10

20

30

40

CP
U 

Ut
iliz

at
io

n 
(%

) batch
64
128
256
512

(c) Number of processes vs CPU utilization

20 21 22 23 24 25

Number of Processes

0.0

2.5

5.0

7.5

10.0

12.5

IO
 W

ai
t T

im
e 

(%
)

batch
64
128
256
512

(d) Number of processes vs IO wait

20 21 22 23 24 25

Number of Processes

200

400

600

800

1000

Re
sp

on
se

 ti
m

e 
(s

) batch
64
128
256
512

(e) Number of processes vs response time

Figure 2: Plots summarizing the results of the Full Factorial Experimental Design

the system in several ways. For that, we build three different models
that tackle the modeling problem using different approaches. First,
we use the model derived from the ANOVA analysis to assess how
well the interactions between the factors are able to estimate the
response time of the system based on the characteristics of the job.
The model resulting from the ANOVA analysis simply represents a
linear model in which each of the factors and each of their interac-
tions is given a weight, and the output is the linear combination of
the weighted factors.

Next, wemodel the system by dividing it into twomain resources:
CPU and Disk. We then employ operational laws and queuing the-
ory to estimate the response time with the help of this abstraction.
Finally, we compare these previous approaches with a more refined
one, we use a more complex regressor, such as a Random Forest,
and analyze how well we are able to predict the response time and
the accuracy based on the job parameters.

To assess the performance of the different models we will employ
two metrics. The Mean Squared Error (MSE) will help us determine
the approximate error that the model incurs in on average. However,
given the considerable difference in feature scaling—accuracy is
between 0 and 1 and time can reach values over a thousand—we
will use also the 𝑅2 score to give a general idea of the quality of
the fit. This will disregard the difference in scaling and provide a
clearer picture of how well each output label is predicted.

To determine the performance of the model, we divide the data
gathered from the experiments into two distinct datasets: the train-
ing set, comprising 80% of the data, and a test set composed of
the remaining 20%. For hyperparameter tuning, when necessary,
we will train a grid search 5-fold cross-validation on the training

set data to choose the best hyperparameters to predict each of the
output labels.

4.1 ANOVA linear model
The first model that we use to try to estimate the results of the ex-
periments (both accuracy and response time) is the model resulting
from the ANOVA analysis explained in previous sections. We use
the model of the Full Factorial analysis with the four factors—batch
size, CPU, njobs and network—and all their interactions. This leaves
us a model with 15 coefficients plus the intercept, which we fit to
the training dataset. We predict the accuracy and response time for
the data points in the test set and calculate several metrics such as
the MSE and the 𝑅2 score for both output variables of the model.
The experiment results can be seen summarized in Table 4.

Label MSE 𝑅2

Accuracy 1.9252 × 10−5 0.95726
Response Time 9928.175 0.64005

Table 4: Mean Squared Error and 𝑅2 score for each of the
ANOVA model on the testing data

Despite accounting for all factors and their interactions, the fit
of the model is not great at just a 64% 𝑅2 score, and it proves to be
the worst model of all tested in terms of fitting the response time.
The accuracy is better predicted by the model; however, as seen in
previous sections, the accuracy is an easier output to predict given

Session 4: Memory and Resource Management  ICPE ’21, April 19–23, 2021, Virtual Event, France

137



that it is determined mainly by just the batch size and the network,
as opposed to the response time which shows much more intricate
interactions.

0 5 10 15 20 25 30 35 40
Number of processes

0

200

400

600

800

Ti
m

e 
(s

)

True labels
Predicted values

0 5 10 15 20 25 30 35 40
Number of processes

0.88

0.90

0.92

0.94

0.96

A
cc

ur
ac

y

True labels
Predicted values

Figure 3: Comparison of the actual and predicted values
for Response Time (top) and Accuracy (bottom) with the
ANOVA model

4.2 Operational Laws & Queuing Theory
The insights gathered from the ANOVA analysis back in Section 3
lead us to think that the system could be modeled by means of
two main abstractions, CPU and Disk. The training process of a
BigDL job is comprised of clear stages. Once the job has started,
the workers continuously have to fetch data from the disk, train
on the data from the batch, communicate the results and updates,
and repeat the cycle again. We take the two main tasks from this
cycle and model them as a queuing network made up of a CPU and
a disk. For a higher level of abstraction, we model the CPU as an
M/M/1/1/PS1 queue, since a server has multiple CPUs and no more
jobs than free CPUs will be scheduled in a worker. This means that
all jobs present in a server at the same time can be executed in the
CPU concurrently.

On the other hand, we take the disk as the main bottleneck in the
system and model it as an M/M/1 queue. Jobs arrive at this queue
with an arrival rate depending on the number of jobs currently
being executed on the cluster. In the disk, the jobs have to retrieve
the appropriate chunk of data needed for the next batch, which
leads us to model the service rate of the disk as a function of the
batch size and the number of processes. The main structure of the
model can be seen in Figure 4.

We can then model the response time of the full system as

1This is expressed in Kendall’s notation. This refers to a queue with an arrival and
service processes following exponential distributions, a number of servers equal to 1,
with no queue, which follows a Processor Sharing (PS) scheduling policy

 

Task Finished

CPU
Disk / IO

Figure 4: Modeling of the system based on queues

E[𝑇 ] = 𝑁

𝐵
× 𝑁𝑒𝑝𝑜𝑐ℎ

(
E[𝑆𝑐𝑝𝑢 ] + E[𝑇𝐷 ]

)
= 𝑁𝑇

(
E[𝑆𝑐𝑝𝑢 ] + E[𝑇𝐷 ]

)
Where N is the total number of samples in the dataset, B is

the batch size, 𝑁𝑒𝑝𝑜𝑐ℎ is the number of epochs in the training job,
and those are multiplied by the service time of the CPU (since the
CPU has no queue) and the response time of the disk. Intuitively,
we can substitute the first part of the equation by a constant that
only depends on the batch size, since the size of the dataset and
the number of epochs stay constant in the tests. This constant
symbolizes the number of times that the job will have to go through
the cycle of fetching data from the disk and training on it.

4.2.1 Modeling the CPU. We start by modeling the CPU, more
specifically we need to estimate a function for the expected service
time E[𝑆𝑐𝑝𝑢 ] of the CPU to then estimate the arrival rate for the
disk. To do so, we check the resulting logs from running the BigDL
jobs on the cluster and analyze for each batch size the throughput
of the system. The results obtained are shown in Table 5.

Batch Throughput (records/s) E(𝑆)

64 1600 0.04
128 3300 0.0383
256 5700 0.0449
512 10200 0.0502

Table 5: Average throughput seen with different batch sizes

As can be seen from the results, the throughput in terms of
records per second increases with the size of the batch, however
the service time per record tends to stay the same. For the sake of
simplicity, we model the CPU service time as a constant service
time of 0.045 seconds per record. We see that no matter the arrival
rate of records to the CPU, the service time stays constant, leading
us to calculate the arrival rate to the disk as

Session 4: Memory and Resource Management  ICPE ’21, April 19–23, 2021, Virtual Event, France

138



𝜆𝐷 =
1

E[𝑆𝑐𝑝𝑢 ]
= 22.22 𝑟𝑒𝑞/𝑠

However, this is just for one job running concurrently in the
system. Given the nature of the CPU, many jobs can be executing
at the same time, thus making the arrival rate at the disk scale with
the number of tasks in one worker linearly. This number can vary
due to a bigger number of spark executors (cpus) in the system,
or also because of an increased number of jobs in the system. We
approximate the average of the tasks running in one server as the
total number of processes (cpu × njobs) divided by the number of
workers, and limit the minimum amount to 1.

𝜆𝐷 =
𝑁𝑝𝑟𝑜𝑐

E[𝑆𝑐𝑝𝑢 ]
=𝑚𝑎𝑥 (1,

𝑁𝑐𝑝𝑢 × 𝑁 𝑗𝑜𝑏𝑠

𝑁𝑤
) × 𝜇𝑐𝑝𝑢

4.2.2 Modeling the Disk. Now that we have an idea about the
service rate of the CPU and the arrival rate at the disk, we can
isolate the service rate in the main equation to estimate the service
rate of the disk, 𝜇𝐷 .

E[𝑇 ] = 𝑁𝑇
(
E[𝑆𝑐𝑝𝑢 ] + E[𝑇𝐷 ]

)
= 𝑁𝑇

(
E[𝑆𝑐𝑝𝑢 ] +

1
𝜆𝐷 − 𝜇𝐷

)

𝜇𝐷 =
1

E[𝑇 ]/𝑁𝑇 − E[𝑆𝑐𝑝𝑢 ]
+ 𝜆𝐷

To get an estimate of the function behind 𝜇𝐷 we substitute the
values in the equation of E[𝑇 ], 𝑁𝑇 and 𝜆𝐷 for each data point in
the training set, and calculate the 𝜇 for it. We then have to find
a function that given the batch and the number of processes can
estimate the service rate of the disk. We do this with a 2D linear
regression using the batch and number of processes. Now, we are
able to predict for each task the expected service rate of the disk,
and with that, using the formula for the response time, we get an
estimate of the E[𝑇 ] of the system.

Label MSE 𝑅2

Response Time 4538.05 0.8330

Table 6: Mean Squared Error and 𝑅2 score for each of the
regressors on the testing data

We evaluate the fit of the model again by computing the MSE of
the test set and the 𝑅2 score of the model in Table 6. Interestingly,
this model based on queuing theory reports an overall lower MSE
and a better fit than the linear ANOVAmodel studied in the previous
section.

4.3 Random Forest Regression
Finally, we try to model the behavior of the system using a more so-
phisticated regressor. To choose the algorithm for this task, we used
several regression algorithms from the sklearn library, namely,
the Linear, Lasso and Ridge Regression from the linear models, and

0 5 10 15 20 25 30 35 40
Number of processes

−200

0

200

400

600

Ti
m

e 
(s

)

True labels
Predicted values

Figure 5: Comparison of the actual and predicted values for
Response Time.

the Decision Tree and Random Forest regressor from among the
non-linear models. Random Forest ended up being the one that re-
ported the minimumMSE on both the accuracy and time prediction
task by a wide margin.

4.3.1 Feature Selection & Training. Following the factor signifi-
cance analysis conducted in Section 3, we chose to train the forest
with 5 features: batch size, CPU number, number of jobs in the
system, network type, and total processes, which is a multiplication
of CPUs and njobs, which has proved to be a good predictor of the
response time.

For the training and evaluation process, we standardize the data
points and cross-validate the model with 5 folds in a grid search to
choose the best combination of the parameters in Table 7. We do
this using both the response time of the system and the accuracy
as output labels, with the goal of being able to predict both with a
low error margin.

Hyper-Parameter Values RF-Accuracy RF-Time

Num. Estimators {50 . . . 2000} 150 2000
Max. Features {auto, log, sqrt} auto auto
Max Depth (4, 10) 9 6
Criterion mse, mae mae mae

Table 7: Hyperparameters chosen for each of the Random
Forest Regressors

4.3.2 Performance Evaluation. After this we measure the perfor-
mance of the fitted classifiers on the test set using the same metrics
as with the previous models. The results can be seen in Table 8. The
Random Forest is much better than the one reported in previous
sections with other models in both accuracy and response time
prediction, being the latter an order of magnitude better than the
next closest model.

To get a glimpse at how well the model is fitting the data points
from the test set, we plot the true and predicted labels for both the
response time and accuracy in Figure 6. As the plot shows, themodel
is able to predict with low error the response time and accuracy no
matter the number of processes in the system. Moreover, we plot
the feature importances as given by each of the models in Figure 7.

Session 4: Memory and Resource Management  ICPE ’21, April 19–23, 2021, Virtual Event, France

139



−1.0 −0.5 0.0 0.5 1.0 1.5 2.0 2.5
Normalized number of processes

200

400

600

Ti
m

e 
(s

)

True labels
Predicted values

−1.0 −0.5 0.0 0.5 1.0 1.5 2.0 2.5
Normalized number of processes

0.88

0.90

0.92

0.94

0.96

A
cc

ur
ac

y

True labels
Predicted values

Figure 6: Comparison of the actual and predicted values for
Response Time (top) and Accuracy (bottom)

pro
ce

sse
s

cp
u

njo
bs

ba
tch

ne
tw

ork

Features Resp. Time

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Im
po

rt
an

ce

pro
ce

sse
s

cp
u

njo
bs

ba
tch

ne
tw

ork

Features Accuracy

Figure 7: Importance of the features to predict Response
Time (left) and Accuracy (right)

Label MSE 𝑅2

Accuracy 1.3590 × 10−5 0.9711
Response Time 376.659 0.9861

Table 8: Mean Squared Error and 𝑅2 score for each of the
regressors on the testing data

Indeed, the processes feature proves again the same we could see
in the ANOVA test, that it is the second most reliable feature to
predict the response time. As for the accuracy, we observe what

Accuracy
Random Forest

Response Time
Random Forest

Courier

BigDL Cluster

Predictions

Figure 8: Architecture of Courier and Pipeline for Job Sched-
uling

was expected, being the batch size and the network being the main
variables that determine the final output.

One more thing to consider is, when should the classifier be
retrained. In these experiments, we did consider homogeneous
compute nodes. Adding a fewmore nodes of similar compute power
should not affect the results much, but adding a few more compute
nodes in combination with a single vCPU will lead to performance
degradation. Although, adding several more homogeneous nodes
will also require retraining because the communication overhead
will increase and many more things will be needed to be taken into
consideration to optimize the performance.

5 OPTIMIZATION STRATEGY
5.1 Courier Description
After demonstrating the good predicting performance of the Ran-
dom Forest Regressor, we incorporate both models into a single
overall system able to predict the accuracy and response time based
on the input parameters of the job, Courier. With Courier, we com-
bine the capabilities of predicting the response time and accuracy
of a job, and use both predictions to estimate the optimal batch size
given a latency SLO specified by the user. We provide a high level
description of what Courier does in Figure 8.

5.2 Description of Experiments
To test the performance improvements derived from the use of
Courier, we test its performance in the same cluster used to evaluate
the experiments in Section 3. We compare its performance against
two different baselines:

(1) Naive Scheduler. In one case, before scheduling a job in
the cluster, we input the job characteristics into Courier
alongside with a latency SLO to get the optimal batch size
to (1) Fulfill the SLO and (2) Achieve maximum accuracy
within that time frame. We want Courier to be on average,
better than a naive scheduler that chooses the optimal batch

Session 4: Memory and Resource Management  ICPE ’21, April 19–23, 2021, Virtual Event, France

140



N CPUs Njobs SLO (s) 𝐵𝑎𝑡𝑐ℎ∗ 𝐴𝑐𝑐.∗ 𝑇𝑖𝑚𝑒∗ (s)

1 1 5 422 128 93.86% 280.19
2 2 1 412 128 94.44% 299.59
3 4 1 254 128 93.88% 240.56
4 4 2 342 128 94.75% 280.23
5 8 3 166 512 89.27% 112.70

Table 9: Random jobs andCourier’s chosen batch and predic-
tions. The values resulting of Courier prediction aremarked
with an asterisk.

size uniformly from those available, in our case 64, 128, 256,
and 512.

(2) Boosting Model. Apart from that, we compare the esti-
mations made by Courier against the model used in [3] to
predict the runtime of Spark applications. There, the authors
employ and compare several regression models, of which
they settle on a Gradient Boosting Regression model as it
offers the best all-around performance. With this compar-
ison we want to demonstrate the advantage gained from
considering the parallelism level of spark applications when
making predictions of response time.
Gradient Boosting, like other boosting algorithms, attempts
to model a function by using an ensemble of weaker classi-
fiers, most often decision trees. The main concept of these
models is iteratively fitting new weak models on the samples
that the previous models had a tougher time predicting. In
Gradient Boosting, the loss of a learner is minimized by the
next learner using a gradient descent algorithm.
In [3], the features used to model the response time of several
types of jobs are limited to system parameters such as ex-
ecutor cores, memory and shuffle parameters. To make a fair
comparison, we will input the executor cores to the model,
since it is the only parameter that we actively change in
our experiments from those proposed. We also incorporate
the batch size and model type being this application specific
parameters that are vital for modeling the performance of
the job.

We conduct the experiments by generating randomly the param-
eters for jobs, such as the number of CPUs, number of jobs, and
latency SLO. For the last one, we draw from a normal distribution
with mean 300 and standard deviation of 100. To test the gener-
alization of the model, we add extra levels to the number of jobs,
which can take now any value between 1 and 6 instead of the three
fixed values studied. The five jobs submitted to the cluster as well
as the SLOs and the chosen batch size for the job are summarized in
Table 9. We replicate the experiments three times and average the
results of each job for both Courier and the random batch chooser.

5.3 Experiment Results
5.3.1 Comparison against Naive Scheduler. After running the ex-
periments, we computed several metrics to assess the performance
of each of the two models. With the aim of relating the results to
those seen beforehand in Section 5, we report the Mean Squared
Error (MSE) seen on both the predicted accuracy and the response

time. In accordance with the performance of the test set, across all
the experiments, Courier reports an𝑀𝑆𝐸 of 367.58 for the response
time and of 4.745 × 10−6 for accuracy.

Apart from that, we also quantify the improvement in terms
of satisfying SLO requirements and accuracy improvements when
those SLOs are satisfied. We summarize both of these aspects in
Figure 9. As proved by Figure 9, Courier is able to on average fulfill
the SLO requirements 100% of the time, as opposed to 60% of the
baseline. Moreover, as shown in the figure, in those jobs where both
fulfill the latency requirement, Courier shows a higher accuracy
across the board, further confirming that the choice of batch for
the SLO was accurate.

−300

−200

−100

0

100

200

R
es

po
ns

e 
Ti

m
e 

- 
S
LO

 (
s) model

courier
random

1 2 3 4 5
Experiment

0.85

0.90

0.95

1.00
A
cc

ur
ac

y

model
courier
random

Figure 9: Comparison of the performance of Courier and the
RandomBatch selector in terms of SLO fulfillment (top) and
accuracy (bottom). The experiment number is the same as
shown in Table 9.

5.3.2 Comparison against the Gradient Boosting Model [3]. We
then compare our model’s ability to predict the performance of
the training jobs in terms of response time and accuracy when
compared to the Gradient Boosting Model. For this, we fit both
models on the same data: for Courier we use the features and model
parameters described in Section 4.3. For the Gradient Boosting
Model we use the same cross-validation technique as for Courier,
and tune the parameters accordingly, and end up selecting the
parameters as shown in Table 10. As mentioned before, in Courier
we use features determining the parallelism level in the cluster,
whereas the Boosting model uses only the number of cores as the
system feature.

We then compare the performance of both models on the testing
data. The results are shown in Table 11. As can be seen, both of
the models are able to fit almost identically the expected accuracy,
however, Courier outperforms the boosting model by a wide margin
in terms of predicting the response time of the job. We can already
perceive that having parallelism level as a feature is making a
difference.

Session 4: Memory and Resource Management  ICPE ’21, April 19–23, 2021, Virtual Event, France

141



Hyper-Parameter Values RF-Accuracy RF-Time

Num. Estimators {50 . . . 2000} 50 50
Loss {ls, lad, huber} ls lad
Max Depth (3, 10) 3 3

Table 10: Hyperparameters chosen for each of the Gradient
Boosting Regressors

Finally, we compare the performance on the new set of random
experiments as done with the naive scheduler, and compare the
error in response time and accuracy predictions. The results can be
seen in Figure 10, where we can see that Courier beats the boosting
model in all cases when predicting the accuracy, and performs
better on average when predicting the response time.

Model Label MSE 𝑅2

Courier
Accuracy 1.3590 × 10−5 0.9711
Response Time 376.659 0.9861

Gradient Boost [3]
Accuracy 1.3592 × 10−5 0.9711
Response Time 3024.48 0.8887

Table 11: Mean Squared Error and 𝑅2 score for each of the
regressors on the testing data

0

20

40

60

A
E 

R
es

po
ns

e 
Ti

m
e 

(s
) model

courier
boost

1 2 3 4 5
Experiment

0.000

0.005

0.010

0.015

0.020

0.025

A
E 

A
cc

ur
ac

y

model
courier
boost

Figure 10: Absolute Error (AE) in Response Time and Accu-
racy predicted by Courier and the Boosting model

This is further confirmed by analyzing the statistics reported by
both models in the new set of experiments, with Courier showing
an MSE of 367.58 in correspondence with the results on the testing
data, a result more than 50% better than the boosting model, which
reports an MSE of 803.26.

5.4 Limitations
As a starting point, we have demonstrated that our Courier model
is able to choose the optimal batch for a newly arrived job based on
the properties of the job and the desired SLO. However, this being
the first prototype, it is lacking some features that would be needed
to make Courier a better overall system to manage job scheduling
in a BigDL cluster. Below we list some of the desired properties
that should be implemented in future work:

(1) Dinamic number of epochs. For this initial prototype, we
gathered the accuracies and the times reported by each exper-
iment in each of the 10 epochs we ran for each experiment,
however at the time of predicting the response time and
choosing a batch size we only considered to run the exper-
iment for 10 epochs. A better approach would be to train
the model on an extra feature, the number of epochs and the
time per epoch. This way, Courier could be able to choose a
smaller batch size which, even though slower per epoch, has
a higher statistical efficiency and can reach a better accuracy
in a shorter time.

(2) Predictions for Multiplexing Jobs. Courier could be able
to predict the run time of jobs submitted at different points
in time running at the same time in the system. This would
entail Courier fetching metrics from the actual utilization
of the cluster and when a job arrives, calculate the response
time of the cluster with the sum of the new job and the
already running jobs. This would also entail recomputing the
response time predictions and SLOs for the already running
jobs, which would effectively increase the complexity of the
scheduling.

6 CONCLUSION
In this work, we have analyzed the importance of different features
associated with training Neural Networks on BigDL cluster in the
context of training time and accuracy. We have shown that the most
important parameters to select when scheduling one or multiple DL
jobs are the batch-size and the total number of processes. Knowing
that, we designed 3 different models, the ANOVA linear model,
queuing theory model, and Random Forest Regression model, to
describe the dependability of training time on selected features and
see how accurate those models will be in predicting the optimal
parameters for the job. Seeing that the Random Forest Regressor
has the best predicting performance, we implemented Courier, a
model that combines two Random Forest Regressors where one is
responsible for maximizing the accuracy and the other one for min-
imizing the response time. Such model selects the job parameters to
stay within the latency constrains and also maximize the accuracy.

7 ACKNOWLEDGEMENT
This work has been partly funded by the Swiss National Science
Foundation NRP75 Dapprox project 407540_167266.

REFERENCES
[1] Alham Fikri Aji and Kenneth Heafield. 2017. Sparse communication for dis-

tributed gradient descent. arXiv preprint arXiv:1704.05021 (2017).
[2] Salem Alqahtani and Murat Demirbas. 2019. Performance Analysis and Compar-

ison of Distributed Machine Learning Systems.

Session 4: Memory and Resource Management  ICPE ’21, April 19–23, 2021, Virtual Event, France

142



[3] Zemin Chao, Shengfei Shi, Hong Gao, Jizhou Luo, and Hongzhi Wang. 2018. A
gray-box performance model for Apache Spark. Future Generation Computer
Systems 89 (2018), 58–67.

[4] Jason Jinquan Dai, Yiheng Wang, Xin Qiu, Ding Ding, Yao Zhang, Yanzhang
Wang, Xianyan Jia, Cherry Li Zhang, Yan Wan, Zhichao Li, et al. 2019. Bigdl:
A distributed deep learning framework for big data. In Proceedings of the ACM
Symposium on Cloud Computing. 50–60.

[5] Sayed Hadi Hashemi, Sangeetha Abdu Jyothi, and R. Campbell. 2019. TicTac:
Accelerating Distributed Deep Learning with Communication Scheduling. arXiv:
Distributed, Parallel, and Cluster Computing (2019).

[6] Raj Jain. 2008. The art of computer systems performance analysis. john wiley &
sons.

[7] Haifeng Jin, Qingquan Song, and Xia Hu. 2019. Auto-Keras: An Efficient Neural
Architecture Search System. In Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery amp; Data Mining (Anchorage, AK, USA)
(KDD ’19). Association for Computing Machinery, New York, NY, USA, 1946–1956.
https://doi.org/10.1145/3292500.3330648

[8] Daniel Justus, John Brennan, Stephen Bonner, and Andrew Mcgough. 2018. Pre-
dicting the Computational Cost of Deep Learning Models. 3873–3882. https:
//doi.org/10.1109/BigData.2018.8622396

[9] Sobhan Omranian Khorasani, Jan S. Rellermeyer, and Dick Epema. 2019. Self-
Adaptive Executors for Big Data Processing. In Proceedings of the 20th Interna-
tional Middleware Conference (Davis, CA, USA) (Middleware ’19). Association for
Computing Machinery, New York, NY, USA, 176–188. https://doi.org/10.1145/
3361525.3361545

[10] Jin Kim, Qirong Ho, Seunghak Lee, Xun Zheng, Wei Dai, Garth Gibson, and
Eric Xing. 2016. STRADS: a distributed framework for scheduled model parallel
machine learning. 1–16. https://doi.org/10.1145/2901318.2901331

[11] Jin Kyu Kim, Abutalib Aghayev, Garth A. Gibson, and Eric P. Xing. 2019. STRADS-
AP: Simplifying DistributedMachine Learning Programmingwithout Introducing
a New ProgrammingModel. In 2019 USENIX Annual Technical Conference (USENIX
ATC 19). USENIX Association, Renton, WA, 207–222. https://www.usenix.org/
conference/atc19/presentation/kim-jin

[12] Soojeong Kim, Gyeong-In Yu, Hojin Park, Sungwoo Cho, Eunji Jeong, Hyeonmin
Ha, Sanha Lee, Joo Seong Jeong, and Byung-Gon Chun. 2019. Parallax: Sparsity-
Aware Data Parallel Training of Deep Neural Networks. In Proceedings of the
Fourteenth EuroSys Conference 2019 (Dresden, Germany) (EuroSys ’19). Association
for Computing Machinery, New York, NY, USA, Article 43, 15 pages. https:
//doi.org/10.1145/3302424.3303957

[13] Alexandros Koliousis, Pijika Watcharapichat, Matthias Weidlich, Luo Mai, Paolo
Costa, and Peter Pietzuch. 2019. CROSSBOW: scaling deep learning with small
batch sizes on multi-gpu servers. arXiv preprint arXiv:1901.02244 (2019).

[14] Mu Li, David G. Andersen, JunWoo Park, Alexander J. Smola, Amr Ahmed, Vanja
Josifovski, James Long, Eugene J. Shekita, and Bor-Yiing Su. 2014. Scaling Dis-
tributed Machine Learning with the Parameter Server. In Proceedings of the 11th
USENIX Conference on Operating Systems Design and Implementation (Broomfield,
CO) (OSDI’14). USENIX Association, USA, 583–598.

[15] Zhuojin Li, Wumo Yan, Marco Paolieri, and Leana Golubchik. 2020. Throughput
Prediction of Asynchronous SGD in TensorFlow. In Proceedings of the ACM/SPEC
International Conference on Performance Engineering (Edmonton AB, Canada)
(ICPE ’20). Association for Computing Machinery, New York, NY, USA, 76–87.
https://doi.org/10.1145/3358960.3379141

[16] Edo Liberty, Zohar Karnin, Bing Xiang, Laurence Rouesnel, Baris Coskun, Ramesh
Nallapati, Julio Delgado, Amir Sadoughi, Yury Astashonok, Piali Das, Can Bali-
oglu, Saswata Chakravarty, Madhav Jha, Philip Gautier, David Arpin, Tim
Januschowski, Valentin Flunkert, Yuyang Wang, Jan Gasthaus, Lorenzo Stella,
Syama Rangapuram, David Salinas, Sebastian Schelter, and Alex Smola. 2020.
Elastic Machine Learning Algorithms in Amazon SageMaker. In Proceedings of the

2020 ACM SIGMOD International Conference on Management of Data (Portland,
OR, USA) (SIGMOD ’20). Association for Computing Machinery, New York, NY,
USA, 731–737. https://doi.org/10.1145/3318464.3386126

[17] S. Lin, M. Paolieri, C. Chou, and L. Golubchik. 2018. A Model-Based Approach
to Streamlining Distributed Training for Asynchronous SGD. In 2018 IEEE 26th
International Symposium on Modeling, Analysis, and Simulation of Computer
and Telecommunication Systems (MASCOTS). 306–318. https://doi.org/10.1109/
MASCOTS.2018.00037

[18] A.R. Mamidala, Jiuxing Liu, and D.K. Panda. 2004. Efficient Barrier and Allreduce
on Infiniband clusters using multicast and adaptive algorithms. 135– 144. https:
//doi.org/10.1109/CLUSTR.2004.1392611

[19] Deepak Narayanan, Aaron Harlap, Amar Phanishayee, Vivek Seshadri, Nikhil R.
Devanur, Gregory R. Ganger, Phillip B. Gibbons, and Matei Zaharia. 2019.
PipeDream: Generalized Pipeline Parallelism for DNN Training (SOSP ’19).
Association for Computing Machinery, New York, NY, USA, 1–15. https:
//doi.org/10.1145/3341301.3359646

[20] Yanghua Peng, Yibo Zhu, Yangrui Chen, Yixin Bao, Bairen Yi, Chang Lan, Chuan
Wu, and Chuanxiong Guo. 2019. A Generic Communication Scheduler for Dis-
tributed DNN Training Acceleration (SOSP ’19). Association for Computing
Machinery, New York, NY, USA, 16–29. https://doi.org/10.1145/3341301.3359642

[21] Jeff Rasley, Yuxiong He, Feng Yan, Olatunji Ruwase, and Rodrigo Fonseca. 2017.
HyperDrive: Exploring Hyperparameters with POP Scheduling. In Proceedings
of the 18th ACM/IFIP/USENIX Middleware Conference (Las Vegas, Nevada) (Mid-
dleware ’17). Association for Computing Machinery, New York, NY, USA, 1–13.
https://doi.org/10.1145/3135974.3135994

[22] Isabelly Rocha, Nathaniel Morris, Lydia Y. Chen, Pascal Felber, Robert Birke,
and Valerio Schiavoni. 2020. PipeTune: Pipeline Parallelism of Hyper and
System Parameters Tuning for Deep Learning Clusters. In Proceedings of the
21st International Middleware Conference (Delft, Netherlands) (Middleware ’20).
Association for Computing Machinery, New York, NY, USA, 89–104. https:
//doi.org/10.1145/3423211.3425692

[23] Haichen Shen, Lequn Chen, Yuchen Jin, Liangyu Zhao, Bingyu Kong, Matthai
Philipose, Arvind Krishnamurthy, and Ravi Sundaram. 2019. Nexus: a GPU
cluster engine for accelerating DNN-based video analysis. In Proceedings of the
27th ACM Symposium on Operating Systems Principles. 322–337.

[24] Shaohuai Shi and Xiaowen Chu. 2017. Performance Modeling and Evaluation of
Distributed Deep Learning Frameworks on GPUs. (11 2017).

[25] Muthian Sivathanu, Tapan Chugh, Sanjay S. Singapuram, and Lidong Zhou. 2019.
Astra: Exploiting Predictability to Optimize Deep Learning. In Proceedings of the
Twenty-Fourth International Conference on Architectural Support for Programming
Languages and Operating Systems (Providence, RI, USA) (ASPLOS ’19). Association
for Computing Machinery, New York, NY, USA, 909–923. https://doi.org/10.
1145/3297858.3304072

[26] Joost Verbraeken, Matthijs Wolting, Jonathan Katzy, Jeroen Kloppenburg, Tim
Verbelen, and Jan S Rellermeyer. 2019. A Survey on DistributedMachine Learning.
arXiv preprint arXiv:1912.09789 (2019).

[27] G. Wang, J. Xu, and B. He. 2016. A Novel Method for Tuning Configuration
Parameters of Spark Based on Machine Learning. In 2016 IEEE 18th International
Conference on High Performance Computing and Communications; IEEE 14th Inter-
national Conference on Smart City; IEEE 2nd International Conference on Data Sci-
ence and Systems (HPCC/SmartCity/DSS). 586–593. https://doi.org/10.1109/HPCC-
SmartCity-DSS.2016.0088

[28] Shaoqi Wang, Aidi Pi, and Xiaobo Zhou. 2019. Scalable Distributed DL Training:
Batching Communication and Computation. Proceedings of the AAAI Conference
on Artificial Intelligence 33, 01 (Jul. 2019), 5289–5296. https://doi.org/10.1609/
aaai.v33i01.33015289

[29] Qing Ye, Yuhao Zhou, Mingjia Shi, Yanan Sun, and Jiancheng Lv. 2020. DBS:
Dynamic Batch Size For Distributed Deep Neural Network Training. arXiv
preprint arXiv:2007.11831 (2020).

Session 4: Memory and Resource Management  ICPE ’21, April 19–23, 2021, Virtual Event, France

143

https://doi.org/10.1145/3292500.3330648
https://doi.org/10.1109/BigData.2018.8622396
https://doi.org/10.1109/BigData.2018.8622396
https://doi.org/10.1145/3361525.3361545
https://doi.org/10.1145/3361525.3361545
https://doi.org/10.1145/2901318.2901331
https://www.usenix.org/conference/atc19/presentation/kim-jin
https://www.usenix.org/conference/atc19/presentation/kim-jin
https://doi.org/10.1145/3302424.3303957
https://doi.org/10.1145/3302424.3303957
https://doi.org/10.1145/3358960.3379141
https://doi.org/10.1145/3318464.3386126
https://doi.org/10.1109/MASCOTS.2018.00037
https://doi.org/10.1109/MASCOTS.2018.00037
https://doi.org/10.1109/CLUSTR.2004.1392611
https://doi.org/10.1109/CLUSTR.2004.1392611
https://doi.org/10.1145/3341301.3359646
https://doi.org/10.1145/3341301.3359646
https://doi.org/10.1145/3341301.3359642
https://doi.org/10.1145/3135974.3135994
https://doi.org/10.1145/3423211.3425692
https://doi.org/10.1145/3423211.3425692
https://doi.org/10.1145/3297858.3304072
https://doi.org/10.1145/3297858.3304072
https://doi.org/10.1109/HPCC-SmartCity-DSS.2016.0088
https://doi.org/10.1109/HPCC-SmartCity-DSS.2016.0088
https://doi.org/10.1609/aaai.v33i01.33015289
https://doi.org/10.1609/aaai.v33i01.33015289


A APPENDIX
In this Appendix, we present full results of the ANOVA analysis.

𝑃 >F 𝑃 > |𝑡 | [0.025 0.975]
cpu 7.18e-02 0.665 -21.355 33.021
batch 6.28e-14 0.004 -1.074 -0.225
njobs 1.92e-02 0.740 -35.930 50.045
network 6.15e-02 0.389 -88.489 221.496
cpu:njobs 1.48e-01 0.147 -2.042 13.039
cpu:batch 2.38e-02 0.484 -0.100 0.049
batch:njobs 2.41e-01 0.878 -0.127 0.109
cpu:network 5.02e-01 0.467 -37.008 17.367
batch:network 9.21e-01 0.961 -0.435 0.415
njobs:network 9.02e-01 0.544 -55.926 30.049
cpu:batch:njobs 4.70e-01 0.470 -0.028 0.013
cpu:batch:network 4.74e-01 0.859 -0.068 0.081
cpu:njobs:network 4.82e-01 0.331 -3.884 11.196
batch:njobs:network 8.06e-01 0.692 -0.095 0.141
cpu:batch:njobs:network 4.90e-01 0.490 -0.028 0.014

Table 12: ANOVA analysis 2𝑘 factorial.

𝑃 >F 𝑃 > |𝑡 | [0.025 0.975]
cpu 9.92e-06 0.213 -30.170 6.768
batch 8.95e-57 0.000 -0.987 -30.170
njobs 4.12e-10 0.801 -28.124 21.728
network 2.47e-02 0.639 5.108 105.437
cpu:njobs 9.55e-05 0.000 7.309 18.124
cpu:batch 4.22e-03 0.642 -0.055 0.114
batch:njobs 9.39e-04 0.498 -20.449 9.92e-06
cpu:network 1.12e-01 0.711 -21.942 14.997
batch:network 5.01e-01 0.648 -0.222 0.356
njobs:network 9.54e-01 0.943 -24.028 25.824
cpu:batch:njobs 3.20e-03 0.004 -0.045 -0.008
cpu:batch:network 8.95e-01 0.812 -0.070 0.055
cpu:njobs:network 8.12e-01 0.980 -5.475 5.339
batch:njobs:network 8.822e-01 0.804 -0.095 0.074
cpu:batch:njobs:network 8.41e-01 0.842 -0.016 0.020

Table 13: ANOVA analysis full factorial.

Session 4: Memory and Resource Management  ICPE ’21, April 19–23, 2021, Virtual Event, France

144


	Abstract
	1 Introduction
	2 Background
	3 Experiments
	3.1 Methodology
	3.2 2k Factorial
	3.3 Full Factorial

	4 Predictive Models
	4.1 ANOVA linear model
	4.2 Operational Laws & Queuing Theory
	4.3 Random Forest Regression

	5 Optimization Strategy
	5.1 Courier Description
	5.2 Description of Experiments
	5.3 Experiment Results
	5.4 Limitations

	6 Conclusion
	7 Acknowledgement
	References
	A Appendix



