
SymFlex: Elastic, Persistent and Symbiotic SSD Caching in
Virtualization Environments

Muhammed Unais P
unaisp@cse.iitb.ac.in

Department of Computer Science and Engineering
Indian Institute of Technology Bombay

Purushottam Kulkarni
puru@cse.iitb.ac.in

Department of Computer Science and Engineering
Indian Institute of Technology Bombay

ABSTRACT
Hypervisor managed SSD caching is an often used technique for
improving IO performance in virtualization based hosting solutions.
Such caches are either explicitly managed by the hypervisor which
approximate the access semantics of the applications for improving
cache utilization, or operate as statically partitioned devices (which
are utilized as caches) by virtual machines. We reason that both
these broad directions do not exploit the potential of SSD based IO
caches to the fullest, in terms of generalized management policies
and performance. We propose SymFlex, a novel method to perform
symbiotic management of IO caches by enabling elastic SSD de-
vices. Each virtual machine is configured with an elastic virtual
SSD whose contents can be managed according to guest OS and ap-
plication semantics and requirements. Furthermore, the SSD sizing
is managed by the hypervisor with a ballooning-like mechanism to
dynamically adjust SSD provisioning to VMs based on performance
and usage fairness policies. Our primary contribution of this work
is to design and engineer the mechanism for elastic SSD disks to
be virtualized, and demonstrate usage models and effectiveness of
the symbiotic management of SSD caches across virtual machines.
Through our empirical evaluation, we show that the overhead of
implementing a virtio-based elastic SSD device is minimal (within
5% of virtio based device virtualization techniques). Further, we
demonstrate using dm-cache and Fatcache, the applicability and
benefits of SymFlex for enhancing IO throughput and enforcing
VM-level SSD allocation policies.

CCS CONCEPTS
• Software and its engineering→Cloud computing; Secondary
storage.

KEYWORDS
cloud computing, storage virtualization, ssd caching

ACM Reference Format:
Muhammed Unais P and Purushottam Kulkarni. 2021. SymFlex: Elastic,
Persistent and Symbiotic SSD Caching in Virtualization Environments. In
Proceedings of the 2021 ACM/SPEC International Conference on Performance

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICPE ’21, April 19–23, 2021, Virtual Event, France
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8194-9/21/04. . . $15.00
https://doi.org/10.1145/3427921.3450244

Engineering (ICPE ’21), April 19–23, 2021, Virtual Event, France. ACM, New
York, NY, USA, 11 pages. https://doi.org/10.1145/3427921.3450244

1 INTRODUCTION
While the computing world is beginning to see the arrival of tech-
nology [15, 26, 27] to fuse the gap between the competing require-
ments of persistence and low-latency, flash memory based devices
have full-filled this role in the memory-storage hierarchy. Over
the past couple of decades, flash based solid-state storage devices
(SSDs) [19, 27, 40] have been ubiquitously used in embedded de-
vices [28, 29], traditional desktops and server systems [9, 21, 33, 41].
With server systems, SSDs have been used on the disk IO path for
caching [32] as well as primary storage devices [13, 18, 30]. The
domain of this work is the use of SSD devices for disk IO caching
in virtualization based hosting services.

The commonly used setups of SSD devices in virtualization en-
vironments are, (i) as a primary storage for virtual machine image
files, (ii) as attached disks for individual virtual machines, and (iii) as
hosting platform managed disk IO caches. The third setup employs
a hosting platform (and hypervisor) managed cache that stores
objects on near-host/on-host SSD devices. Since the cache is virtual
machine agnostic, cache sizing and provisioning can be performed
dynamically. Past work [17, 24], has used this setup and controlled
storage access performance by implementing different policies for
dynamic SSD cache provisioning. While each of these three setups
have benefits along the spectrum of usability and performance, they
do not provide the flexibility required to exploit all the potential
benefits of an auxiliary SSD device in hosting environments. The
first setup does not target the caching use case, the second setup
allows custom usage of SSDs by VMs but as a fixed-size device. The
third setup of using SSDs for host-side caching has been widely
used, but suffers from the lack of knowledge about usage semantics
of applications in the virtual machines. The hosting platform can
correlate aggregate disk bandwidth requirements to adjust per-VM
cache sizing [17, 34] This black-box approach cannot exploit the
knowledge of usage and application/VM specific semantics, e.g.,
meta-data blocks to be always stored in cache (irrespective of their
usage rate), or providing differentiated cache usage for applications
nested within a hosted virtual machine.

The ideal properties of a host-side cache are to simultaneously
allow for application-aware management of the cache and also
allow for dynamic provisioning of the cache based on policy and
performance control decisions. A feature similar to this is memory
ballooning [39], which is used to manage the memory resource in
hosted platforms. Memory managed via paging (page tables) can
be provisioned dynamically by manipulating mappings in the page
tables. A fundamental problem with a ballooning like usage model

Session 4: Memory and Resource Management ICPE ’21, April 19–23, 2021, Virtual Event, France

105

https://doi.org/10.1145/3427921.3450244
https://doi.org/10.1145/3427921.3450244

with SSDs in virtualization environments is the missing support
for elastic resizing of block IO devices. Traditionally, block devices
are initialized and configured during machine boot-up and their
properties remain static for the lifetime of the system1. Without
the resizing feature, block IO devices cannot be effectively and
dynamically managed by the hypervisor/hosting platform.

With hosting platform managed caches, a possibility is to setup
an explicit channel between the hypervisor and virtual machines
for providing hints to the hypervisor based device manager. This
approach has at least two possible bottlenecks— one, the frame-
work needs to have enough expressibility to accommodate different
application-level semantics; and second, the application needs to
know the state of the cache to generate corresponding hints for
subsequent management. We believe that this breaches the equiva-
lence requirement for virtualization platforms [31], in the sense that
para-virtualized guest operating systems will depend on knowing
and using hypervisor state as part of their execution.

Our premise is that the goal of an application aware management
of content on SSD caches can bemet efficiently with explicit support
for elastic SSD caching devices. Towards engineering support for
an elastic virtualized block IO device and dynamic management of
a persistent disk cache across several virtual machines, we make
the following contributions,

• Design and implement a mechanism for provisioning elastic
and persistent virtualized SSD devices.

• Design and build an adaptive disk caching framework, Sym-
Flex , which utilizes the explicit elasticity of SSD devices for
symbiotic cache management along with hypervisor-level
policy mechanisms.

• Showcase examples of use cases that benefit from the appli-
cation aware semantics used for cache management from
within guest OSes.

• Demonstrate via detailed empirical evaluation the low-overhead
implementation and application-level benefits of SymFlex .

1.1 Need for application-aware SSD elasticity
An important aspect of infrastructure hosting services is that of
resource over-commitment—provisioning more resources than that
can be simultaneously allocated physically. Two vital mechanisms
for over commitment are dynamic allocation of resources and a
policy framework for informed choices about the magnitude of
allocations and de-allocations.

The adaptation policies to dynamically change the allocation
levels of resources can broadly be classified as black box and gray
box policies. With black box policies used for dynamic SSD cache
provisioning, the hypervisor is unaware of the cache semantics and
its utility for the VM. The hypervisor employs VM-agnostic policies
to manage the hypervisor based cache. Gray box policies depend
on information and depend on actions from software entities from
within the virtual machine to influence cache provisioning deci-
sions. Figure 1 shows the hit ratio of a hypervisor managed SSD
cache using representative black box and gray box techniques. The
fio tool is used to generate the workload in both the cases which ac-
cess a 500 GB HDD. In the first window, the 80% of the accesses are

1With plug-and-play setups devices can be setup on the fly, but their properties cannot
be manipulated once configured.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

50 100 150 200 250 300 350 400 450
0

8

16

24

32

40

H
it
 r

a
ti
o

C
a
c
h
e
 s

iz
e
 (

G
B

)

Time (minute)

Hit ratio - black box

Hit ratio - gray box

Cache size

Figure 1: SSD cache efficiency with VM-agnostic and VM-
managed techniques.

from the first 34GB of the device and the 20% from the remaining
portion of the device. In the next window, the cache size reduced
by 4GB and 80% of the accesses are from the second 34GB of the
device and the 20% from the remaining portion of the device and
so on. The black box technique employs an LRU cache replacement
policy, while for the gray box technique, a hypothetical solutions
assumes that the changing working set (of accessed disk blocks)
is known to the hypervisor. As the SSD cache is resized (reduced
in size) at different instances, the gray box technique can use the
workload access pattern information for a better eviction policy of
cached blocks and maintain higher cache efficiency levels.

As demonstrated above, the twomain requirements for a high uti-
lization caching store in hosting environments are, (i) a mechanism
for dynamic resizing and (ii) usage of semantics of the software
stack (the guest OS or the applications being executed in the VM)
using the cache. Using hypervisor managed SSD caching for vir-
tual machines, the main challenges of employing both the above
mechanisms are, (i) lack of an elastic SSD virtualized device, and
(ii) a framework for symbiotic management of the cache by the
hypervisor and software entities of a virtual machine. Our work ad-
dresses both these challenges via SymFlex, an elastic and symbiotic
IO caching framework for virtualization environments.

1.2 Related work
1.2.1 Hypervisor-based caching. With hypervisor/hosting platform
based caching, the host OS or the hypervisor coordinate and man-
age the SSD cache. The cache itself can be organized as a uni-
fied cache [3] [20] across all virtual machines or applications, can
be statically partitioned [10, 12, 16], or can be dynamically parti-
tioned [8, 23].

With a unified SSD cache setup [3], IO requests from all VMs
store and consume objects in a single cache and can result in perfor-
mance interference side-effects based on cache usage distributions
influenced by workload patterns. With statically partitioned SSD
caching [10, 12, 16], the cache is partitioned based on performance
or higher-level policy decisions (priority of VM etc.) considering a
static set of VMs. Optimizations to the cache using this partitioning
strategy include techniques to determine what resides in the cache

Session 4: Memory and Resource Management ICPE ’21, April 19–23, 2021, Virtual Event, France

106

for maximizing the fixed size caches. Since the cache sizes are ag-
nostic to changing load patterns and over commitment levels, they
can lead to sub-par cache efficiency.

Dynamic cache partitioning techniques [8, 17, 22, 23, 35] parti-
tion the cache across virtual machines based on changing demands
either from changing levels of over-commitment (addition/removal
of new VMs to a host) or IO performance requirements. [22] in-
troduced Ratio of Effective Cache Space, ratio of the cache size that
is being effectively used to the total size of cache that has been
allocated, to identify the cache demands of each virtual machines.
[23] determines the cache size allocation based on run time analysis
of IO access characteristics that captures both long-term locality be-
havior and transient locality spikes of the workloads. [8] identifies
the set of blocks with high temporal locality to predict the cache
requirements of different workloads and reduce the number of up-
dates to the SSD cache. Each of these techniques adapts the size
of the cache assigned to virtual machine endpoints to improve the
cache utility. Other host side caching techniques [17, 35] provide
control knobs to meet storage access QoS requirements. [35] aims
to meet latency guarantees by periodically measuring the latency
of IO requests of each virtual machine and using a feedback loop
to adapt size of cache based on deviance from expected latency.
Similarly, [17] also aims to minimize IO latency for a group of VMs
and provide proportionate IO throughput levels based on exploiting
the non-linear relation between cache sizing and miss rates.

1.2.2 Device pass-through with SSDs. A device pass-through SSD
usage model enables the virtual machine to efficiently manage
the allocated SSD resource from within a virtual machine. The
virtual machine can use the device as a cache and implement cus-
tom policies to improve IO performance, or expose the device to
applications (via an API library) to explicitly implement application-
specific semantics. [1, 2, 5] use the SSD as a generic block IO cache
device via a device mapper [2] setup to cache blocks of high la-
tency hard disks and network storage devices. [4, 11, 36, 37] are
examples of approaches that expose a SSD device directly to appli-
cations. These approaches are integrated with applications such
as key-value stores, databases, and use the SSD as an auxiliary
persistent cache to exploit the semantics of the application and its
usage. [11] and [4] are flash-based key-value stores which extend
the memcached tool to manage key-value pairs cached in SSDs.
Typically, flash-based key value stores organize the key-value pairs
in slabs of different sizes, and uses in-memory data structures for
fast lookup and mapping operations. These applications are agnos-
tic to the unique disk-level properties of flash storage devices and
approaches in [36, 37] maximize the efficiency of key-value system
by removing redundant mappings, double garbage collections, etc.
in the in-memory and SSD stores.

1.2.3 Symbiotic management of SSD caches. DoubleDecker [25],
a hypervisor caching framework enables multi-level provisioning
of hypervisor managed in-memory and SSD caches in derivative
cloud setups. This solution is integrated with the file system based
cleancache framework and can enable differentiated provisioning
of the caches for multiple entities (containers) within a nested
hosting framework. While this approach is closest to symbiotic
management of the SSD cache, it does not incorporate usage of
application semantics for custom SSDmanagement policies. Further,

Hypervisor

Virtual machine

SSD

Figure 2: SymFlex architecture and components.

it relies on the cleancache interface and on updates to the file system
operations for implementing the caching solution. SymFlex does
not rely on file system extensions in guest operating systems and
also enables custom management of caches from within virtual
machines.

While several techniques to manage SSD caches have been dis-
cussed above, none of them exploit the caching potential of SSDs to
the fullest—they either do not have access to all semantics related to
application requirements, or are statically partitioned. Our domain
of operation is to operate a symbiotic framework where both the
hypervisor and software entities of a virtual machine cooperate to
improve effective of the SSD cache. SymFlex also lets itself seam-
lessly to accommodate nested hosting setups, where custom cache
management policies can be implemented from with each VM in-
stance. Further, the flexibility provided by the SymFlex framework
can compliment existing cache provisioning heuristics with added
adaptations based on application/guest OS cache utility semantics
and policies.

2 SYMFLEX ARCHITECTURE AND DESIGN
SymFlex provides a framework to virtualize SSD devices with dy-
namic resizing, and symbiotic management of the SSD-backed
caches by hypervisor and VM-specific management decisions. The
hypervisor is tasked with determining the size of the virtualized
elastic SSD (referred to as vSSD), and the guest OS or application
running in the virtual machines are tasked with managing the vSSD
for caching purposes.

Session 4: Memory and Resource Management ICPE ’21, April 19–23, 2021, Virtual Event, France

107

The architecture of SymFlex is as shown in Figure 2. The archi-
tecture contains three main components, (i) the virtualized elastic
SSD device (vSSD), (ii) the hypervisor-based SymFlex manager, and
(iii) the VM-specific elastic SSD manager.

The first component is involved with setting up the special de-
vice for virtual machines. The design for which includes managing
run-time sizing, and setup up of control and data channels for
communication between guest OS (and/or application) and the
hypervisor. The hypervisor-based SSD manager is responsible for
provisioning of the SSD resource across multiple virtual machines.
Policies for dynamic SSD sizing and allocation to virtual machines
are core parts of this component. The SSD resize decisions are
handled locally by a VM-specific cache manager, which incorpo-
rates custom application-aware and guest-OS specific policies for
improving utilization of the SSD-based cache.

The main operations in the SymFlex life cycle are, (i) registration
of a virtual machine with the SymFlex manager, (ii) performing
read/write operations on the virtualized elastic SSD device, and (iii)
using the on-demand resize mechanism of the vSSD for cooperative
cache management by the guest OS entities and the hypervisor.

Next, we describe the three units of SymFlex architecture in detail
and the end-to-end flow of different operations in the SymFlex life
cycle.

2.1 Elastic SSD Virtualization
The engineering component of SymFlex is the virtualization unit,
which implements the virtualized elastic SSD device (vSSD). The
important tasks include setting up the elastic SSD device itself
for the virtual machine and the necessary virtualization support
via control and data communication channels. The vSSD device
virtualization includes a device specification, a front end driver in
the virtual machine, and a SymFlex back end driver in the host
(as shown in Figure 2). The two drivers coordinate configuration,
access and resizing of the vSSD device via a control and a data
channel. The front end driver initalizes a (virtual) block IO device
(vSSD) which is used as a caching store by the guest operating
system and/or the applications running in the virtual machine.

The vSSD device is similar to a para-virtualized virtio-blk
device, with support for on-demand resizing of its capacity. The
front end driver receives read/write requests to the vSSD device,
and in turn forwards them to the back end driver. A bitmap is
maintained at the front end to store a status bit for each (logical)
block of the vSSD. Resize operations leading to change in the ca-
pacity of the vSSD set/reset bits corresponding to logical blocks of
the device. The bitmap is (re)initialized on every virtual machine
restart, updated on resize operations, and always consistent with
the logical to physical block mapping maintained by the back end
driver as part of the device virtualization. The bitmap is used to
quickly verify validity of a logical block (i.e., whether mapping to
physical block exists at the back end) during read/write operations
originating at the front end driver. The back end driver performs
the actual read/write operations over the physical SSD device, and
sends appropriate responses back to the front end driver. The back
end driver communicates with all the components of SymFlex , with
the front end driver via control and data plane channels, with the
manager to exchange statistics and management request/response

commands and with the host file system layer to issue read/write
operations to the physical device.

Details of read/write operations handling and resize operations
are discussed in Sections 2.4.2 and 2.4.3, respectively.

2.2 SymFlex manager
The SymFlex manager is responsible for managing (dynamically
allocate and deallocate) the SSD resource (blocks) across several
virtual machines hosted on a physical machine. A resize engine, a
policy engine and a block manager constitute the three components
of the SymFlex manager.

The block manager keeps track of the physical blocks of the SSD
and current allocation and usage status of each block. For SymFlex ,
a block is a sequence of contiguous logical sectors, e.g., the default
block size used in our implementation is 1 MB (2048 sectors of 512
bytes each). The per block metadata managed by the block manager
is divided into two categories—global state and per-VM state, and
stored on the first few blocks of the SSD. The global metadata state
consists of the following information, number of physical blocks
available on the SSD, a list of free and allocated physical blocks,
and a list of active and inactive virtual machines.

Every block can either be free, or a SymFlex metadata block,
or a block allocated to a virtual machine. For an allocated block,
SymFlex stores the virtual machine identifier and the logical block
number (of the vSSD) to which a block is mapped. The per-VM
state contains a VM identifier, maximum size of the vSSD device,
current allocation (in terms of number of blocks) to the VM, and
configuration flags. A particular flag of interest is the persist
flag which indicates whether the contents of the cache should be
persisted and restored across virtual machine restart.

The resize engine performs the increase and decrease operations
to dynamically resize the vSSD device. The SymFlex policy engine
implements the policies for the extent of allocation and deallocation
on a per-VM basis on events of interest, e.g., change in IO perfor-
mance levels, exit or start of new virtual machine etc. Currently,
SymFlex supports a weighted-share based allocation policy and
a proportionate throughput based allocation policy to distribute
blocks across vSSD devices of different virtual machines.

On a vSSD resize decision, the resize engine coordinates with
the SymFlex back end driver for resizing the vSSD. The back end
driver communicates with the corresponding front end to complete
the operation. On a size reduction (deflation) request, a set of
logical block numbers are conveyed to the back end to be returned
to SymFlex manager. The block manager changes the status of the
corresponding physical blocks to free, and releases corresponding
entries from the per-VM allocated block list. On a size increase of
the vSSD (inflation), a size change request is forwarded to the front
end via the back end driver. The front end requests for a list of new
blocks, which the back end obtains from the SymFlex manager and
forwards the logical block numbers to the front end after updating
the logical blocks and physical blocks mapping information. The
SymFlex front end driver updates the status of the corresponding
bits in the bitmap to maintain validity status of the logical blocks
of the vSSD during resize operations.

Session 4: Memory and Resource Management ICPE ’21, April 19–23, 2021, Virtual Event, France

108

2.3 VM-specific vSSD cache manager
A vSSD cache manager, local to each virtual machine, is responsible
for managing the vSSD based caching store. Since the size of the
caching device changes dynamically, the manager has to implement
a mechanism and a policy to influence the contents of the cache
as as to adhere to its policy. The SymFlex framework currently
support two mechanisms to manage cache contents, one via the
block IO layer and the other where applications directly the SSD as
an auxiliary device.

The vSSD cache manager implements the VM-specific cache
management policy to handle cache size changes, notably to make
object eviction decisions on the cache. Further, cache size increase
events also need to interface with the local manager to correctly
reflect the increased vSSD capacity. Section 4 presents the different
components of the VM-specific cache manager.

2.4 SymFlex life cycle
The SymFlex life cycle consists of several operations like starting the
SymFlex manager, registering virtual machines with the SymFlex ,
reading/writing data from/to the vSSD device, resize operations
invoked by the policy engine, and recovery of inactive virtual ma-
chines. When the SymFlex manager runs for the first time, the free
list is populated with all the physical blocks. The first few physical
blocks in the SSD are used to persist SymFlex metadata and man-
ager reserves these blocks by moving them from the free list to a
metadata blocks list.

2.4.1 Registration of virtual machines with the SymFlex manager.
Each virtual machine needs to be registered with manager when
the virtual machine is created. The back end driver initiates the
registration process by sending the registration message to the
block manager. The registration message contains VM-ID, name
of the VM, and the three tuple <M, C, P>, where M denotes the
size of the virtualized vSSD device, C is the number of blocks to
be allocated when the VM starts, and persist is a binary flag to
specify if allocated blocks of the VM are to be persisted on a VM
shut down (to be reused on VM restart).

On receiving a registration request, the block manager creates a
per-vm block list and allocates the blocks to the new virtualmachine.
Depending on the policy, the block manager may invoke the policy
engine if the free list is not enough to satisfy the number of blocks
requested at the time of registration. After, the block manager
reserves the blocks for the new VM adds the blocks from the free
list to the per-vm block list, and updates the per physical-block
entry with the corresponding VM-ID, and replies to the back end
driver with the list of physical blocks allocated. The back end driver
updates the logical to physical block mapping table entry with the
physical block number, starting from the logical block number 0 to
N-1 where N is the number blocks allocated by the block manager.
Next, the back end driver forwards the list of mapping table entries
corresponding to the newly allocated block to the manager, and the
manager updates the per physical-block entry with corresponding
logical block numbers. During initialization, the front end driver
reads the list of valid logical block numbers(lbn) from the back
end driver and initializes the block status bitmap. The block status
bitmap maintained by the front end driver has to be reinitialized
after each VM restart.

read(fd, offset, size)

read(file, offset, size)

bio(sector #, size)

qiov(sector #, size)

preadv(physical sector #, size)

Reading the data from

physical SSD

Application

Figure 3: Logical to physical block translation during
read/write operations.

When a virtual machine restarts (which had a persist flag for the
vSSD device) and re-registers with SymFlex , the block-manager
replies with list of <pbn, lbn> tuples for previously allocated
blocks to the back end driver.

2.4.2 vSSD read/write operations. When a virtualmachine is started
with the virtualized elastic SSD device, a special block IO device,
vssda, is available for the VM. Like any other block IO device, any
application can perform read/write operations on the device. Figure
3 illustrates the flow of requests of the read/write operations, and
logical to physical block translation. The front end driver receives
all read/write requests, and a single read/write request can contain
multiple vSSD blocks. If a physical block is not allocated to one of
the logical blocks in the request, the request is considered as an
invalid request. For an invalid request, the front end driver imme-
diately returns the error to the higher layer. For a valid request,
the front end driver forwards the request to back end driver. The
back end driver divides read/write requests into sub requests if the
request crosses the vSSD block boundary. For instance, a request
to read 2 MB of data from an offset of 256 KB will be divided into
3 sub requests, (i) sub request to read 768 KB from 256 KB, (ii) a
sub request to read 1 MB from 1 MB offset, (iii) and sub request to
read 256 KB from 2 MB offset. After, the back end driver identifies
the physical vSSD block number of each sub requests using the
logical to physical block mappings that it maintains, it determines
the physical sector numbers correspond to each sub requests, and
issues the read/write requests to the physical SSD. When all sub
requests are finished the responses are sent to the back end driver,
which merges the sub responses into a single response and forwards
to front end driver.

Session 4: Memory and Resource Management ICPE ’21, April 19–23, 2021, Virtual Event, France

109

Figure 4: Messages involved in the vSSD resize operations of
SymFlex.

2.4.3 vSSD resize operations. The manager initiates all resize oper-
ations by sending a resize request to the back end driver. A resize re-
quest contains VM-I D, the number of blocks to be inflated/deflated,
and type of the resize operation. During the vSSD size reduction
operation, the manager deallocates the vSSD blocks from a virtual
machine, and hence the effective size of vSSD reduces. During the
size increase operation, the manager allocates addditional vSSD
blocks to the virtual machine. On receiving the resize requests from
the manager, the back end driver immediately forwards the resize
request to the front end driver.

Sequence of operations performed during a size increase opera-
tion are different from the size reduction operation. When the front
end driver receives the size increase operation request, it sends an
block-allocation-request to the back end driver, and the back end
driver forwards this request to the SymFlex manager. The manager
selects the requested number of physical vSSD blocks from the
free list, allocates the selected blocks to the VM, and replies to the
back end driver with a list of allocated physical block numbers.
The back end driver maps these physical blocks to logical blocks
(which were previously invalidate) and forwards the list of the new
valid logical blocks to the front end driver. The front end driver
updates the corresponding bits of the block bitmap by setting the
bits corresponding to the new valid logical blocks. In addition to
sending the list of logical blocks to the front end driver, the back
end driver also sends the same list to the manager. The manager
updates the per physical block entry with logical block number and
the VM ID of the newly allocated blocks.

During a vSSD size reduction operation, the front-driver re-
quests the cache-management unit of the VM to release blocks.
The VM/application specific cache management unit executes its
own policy to decide the blocks to be freed, and forwards the list
of selected blocks to the front end driver. The front end driver re-
sets the corresponding bits in the bitmap, and forwards the list of
selected logical block numbers to the back end driver. The back
end driver invalidates the logical-to-physical block mapping for the
corresponding logical blocks, and forwards the list of freed physical

blocks to the SymFlex manager. The manager moves those blocks
from the VM-specific list to the free list of physical blocks.

2.4.4 Recovery of blocks. To provide over-commitment of the vSSD
device, the SymFlex manager may opt to swap blocks allocated
to a stopped virtual machine to secondary storage. The manager
periodically detects stopped virtual machines and recovers physical
blocks in the following manner:

• De-allocation of non-persistent blocks: The non-persistent
blocks allocated to a VM are moved to the free list of physical
blocks.

• Swapping of persistent blocks: Physical blocks associated
with blocks with persist flag set are copied to a secondary
storage, along with persisting their physical to logical block
mappings. Subsequently, these physical blocks are moved to
the free list.

When a virtual machine restarts and re-registers with the Sym-
Flex , the manager allocates physical blocks from the SSD, copies
contents of the persistent blocks to the allocated blocks, and up-
dates the physical to logical block mappings, and coordinates with
the back end driver to update its logical to physical block mappings.

3 IMPLEMENTATION DETAILS
We have implemented SymFlex using a Linux + QEMU-KVM plat-
form. The SymFlex front end driver is implemented with Linux ker-
nel version of 4.9.35 and the back end driver as extensions to QEMU
2.9.0. The SymFlex manager is implemented as a multi-threaded
application which communicates with the back end driver using
shared memory. The following subsections discuss implementation
details of each of these components.

3.1 The elastic vSSD device and its drivers
Wemodified the Linux kernel to add a new block IO device, virt_vssd,
which provides the elastic sizing feature. Corresponding SymFlex front
end and back end drivers are implemented virtio_vsdd_driver’s
for the host and the guest Linux kernel. Implementation of the
virt_vssd device is similar to existing virt_blkio device, but
with an additional virtio ring and corresponding call back functions
for SymFlex specific communication between the front-driver and
back end drivers. The read/write data operations on the device are
performed using the data-flow ring/channel and SymFlex specific
control messages are conveyed through control-flow channel (refer
to Figure 2). To send a read/write block IO request or a SymFlex con-
trol message, the SymFlex front end driver formats the request as
virtio queue element and adds the element to the queue attached
the corresponding ring. For each queue, a call back function is
registered at both ends of the IO ring. Pushing an element to a
virtio_vssd queue from the front end invokes the call back func-
tion registered at the back end. The back end driver dequeues the
element from the corresponding queue, converts it to a vSSD IO
request, and process the request/message based on the type of the
request. The back end driver initiates a similar sequence in reverse
to communicate with the front end driver.

3.1.1 SymFlex read/write operations. Semantics and functionalities
of the IO rings used for read/write operations, and the data flow
channel, are the same as the rings used in the existing virtio_block

Session 4: Memory and Resource Management ICPE ’21, April 19–23, 2021, Virtual Event, France

110

technique. With SymFlex, the front end driver first checks whether
the logical block number exists in the vSSD device (as the device
size can change dynamically) before forwarding the request to the
back end. If the logical block does not have a valid mapping, i.e.,
the corresponding bit in the block status bitmap is unset, the front
end driver returns an error (to be handled by the block IO layer or
higher layers). For a valid read/write request, the request is con-
verted to a virtio queue element and pushed to the data flow queue
(IO for data request and response). The back end driver on retriev-
ing the request, determines the type of operation to be performed,
the logical sector number, the number of bytes to read/write and a
list of IO vectors. Each IO vector contains information regarding
the starting memory address and the size of memory region for
the corresponding block IO operation. Further, the back end driver
maps the logical sector number of the vSSD device to a logical
block (based on number of logical sectors per block), then maps
the logical block to a physical block and offsets it with the sector
number, to obtain the physical sector for the IO operation.

Read/write requests may span over multiple logical blocks which
may not be contiguous in the physical range, and such requests
are issued as multiple block IO requests by the back end driver.
The back end determines the starting physical sector number for
each of the sub-requests and also maintains a count and status of
issued sub-request. On completion of a sub-request, its status is
updated to reflect completion. On completion of all the sub-requests,
a response (along with data in case of a read operation) is sent to
the front end driver via the data flow channel.

As an optimization, QEMU dequeues multiple read/write re-
quests at a time from a virtio ring, sorts the requests based on the
starting sector number, merges the sequential requests of same
type (i.e., it merges two or more continuous read requests into a
single request). Requests are merged by copying the IO vectors to
a single request and updating size of the request. With the vSSD
this optimization operates on logical block numbers, and may lead
to fragmented block IO requests on the physical device. To counter
this situation and to amortize the cost of SSD access for caching,
SymFlex operates with large physical block sizes (e.g., vSSD blocks
are of size 1 MB in our prototype implementation).

3.2 SymFlex Manager
The SymFlex Manager is implemented as a multi-threaded user
space application and has three main threads, (i) a listener thread
to communicate with the SymFlex back end drivers of virtual ma-
chines, (ii) a thread to receive registration and configuration inputs
from the user, and (iii) a recovery thread to recover blocks allocated
to inactive virtual machines. In addition, the listener thread creates
a separate thread for processing each message it receives from the
back end drivers. The recovery thread periodically identifies new
inactive VMs, and recovers the blocks of those VMs. The commu-
nication channel between the SymFlex manager and the back end
drivers is a shared memory region which is setup by the manager
when it starts. The shared region is used for transferring the list of
blocks during inflation, deflation and initial registration of the vSSD
device. The list of blocks are exchanged in an iterative manner, with
number of entities dependent on the size of the shared region. The
SymFlex manager and the back end drivers synchronize using a

SSD

Host

VM

Figure 5: Block layer IO caching and application managed
caching use cases of SymFlex.

set of condition variables to signal events for processing by each
entity. The shared region has a small header that encodes the type
of operation (inflate, deflate etc.) and related data for processing.

4 USE CASES
To demonstrate the efficacy of SymFlex, we modified two existing
applications to operate with an elastic SSD device. Figure 5 illus-
trates the integration of SymFlex and usage of the vSSD device for
the two use cases.

4.1 dm-cache with SymFlex
dm-cache[2] is a cache to store disk blocks and is implemented via
the device mapper setup. The device mapper framework requires
three devices to create a dm-cache, an origin device (with large
storage capacity, possibly slower and/or on the network), a cache
device (closer to the disk accesses), and a small metadata device
(used to persist the dm-cache metadata information). With SymFlex,
we employ the elastic vSSD device as the cache device. We config-
ured the granularity of read/write operations of the dm-cache and
the vSSD block size to 1 MB. A SymFlex enhanced dm-cache first
registers with the vSSD SymFlex front end driver, and as a part of
the registration process the front end driver forwards to dm-cache
a bitmap representing the valid logical blocks of the vSSD device.
dm-cache maintains a list of free blocks, clean blocks, and dirty
blocks. As part of SymFlex extensions, we modified dm-cache to
maintain an additional list, the invalid block list. The blocks that we
relinquish as part of run-time vSSD size reduction are maintained
in this list. While servicing a cache miss, the SymFlex dm-cache
selects a block from the free list and copies data from the origin
disk. Once the list is empty, blocks are evicted either from the clean
list or the dirty list based on different eviction policies.

During the vSSD size reduction process, the front end driver
forwards the size reduction request to the SymFlex dm-cache. If the
free list has enough blocks to satisfy the reduction operation, dm-
cache selects blocks from the free list, and moves those blocks into
the invalid list. If the free list does not have enough blocks, blocks

Session 4: Memory and Resource Management ICPE ’21, April 19–23, 2021, Virtual Event, France

111

either from the clean list or dirty list are evicted (based on a pre-
configured dm-cache policy) and moved to the invalid list. Finally,
the block numbers (moved to the invalid list of dm-cache) are sent
to SymFlex front end driver (corresponding bits in the bitmap are
reset to mark invalidity) and forwarded the SymFlex manager via
the SymFlex back end driver.

Similarly, during the vSSD size increase operation, the front end
driver sends dm-cache a list of new valid logical blocks and dm-
cache moves the corresponding cache blocks from the invalid list to
the free list. We use the default dm-cache stochastic multi-queue [2]
policy for eviction of cached objects. Further, the SymFlex enabled
dm-cache can also provide differentiated provisioning of the vSSD
cache across applications. To provide this functionality, we leverage
the cgroups subsystem of Linux. Each application is assumed to
belong to a separate cgroup and a new cgroup variable is added
to the subsystem in order to specify weights for proportionate
sharing of the vSSD cache. To differentiate and identify IO traffic
across applications, we modified the VFS layer to attach cgroup
information of the end point process as part of the bio request.
These cgroup tags are used by the SymFlex dm-cache to manage
cache provisioning across multiple (nested) applications.

4.2 Fatcache with SymFlex
Fatcache [4], a key-value store (similar to memcached [6]), is our
second use case which uses an vSSD device to extend its capacity.
Fatcache uses a slab-based management strategy for managing the
available SSD storage. Each slab (a contiguous region in memory
or on the SSD) is divided into equal sized slots, with different slot
sizes are part of different slab classes. A value is stored in a slot
that is closest to size of the value. Each value is first in the memory
and then drained to the SSD. The metadata for resolving keys to
the slabs is stored in memory. Updates to the in-memory slabs are
drained in batches to the SSD device.

As part of SymFlex extensions to Fatcache, we configure the slab
size to be the same as the vSSD block size. Similar to SymFlex dm-
cache, SymFlex Fatcache registers itself with SymFlex front end
driver when the application starts, and the front end driver returns a
bitmap corresponding to the valid logical blocks. After registration,
SymFlex Fatcache moves the the valid vSSD slabs (slabs with valid
blocks) to a free-ssd-slab list, and those corresponding to invalid
blocks to a invalid-ssd-slab list (this list is part of Symflex related
changes). During reduction in the vSSD size, Fatcache selects slabs
from the free-ssd-slab list to evict, and if these slabs are not enough
to satisfy the deflation operation, slabs from the fully-filled-ssd-slab
list (list of densely packed slabs) are freed up. The selected slabs
are moved to invalid-ssd-slab list. As part of vSSD increase, the
SymFlex front end driver forwards to Fatcache a list of new valid
logical blocks, and and the corresponding vSSD slabs are moved
from the invalid-ssd-slab list to free-ssd-slab list.

5 EVALUATION
5.1 vSSD IO performance benchmarking
Towards benchmarking vSSD characteristics, we first compared the
raw IO performance of the elastic vSSD device with SymFlex virtio
drivers and existing block IO virtualization techniques. The follow-
ing experiments were carried out on a machine with Intel i7-4790K

read:
write
ratio

Throughput (MBps)
vSSD
(1MB)

vSSD
(512KB)

virtio
(raw)

virtio
(qcow2+ext4)

1:0 518.45 518.45 529.31 517.62
1:1 445.24 403.14 462.15 443.10
0:1 331.48 318.45 342.84 332.27

Table 1: Performance comparison of different vSSD and
virtio-blk configurations.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 20 40 60 80 100 120 140 160 180 200
T

im
e
 (

m
s
)

Extent of resize (GB)

fatcache

dm-cache

Figure 6: vSSD resize latency characteristics.

processor and 16GB memory. We configured a virtual machine with
2 GB RAM, 2 VCPUs, a vSSD of capacity 20 GB, and used the fio
benchmarking tool to issue file IO requests from the virtual ma-
chine. A single fio thread issued read and write requests (of size
2MB) to files on the vSSD device, for a cumulative read/write of
20GB worth of data. Table 1 reports the performance of different
virtualization techniques including 2 vSSD configurations and 2
existing virtio_blk configurations. [14]. In the first virtio_blk config-
uration (virtio_blk[raw]), the SSD is directly exposed to the virtual
machine as raw device. With virtio_blk[ext2+qcow2], the SSD is
formatted with the ext4 file system, a virtual disk image with the
qcow2 format is created, and the image is exposed to the virtual
machine. As can been seen from the table, the average reported fio
throughput achieved by the vSSD configurations is always within
4% of the best performing virtio_blk configuration. In fact, it was
slightly better as compared to the virtio variant which used qcow
disk. The performance of vSSD with block sizes of 512 KB was
slightly less than with that 1 MB blocks, and were was expected
as the fio read-write granularity was 2 MB in size. The throughput
similarities hold across different file level read granularity issued
by fio.

We use this result to conclude that our vSSD block device virtual-
ization implementation has performance comparable to the current
block virtualization solutions.

5.1.1 Resize latency characteristics. Next, we characterized latency
of the vSSD size increase and decrease operations of SymFlex. The
setup was a virtual machine running one of the use-cases, dm-cache
or Fatcache, and a series of vSSD size increase and decrease requests
were issued. The corresponding SymFlex block management layers,

Session 4: Memory and Resource Management ICPE ’21, April 19–23, 2021, Virtual Event, France

112

 1400

 1600

 1800

 2000

 2200

 2400

 2600

 2800

 3000

 1 2 3 4 5 6 7 8 9 10

R
e

q
u

e
s
ts

 p
e

r
s
e

c
o

n
d

Capacity (GB)

virtio-blk

vssd

vssd-10GB

Figure 7: Throughput of set operations off the Fatcache ap-
plication.

one at the block IO layer and the other at application layer coor-
dinated with the SymFlex front end driver for resizing the vSSD
device.

We performed experiments on both dm-cache and Fatcache se-
tups by varying the granularity of resize. For each of the experiment,
we measure the total time taken to finish a resize operation, the
time spent in the front end, and the time spent in the back end.
One of the time consuming operations during resize is persisting
metadata. As an optimization, we persist metadata periodically, not
at the end of each resize operation. Figure 6 shows the latency for
vSSD size reductions for dm-cache and the Fatcache setups. The
latency with Fatcache is 2-3 times more than that of dm-cache, as
each resize request has to cross the user-kernel boundary in the VM
and be serviced in the user space. For both increase and decrease in
vSSD size, the time spent in the backend driver is less than 10% of
the duration for resize. Further, we found that the front end driver
consumes most of the time as part of vSSD reduction to identify
blocks to free and coordinate communication with the back-end
driver.

5.1.2 Performance of SymFlex Fatcache. To analyze the impact of
validation of the requests and logical to physical address transla-
tion in the read/write path on application throughput we have per-
formed following experiments. The main aim of these experiments
is to determine performance impact on Fatcache and dm-cache
when they are configured with a fixed size of SSD as compared to
they are inflated or deflated to that particular size. Figure 7, illus-
trates the performance of set operations of Fatcache running in
three different configurations. virtio-blk represents Fatcache run-
ning over existing virtio-blk device, and vssd represents Fatcache
running with a vSSD device. vssd-10GB represents Fatcache using
a vSSD device of size 10GB, with 10 GB being achieved by a series
of resize operations. mcperf, a key value store load generator, is
used to generate load to Fatcache. mcperf opens 100 connects to
Fatcache server and each connection sends 1000 set operation re-
quests of size 100KB to the server. The figure plots performance
of Fatcache for set operations in terms of requests processed per
second against the capacity of SSD allocated for the fatcache. A per-
formance degradation of 4% to 5% is observed in vssd as compared
virtio-blk, and it is due the additional operations performed by vssd

in the read/write path. In addition, a 0.5% to 1% of performance
degradation is observed when the 10GB vssd is deflated to a size as
compared to a pre-configured vSSD of the same size.

We performed another experiment to identify the overhead of
vssd configurations on the performance of fatcache get operations.
Get requests are generated by mcperf which is configured to cre-
ate 100 connections with fatcache server and each connection is
sending 1000 get requests, which are meant to read the values
stored as a part of set operation experiment explained above. We
observed a performance overhead of 2% to 3% in the get operations
as compared to virtio-blk configuration.

5.2 Utility of vSSD elasticity
To demonstrate the utility of elastic vSSD caches, we implemented
two cache provisioning policies in SymFlex—weighted fair share
based provisioning and proportionate IO throughput based provi-
sioning. Here we describe an experiment using the IO throughput
based provisioning approach.

The aim of this experiment was to demonstrate the efficacy of
SymFlex of SLA based provisioning of the SSD resource across vir-
tual machines in an adaptive manner. Figure 8a illustrates a propor-
tionate throughput cache provisioning solution using SymFlexand
figure 8b illustrates the cache size across different VMs during the
experiment. SymFlex is configured to allocate a maximum of 100 GB
of SSD space across four virtual machines. The experiment consists
of four windows, and they start at 0m, 370m, 735m, and 1175m.
The VMs are configured to operate with vSSD IO throughput in the
ratio of 1:2:3:3. The fio tool was running in each virtual machine,
and it reads the entire dm-cache origin device where the 80% of
the accesses are from the first 40GB of the device and the 20% from
the remaining portion of the device. Initially, an equal amount of
vSSD is allocated across all VMs. When all the caches are warmed
up, the policy engine starts enforcing the configured ratios of IO
throughput by resizing the vSSD associated with each virtual ma-
chine. In the second window, we changed the ratio of VMs to 4:2:3:3
and hence the throughput of the VM1 is increased, and throughput
of remaining VMs are reduced. Similarly, we changed the ratio to
4:2:1:1 in the third window. In the fourth window, we changed the
workload of VM3 with less cache requirements (access pattern is
changed as 80% of the accesses from the first 25GB of the device)
and that of VM2 with high cache requirements (first 80% of the
accesses are from first 50GB of the device). This resulted to allocate
less blocks to VM3 and more blocks to VM2 to maintain the same
ratio on throughput values.

5.3 Utility of vSSD persistence
To demonstrate the utility of persistent caching support of SymFlex,
we setup a machine configured with SymFlex-enabled dm-cache
with the persistent block flag set. dm-cache was configured with
a 10GB vSSD and 30GB of origin disk. We used the flexible IO
benchmarking tool fio to generate load to stress dm-cache. The fio
application perform non-sequential IO operations worth of 25GB
on the dm-cache device where the first 75% of the accesses are from
first 30% of the device and the 25% from the remaining portion of
the device. The system is forced to restart at different time instances,
and the dm-cache hit ratio, reported at every 10 seconds, during

Session 4: Memory and Resource Management ICPE ’21, April 19–23, 2021, Virtual Event, France

113

0

10

20

30

40

50

0 200 400 600 800 1000 1200 1400 1600

T
h

r
o

u
g

h
p

u
t

(
M

B
p

s
)

Time (minute)

VM 1

VM 2

VM 3

VM 4

(a) Throughput achieved over time.

0 200 400 600 800 1000 1200 1400 1600

C
a

c
h

e
 s

iz
e

 (
G

B
)

Time (minute)

10

15

20

25

30

35

40

VM 2 VM 3 VM 4 VM 1

(b) Cache size variations with time.

Figure 8: Proportionate throughput based vSSD cache provisioning.

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300 350

H
it
 r

a
te

 (
%

)

Time (s)

First run

Restart at t=40s

Restart at t=60s

Restart at t=90s

Restart at t=120s

Figure 9: Impact of warmed up caches via persistent vSSD
caching.

each run is which as shown in Figure 9. During the first run, fio took
360 seconds to complete the operation and the hit ratio saturated
at 80% after 130s.

During the second round, the virtual machine is forced to restart
at 40 seconds, and fio generates the same workload load, i.e., same
request sequence starting the beginning. On restart, the persistent
vSSD cache was restored and the dm-cache already had the blocks
before the virtual machine get restarted at 40 seconds. Hence, dm-
cache benefits from a warm cache after the restarting —the hit rate
saturates earlier, at 110 second, and fio completes its IO operations
in 300 seconds (compared to 360 seconds with a cold cache). On
subsequent rounds, the VM was restarted after progressively in-
creasing the duration before restart and replaying the original IO
sequence. As expected, the benefits of a persistent warm cache are
larger and can very quickly hit peak performance.

5.4 Differentiated vSSD caching for nested
applications

Figure 10 shows the usecase of SymFlex used to provision the vSSD
cache across applications running inside VMs. Like in the previous
experiments, SymFlex manager is configured to allocate maximum
of 100GB SSD across virtual machines. Initially, two virtual ma-
chines, with each running two instances of the filebench file system

 0

 5

 10

 15

 20

 25

 30

 35

 0 50 100 150 200 250 300

T
h
ro

u
g
h

p
u

t
(M

B
p
s
)

Time (s)

App1 in VM1

App2 in VM1

App3 in VM2

App4 in VM2

Figure 10: Dynamic cache provisioning for applications
nested in VMs with SymFlex and dm-cache using the vSSD.

benchmarking tool, share the vSSD in the ratio of 1:2. The 4 appli-
cations are labelled App1 and App2 (executing in VM1) and App3
and App4 (executing in VM2) and each of them belonged to a sepa-
rate cgroup, which was passed on to the SymFlex dm-cache block
manager. All the four applications create 50 threads and are con-
figured to run file-server workload with 100000 files with mean
directory width of 50 and mean file size of 13840 bytes. For the
first 100 seconds the ratio of the vSSD cache within each VM is set
to 1:1 for both the applications. As is shown in Figure 10, the IO
throughput values for applications in the same VM are identical,
and are approximately twice for applications in the second VM.
After 100 seconds, the ratio of the vSSD for applications in VM2 is
changed to 2:3 and after 200 seconds vSSD sizes available to both
VMs was reduced by 20 GB. In both these cases, the IO throughput
of the applications behaved in the same ratios, with the overall
ratios across VMs still adhering to the 1:2 configuration.

6 CONCLUSION
SymFlex targets to virtualize persistent storage devices and symbi-
otically manage them with cooperation of the hypervisor and the
software entities of the virtual machine. We defined a new type
of elastic virtual SSD (vSSD) for VMs by extending the existing
virtio-blk virtualization design. We showed that the virtualiza-
tion overheads of SymFlex result in IO performance to be within

Session 4: Memory and Resource Management ICPE ’21, April 19–23, 2021, Virtual Event, France

114

5% of conventional virtio based device virtualization. We also im-
plemented frameworks and interfaces to symbiotically manage the
vSSD at the block IO layer and directly by applications. The fea-
tures related to dynamic proportionate sharing of the cache were
demonstrated via extensions to the existing dm-cache and Fatcache
applications.

Currently, SymFlex only supports host local SSDs. An immediate
extension is to provide support for network-attached SSDs, which
will increase applicability of SymFlex for other hosting features
like VM migration and stop-and-copy. Further, SymFlex supports
a single physical SSD for virtualization and also supports a single
vSSD device per VM. We intend to generalize our approach to
accommodate and manage multiple SSD devices to implement a
software-defined hypervisor managed caching layer. SymFlex can
also be integrated with virtual machine specific storage systems
like VMFS Datastores [7, 38] that manage blocks over a cluster of
machines and target optimizations specific to virtual machines —
de-duplication, sharing, snapshots etc.

REFERENCES
[1] bcache. https://bcache.evilpiepirate.org.
[2] device-mapper. https://www.kernel.org/doc/Documentation/device-mapper.
[3] Emc corporation. 2012. emc vfcache. https://www.emc.com.
[4] Fatcache. https://github.com/twitter/fatcache.
[5] lvm-cache. http://man7.org/linux/man-pages/man7/lvmcache.7.html.
[6] memcached. https://github.com/memcached/memcached.
[7] VMFS Datastores. https://docs.vmware.com/en/VMware-vSphere/7.0/

com.vmware.vsphere.storage.doc/GUID-5EE84941-366D-4D37-8B7B-
767D08928888.html.

[8] D. Arteaga, J. Cabrera, J. Xu, S. Sundararaman, and M. Zhao. Cloudcache: On-
demand flash cache management for cloud computing. In 14th USENIX Conference
on File and Storage Technologies (FAST 16), 2016.

[9] A. Badam and V. S. Pai. Ssdalloc: Hybrid ssd/ram memory management made
easy. pages 16–16, 03 2011.

[10] S. Byan, J. Lentini, A. Madan, L. Pabon, M. Condict, J. Kimmel, S. Kleiman, C. Small,
and M. Storer. Mercury: Host-side flash caching for the data center. In 012 IEEE
28th Symposium on Mass Storage Systems and Technologies (MSST), 2012.

[11] A. Gartrell. MCDipper: A key value cache for flash storage. https:
//www.facebook.com/notes/facebook-engineering/mcdipper-a-key-value-
cache-for-flash-storage/101513470904239203.

[12] D. A. Holland, E. Angelino, G. Wald, and M. I. Seltzer. Flash caching on the
storage client. In Presented as part of the 2013 USENIX Annual Technical Conference
(USENIX ATC 13), 2013.

[13] W. K. Josephson, L. A. Bongo, K. Li, and D. Flynn. Dfs: A file system for virtualized
flash storage. ACM Trans. Storage, 6(3).

[14] G. Joshi, S. T. Shingade, and M. R. Shirole. Empirical study of virtual disks
performance with kvm on das. In 2014 International Conference on Advances in
Engineering Technology Research (ICAETR - 2014), 2014.

[15] Y. Kim, A. Gupta, B. Urgaonkar, P. Berman, and A. Sivasubramaniam. Hybridstore:
A cost-efficient, high-performance storage system combining ssds and hdds.
In 2011 IEEE 19th Annual International Symposium on Modelling, Analysis, and
Simulation of Computer and Telecommunication Systems, 2011.

[16] R. Koller, L. Marmol, R. Rangaswami, S. Sundararaman, N. Talagala, and M. Zhao.
Write policies for host-side flash caches. In Presented as part of the 11th USENIX
Conference on File and Storage Technologies (FAST 13), 2013.

[17] R. Koller, A. J. Mashtizadeh, and R. Rangaswami. Centaur: Host-side ssd caching
for storage performance control. In 2015 IEEE International Conference on Auto-
nomic Computing, 2015.

[18] C. Lee, D. Sim, J. Hwang, and S. Cho. F2fs: A new file system for flash storage. In
13th USENIX Conference on File and Storage Technologies (FAST 15), 2015.

[19] J. Lee, J. Jang, J. Lim, Y. G. Shin, K. Lee, and E. Jung. A new ruler on the storage
market: 3d-nand flash for high-density memory and its technology evolutions
and challenges on the future. In 2016 IEEE International Electron Devices Meeting
(IEDM), 2016.

[20] D. Liu, N. Mi, J. Tai, X. Zhu, and J. Lo. Vfrm: Flash resource manager in vmware
esx server. In 2014 IEEE Network Operations and Management Symposium (NOMS),
2014.

[21] X. Liu and K. Salem. Hybrid storage management for database systems. Proc.
VLDB Endow., 6(8).

[22] T. Luo, S. Ma, R. Lee, X. Zhang, D. Liu, and L. Zhou. S-cave: Effective ssd caching
to improve virtual machine storage performance. In Proceedings of the 22nd
International Conference on Parallel Architectures and Compilation Techniques,
2013.

[23] F. Meng, L. Zhou, X. Ma, S. Uttamchandani, and D. Liu. vcacheshare: Automated
server flash cache space management in a virtualization environment. In 2014
USENIX Annual Technical Conference (USENIX ATC 14), 2014.

[24] D. Mishra, P. Kulkarni, and R. Rangaswami. Synergy: A hypervisor managed
holistic caching system. In IEEE Transactions on Cloud Computing, 2017.

[25] D. Mishra, Prashanth, and P. Kulkarni. Doubledecker: A cooperative disk caching
framework for derivative clouds. In Proceedings of the 18th ACM/IFIP/USENIX
Middleware Conference, Middleware ’17, 2017.

[26] S. Mittal and J. S. Vetter. A survey of software techniques for using non-volatile
memories for storage and main memory systems. IEEE Transactions on Parallel
and Distributed Systems, 27(5), 2016.

[27] C. Monzio Compagnoni, A. Goda, A. S. Spinelli, P. Feeley, A. L. Lacaita, and
A. Visconti. Reviewing the evolution of the nand flash technology. Proceedings
of the IEEE, 105(9), 2017.

[28] C. Park, Jaeyu Seo, Sunghwan Bae, Hyojun Kim, Shinhan Kim, and Bumsoo Kim.
A low-cost memory architecture with nand xip for mobile embedded systems.
In First IEEE/ACM/IFIP International Conference on Hardware/ Software Codesign
and Systems Synthesis (IEEE Cat. No.03TH8721), 2003.

[29] C. Park, J. Seo, D. Seo, S. Kim, and B. Kim. Cost-efficient memory architecture
design of nand flash memory embedded systems. In Proceedings 21st International
Conference on Computer Design, 2003.

[30] Po-Liang Wu, Yuan-Hao Chang, and T. Kuo. A file-system-aware ftl design
for flash-memory storage systems. In 2009 Design, Automation Test in Europe
Conference Exhibition, 2009.

[31] G. J. Popek and R. P. Goldberg. Formal requirements for virtualizable third
generation architectures. Commun. ACM, 17(7), July 1974.

[32] T. Pritchett and M. Thottethodi. Sievestore: a highly-selective, ensemble-level
disk cache for cost-performance. In 37th Annual International Symposium on
Computer architecture, 2010.

[33] L. Sang-Won, M. Bongki, P. Chanik, K. Jae-Myung, and K. Sang-Woo. A case for
flash memory ssd in enterprise database applications. In Proceedings of the 2008
ACM SIGMOD International Conference on Management of Data, SIGMOD ’08,
2008.

[34] P. Sehgal, K. Voruganti, and R. Sundaram. Slo-aware hybrid store. In 012 IEEE
28th Symposium on Mass Storage Systems and Technologies (MSST), 2012.

[35] P. Sehgal, K. Voruganti, and R. Sundaram. Slo-aware hybrid store. In 012 IEEE
28th Symposium on Mass Storage Systems and Technologies (MSST), 2012.

[36] Z. Shen, F. Chen, Y. Jia, and Z. Shao. Optimizing flash-based key-value cache
systems. In 8th USENIX Workshop on Hot Topics in Storage and File Systems
(HotStorage 16), 2016.

[37] Z. Shen, F. Chen, Y. Jia, and Z. Shao. Didacache: A deep integration of device and
application for flash based key-value caching. In 15th USENIX Conference on File
and Storage Technologies (FAST 17), 2017.

[38] S. B. Vaghani. Virtual machine file system. SIGOPS Operating System Review.,
44(4):57–70, Dec. 2010.

[39] C. A. Waldspurger. Memory resource management in vmware esx server. SIGOPS
Oper. Syst. Rev., 36(SI), Dec. 2002.

[40] M. Wei, R. Banerjee, L. Zhang, A. Masad, S. Reidy, J. Ahn, H. Chao, C. Lim,
T. Castro, O. Karpenko, M. Ru, R. Fastow, A. Brand, X. Guo, J. Gorman, W. J.
McMahon, B. J. Woo, and A. Fazio. A scalable self-aligned contact nor flash
technology. In 2007 IEEE Symposium on VLSI Technology, 2007.

[41] Q. Yang and J. Ren. I-cash: Intelligently coupled array of ssd and hdd. In 2011
IEEE 17th International Symposium on High Performance Computer Architecture,
2011.

Session 4: Memory and Resource Management ICPE ’21, April 19–23, 2021, Virtual Event, France

115

https://bcache.evilpiepirate.org
https://www.kernel.org/doc/Documentation/device-mapper
https://www.emc.com
https://github.com/twitter/fatcache
http://man7.org/linux/man-pages/man7/lvmcache.7.html
https://github.com/memcached/memcached
https://docs.vmware.com/en/VMware-vSphere/7.0/com.vmware.vsphere.storage.doc/GUID-5EE84941-366D-4D37-8B7B-767D08928888.html
https://docs.vmware.com/en/VMware-vSphere/7.0/com.vmware.vsphere.storage.doc/GUID-5EE84941-366D-4D37-8B7B-767D08928888.html
https://docs.vmware.com/en/VMware-vSphere/7.0/com.vmware.vsphere.storage.doc/GUID-5EE84941-366D-4D37-8B7B-767D08928888.html
https://www.facebook.com/notes/facebook-engineering/mcdipper-a-key-value-cache-for- flash-storage/101513470904239203
https://www.facebook.com/notes/facebook-engineering/mcdipper-a-key-value-cache-for- flash-storage/101513470904239203
https://www.facebook.com/notes/facebook-engineering/mcdipper-a-key-value-cache-for- flash-storage/101513470904239203

	Abstract
	1 Introduction
	1.1 Need for application-aware SSD elasticity
	1.2 Related work

	2 SymFlex Architecture and Design
	2.1 Elastic SSD Virtualization
	2.2 SymFlex manager
	2.3 VM-specific vSSD cache manager
	2.4 SymFlex life cycle

	3 Implementation details
	3.1 The elastic vSSD device and its drivers
	3.2 SymFlex Manager

	4 Use cases
	4.1 dm-cache with SymFlex
	4.2 Fatcache with SymFlex

	5 Evaluation
	5.1 vSSD IO performance benchmarking
	5.2 Utility of vSSD elasticity
	5.3 Utility of vSSD persistence
	5.4 Differentiated vSSD caching for nested applications

	6 Conclusion
	References

