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ABSTRACT 
Modern processors support dynamic voltage and frequency scaling 
(DVFS) that can be leveraged by BIOS or OS drivers to regulate 
energy consumed in run-time. In this paper, we describe the re-
sults of a study that explores the effectiveness of the existing DVFS 
governors by measuring performance, energy efficiency, and the 
product of performance and energy efficiency (PxEE), when run-
ning both the speed and throughput SPEC CPU2017 benchmark 
suites. We find that the processor operates at the highest clock 
frequency even when ~90% of all active CPU cycles are stalled, 
resulting in poor energy-efficiency, especially in the case of 
memory-intensive benchmarks. To remedy this problem, we intro-
duce two new workload-driven DVFS techniques that utilize 
hardware events, (i) the percentage of all stalls (FS-Total Stalls) and 
(ii) the percentage of memory-related stalls (FS-Memory Stalls), 
linearly mapping them into available clock frequencies every 10 
ms. Our experimental evaluation finds that the proposed tech-
niques considerably improve PxEE relative to the case when the 
processor is running at a fixed, nominal frequency. FS-Total Stalls 
improves PxEE by ~26% when all benchmarks are considered and 
~67% when only memory-intensive benchmarks are considered, 
whereas FS-Memory Stalls improves PxEE by ~15% and ~41%, re-
spectively. The proposed techniques thus outperform a prior pro-
posal that utilizes cycles per instruction to control clock frequen-
cies (FS-CPI) that improves PxEE by 4% and 9%, respectively.  

CCS CONCEPTS 
General and reference → Measurement; Evaluation; Per-
formance; Metrics; • Hardware → Energy metering 
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1 INTRODUCTION 
Modern data centers are a vital part of the computing infrastruc-
ture. A majority of the servers in data centers currently utilize x86 
processors. Modern x86 processors have evolved to be extremely 
complex hardware structures, integrating multiple physical cores, 
on-chip interconnect, uncore cache, memory controllers, and a 
slew of hardware accelerators on a single chip. Each processor 
core is highly pipelined with a superscalar out-of-order execution 
engine with speculative execution, hardware prefetching, hyper-
threading, advanced vectorization, and various other performance-
enhancing structures. Modern x86 processors also include a num-
ber of hardware resources dedicated to the monitoring and man-
agement of its operating states [4] [22]. Dynamic Voltage and 
Frequency Scaling (DVFS) is a technique used in modern proces-
sors to adjust the clock frequency and supply voltage of individual 
processor modules, thus enabling significant power and energy 
savings. Each new generation of processors, starting from Intel’s 
Haswell/Broadwell architecture, adds more sophisticated hardware 
resources for managing power consumption [5] [14]. Thus, mod-
ern processors support several performance states (P-states) that 
leverage DVFS and power states (C-states) that allow for unused 
modules to be turned off. 

Generally, algorithms for controlling the P- and C-states are 
carried out by either BIOS firmware or an OS driver, as defined in 
the Advanced Configuration and Power Interface (ACPI) standard 
[23]. The control algorithms (in the further text referred to as gov-
ernors) monitor the utilization of individual processor cores and 
use it as a primary factor in determining their operating states 
[17]. The governors send out requests to a dedicated unit to 
change operating states of individual processor cores and other 
components at regular time intervals (e.g., ~10 ms). Prior research 
efforts have proposed a number of analytical models [13] [16] and 
experimental methods [11] [24] to inform the design and imple-
mentation of these governors. However, these proposals have not 
seen widespread adoption. Many recent proposals leverage per-
formance monitoring units (PMU) that offer a high-fidelity view of 
processor activity. One of the most promising methods is to use 
cycles per instruction (CPI) to determine the optimal P-states [25]. 

In this paper, we first evaluate the effectiveness of the state-of-
the-art BIOS/OS governors. Our evaluation was carried out on a 
workstation with an Intel Core i7-8700K processor, running SPEC 
CPU2017 benchmark suites. We find that the state-of-the-art gov-
ernors tend to put processor cores at the highest possible clock 
frequency, regardless of the properties of benchmarks being exe-
cuted. While this policy maximizes performance for all types of 
benchmarks, it results in wasted energy, especially in the case of 
benchmarks bounded by the memory subsystem. To address this 
problem, we propose two techniques that consider two perfor-
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mance monitoring unit (PMU) events when adjusting the clock 
frequency of processor cores: the total number of stall cycles (FS-
Total Stalls) and the total number of memory stalls (FS-Memory 
Stalls). The percentage of the total stall cycles or the percentage of 
memory stall cycles is linearly mapped to available P-states every 
1 ms.  

The experimental evaluation considers performance (P), energy 
efficiency (EE), and a composite metric that is the product of per-
formance and energy efficiency (PxEE). We compare the effective-
ness of the proposed techniques relative to the effectiveness of the 
state-of-the-art governors and the previously proposed FS-CPI 
technique. All three metrics for all techniques considered are nor-
malized to the case when the processor is running at a fixed, nom-
inal frequency (P1-state). We find that the proposed techniques 
improve energy efficiency at a minimal loss of performance. FS-
Total Stalls improves PxEE by 26% and FS-Memory Stalls by 15%, 
whereas FS-CPI improves PxEE by 9% when all SPEC CPU bench-
marks are considered together. The proposed techniques are espe-
cially effective for memory-bound benchmarks. When compared 
to the state-of-the-art governors, we find that FS-Total Stalls im-
proves PxEE by 64%, when all benchmarks are considered, and by 
134% when only memory-intensive benchmarks are considered, 
whereas FS-Memory Stalls improves PxEE by 50% and 97%, respec-
tively. 

The rest of the paper is organized as follows, Section 2 gives 
background information. Section 3 discusses related work. Section 
4 describes the proposed techniques for workload-driven DVFS. 
Section 5 describes the experimental setup used for the evaluation. 
Section 5.4 describes the results. Finally, Section 7 concludes the 
paper and discusses possible future work. 

2 BACKGROUND & MOTIVATION 
Power management in modern CPUs has seen significant im-
provements over the last two decades. In order to save energy 
when the processor is idle, the processor can enter a low-power 
state. Each processor has several power states, called C-states as 
shown in Figure 1. The C0 state corresponds to the processor ac-
tive mode, where all processor resources are turned on and the 
clocks are active. Within this state, multiple performance, or P-
states, are available, enabling dynamic changes of the processor 
clock frequency and power supply voltage. The P0 state corre-
sponds to the processor's highest operating clock frequency in the 
so-called turbo mode. Higher P-states (P1-Pn) correspond to active 
states with progressively lower processor clock frequency and 
power supply. The C1 power state enables gating the internal 
processor clocks via software while keeping the bus interface and 
the Advanced Configuration and Power Interface (ACPI) active. The 
higher C-states (C2-Cn) progressively turn off more and more 
hardware resources, thus saving more energy, albeit at the cost of 
increased wake-up time.  

Each new generation of modern processors introduces a higher 
number of C- and P-states, faster and more efficient switching 
between states, and a richer set of functions in processor configu-
ration and power control [5] [15]. The BIOS or an OS driver is 
generally responsible for sending requests to a dedicated unit (P-

Unit in Intel processors) that is responsible for monitoring and 
controlling thermal and power aspects of any major component on 
a processor (processor core, memory control, uncore unit, graph-
ical processor unit). This unit then honors or ignores the request 
based on the thermal and power constraints. 

 
Figure 1: Processor Power States (C-states). The C0 state 

corresponds to the normal operating mode when the pro-
cessor is 100% active. Multiple performance states (P0-Pn) 
allow for frequency and voltage scaling within the active 
state. Low-power states (C1-Cn) progressively turn off an 

increasing number of unused resources. 

BIOS and/or OS power profiles/governors govern processor 
thermal and power management. Hardware vendors provide pro-
prietary BIOS governors for P-state and C-state management. If 
control is transferred to the OS, drivers from processor manufac-
turers such as the Intel P-state driver (Intel default) or the CPUFreq 
driver (AMD default) can be utilized. Figure 2 illustrates: (i) the 
BIOS governors supported by a Dell server (top of the graph), (ii) 
the OS governors supported by the Intel P-state driver (bottom, 
left), and (iii) the CPU-Freq generic driver for all Linux-based ma-
chines (bottom, right). The performance profiles are utilized for 
latency-sensitive workloads where the processor always runs at 
the highest possible clock frequency (P0-state) to minimize the 
response time. However, this policy tends to be wasteful when the 
system is idle or underutilized. To alleviate this problem, the gov-
ernors such as ondemad, powersave, or the Dell Active Power Con-
trol (DAPC) are utilized. With these, the processor utilization is 
constantly monitored, and an appropriate P-state is selected in 
order to minimize energy consumption without sacrificing per-
formance. 

The ondemand and powersave governors employ CPU utiliza-
tion as the primary metric to determine appropriate P-states. 
However, the CPU utilization metric used in modern processors 
can be misleading. The metric widely known as ‘%CPU’ can be 
accurately described as the percentage of “non-idle time” in a spe-
cific time window (e.g., 100 ms). The non-idle time corresponds to 
the time the processor is running a useful (non-idle) thread. The 
OS keeps track of the CPU utilization by monitoring context 
switches. When a non-idle thread begins execution the CPU utili-
zation goes to 100% and remains at this level throughout the 
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thread execution. It should be noted that CPU utilization does not 
reflect the actual utilization of the processor pipeline. For example, 
wasted processor clock cycles due to the processor front-end stalls, 
structural hazards in the back-end, stalls due to memory reads and 
writes, and other stalls are not captured by this metric.  

 
Figure 2: BIOS and OS governors 

Figure 3 illustrates a simplified thread execution. In this exam-
ple, a thread runs on a processor core resulting in 90% CPU utiliza-
tion (10% CPU executes an idle thread). However, we can further 
break down the busy processor clock cycles into those doing use-
ful work (30% in this example) and those that are wasted due to 
stalls (60% in this example). The governors relying on the CPU 
utilization only, do not take wasted clock cycles into account as 
they belong to an active thread. In this example, the processor core 
would typically operate at the highest operating frequency (P0-
state). In this paper, we will show that this policy results in wasted 
energy and that a better policy can be derived to increase the en-
ergy-efficiency of benchmarks that spend a lot of time waiting on 
data from the memory subsystem.  

 
Figure 3: CPU Utilization Metric Breakdown 

3 RELATED WORK 
The impact of DVFS on energy-efficiency is extensively studied. 
Thus, researchers have developed an analytical model for power 
consumed in older generations of processors and have used the 
model to determine optimal clock frequency [13]. The closed-form 
mathematical solution to determine optimal frequency [16] saved 
7% of the energy used by the NAS benchmarks. Another experi-
mental-based study explored the effects of DVFS and thread 
counts on the energy-efficiency and performance in several Intel 
processors using the PARSEC benchmark suite [3]. More recently, 
a study has shown that parallel benchmarks achieve better energy-
efficiency when utilizing higher P-states (lower clock frequency) 
[8].  

However, finding an efficient method to select an optimal op-
erating frequency remains a challenging problem. Past studies 
have proposed techniques for DFVS that outperform the current 
power governors. One such method proposes the use of cycles per 
instruction (CPI) when selecting P-states [25]. CPI is a useful tool 
in assessing the performance of a system running a benchmark. 
However, in modern superscalar processors, the interpretation of 
CPI can at times be misleading. As vectorization becomes more 
prevalent, a significant amount of work can be done with a rela-
tively small number of instructions. This artificially increases CPI 
relative to when running non-vectorized code. This is especially 
evident, for example in [9], where the performance of vectorized 
code (with a relatively high CPI) significantly outperforms the 
performance of non-vectorized code (with a relatively low CPI). It 
is better to use fewer SIMD instructions that do more work than to 
use many scalar instructions that retire faster [1] [26]. 

Next, CPI-driven DVFS can lead to sub-optimal frequency scal-
ing in benchmarks with a relatively high percentage of stalls orig-
inating in the processor front-end. These stalls may result in a 
high CPI that will in turn lower the processor clock frequency and 
thus be detrimental to overall performance and energy efficiency. 
In this paper, we evaluate the CPI-based P-state selection tech-
nique by linearly mapping CPI, to the available P-states. Based on 
an analysis of the results, we propose alternative dynamic voltage 
and frequency scaling techniques based on the runtime workload 
parameters obtained from the performance monitoring registers.  

4 PROPOSED DVFS TECHNIQUES  
Superscalar out-of-order processors consist of the front-end that 
fetches and decodes machine instructions into micro-operations 
and the back-end that issues, execute, and retires micro-
operations. Multiple micro-operations can be executed and retired 
in a single clock cycle. The performance of a program directly 
correlates to the percentage of retired pipeline slots. An unused 
pipeline slot implies a stall. The Top-down Micro-architectural 
Analysis Method (TMAM) proposed by A. Yasin provides a practi-
cal method to quickly identify true bottlenecks in Intel processors 
[20]. The TMAM analysis breaks up all pipeline slots into four 
categories: (i) Pipeline slots containing useful micro-operations 
that are issued and retired (Retired); (ii) Pipeline slots containing 
micro-operations that are issued and canceled (Bad Speculation); 
(iii) Pipeline slots that could not be filled with useful micro-
operations due to problems in the front-end (Front-End Bound); 
and (iv) Pipeline slots that could not be filled with useful micro-
operations due to structural and data hazards in the back-end 
(Back-End Bound). 

Based on TMAM, applications can broadly be classified as com-
pute-intensive, balanced, and memory-intensive. Compute-intensive 
refers to applications that are bound by the compute resources 
available. Balanced applications are bound by both the available 
compute resources and the memory subsystem where perfor-
mance depends on both compute resources, memory size, and 
bandwidth. Memory-intensive applications are bound by the 
memory subsystem, where performance is dependent on the avail-
able memory size and bandwidth alone.  

Active Execution 
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Stalled

Performance States 
(P-states)

Power States 
(C-states)

Waiting (10%)
idle

PECS 2021 Workshop ICPE ‘21 Companion, April 19–23, 2021, Virtual Event, France

97



  
 

The processor clock cycles while executing an application can 
be divided into (i) those that contain at least one pipeline slot that 
actively dispatches a micro-operation and (ii) those that contain all 
stalls. The stall cycles can be further divided into (i) on-chip stall 
cycles and (ii) off-chip stall cycles as shown in Figure 4. The on-
chip stall cycles are caused by stalls that originate in the processor 
front-end and the back-end, excluding the stalls caused by the 
memory subsystem. 

 

Figure 4: CPU Cycle Breakdown 

Prior studies exploring static frequency selection have shown 
that the performance of compute-intensive benchmarks scales line-
arly with the clock frequency scaling: an increase in the clock 
frequency results in a proportional increase in the overall perfor-
mance [8]. These benchmarks have a small percentage of stall 
cycles, and when they are present, they mainly originate on-chip. 
The impact of frequency scaling on the performance of balanced 
benchmarks depends on the number and distribution of off-chip 
requests and the number of stalls associated with them. For 
memory-intensive benchmarks, the impact of frequency scaling on 
performance is not linear. An increase in the clock frequency typi-
cally does not result in the proportional increase in performance, 
and consequently, a decrease in the clock frequency does not re-
sult in the proportional decrease in performance.  

We propose two techniques that either use the total stall cycles 
or the total memory-related stall cycles to determine P-states. The 
implementation of the techniques is illustrated in Figure 5. The 
system is initialized to start using the nominal clock frequency 
(P1-state). We utilize the Performance Monitoring Unit (PMU) to 
collect the following events of interest: cycles, instructions, the 
total stall cycles, and the total memory stall cycles. Metrics such as 
CPI, the total stall ratio, and the total memory stall ratio can be 
determined every ~1 ms interval. The obtained data are then used 
to determine P-states as described below. We evaluate three inde-
pendent techniques based on the collected PMU data. They linear-
ly map a metric of interest to all available P-states on the machine, 
including P0 (turbo frequencies). The use of P0 ensures that com-
pute-intensive benchmarks would not see performance loss.  

The first technique, FS-CPI, utilizes the CPI as the metric to de-
termine P-state. CPI ranging from 0 to 6 is linearly mapped onto 
all available P-states. It implements the previously proposed DVFS 
and it is used here for comparison. The second technique, FS-Total 
Stalls, utilizes the ratio of the total stall cycles to all cycles in the 
observation period, as the metric to determine the next P-state. 
This metric accounts for all the stalls associated with the program 
(both the front-end and back-end stalls). The third technique, FS-
Memory Stalls, utilizes the ratio of the memory-related stall cycles 
to all cycles in the observation period to determine the next P-
state.  

 

Figure 5: Proposed DVFS Implementation Flowchart 

Once the P-state is determined, a request is sent out to the P-
unit to switch the P-state. The cycle repeats until the end of the 
execution of the program. The proposed techniques aim to mini-
mize energy consumption for memory-intensive benchmarks that 
have a significant portion of stalls. 

5 EXPERIMENTAL SETUP 
This section provides a brief view of the software and hardware 
setup used in the experimental evaluation. The study utilizes the 
speed and throughput SPEC CPU2017 benchmark suites for testing 
the proposed techniques.  

5.1 SPEC CPU2017 Overview  
SPEC CPU2017 contains 43 benchmarks, organized into four suites 
[27] [2]. The fp_speed/fp_rate and int_speed/int_rate suites (Table 1 
and Table 2) include benchmarks with predominantly floating-
point data and integer data types, respectively, designed to stress 
speed (speed suites) and throughput (rate suites) of modern com-
puter systems. The benchmarks are derived from a wide variety of 
application domains and are written in C, C++, and Fortran pro-
gramming languages. The highlighted (green) speed benchmarks 
are parallelizable through OpenMP.  

A number of prior studies have characterized the SPEC 
CPU2017 benchmarks on modern x86 machines [12] [10]. Based on 
the runtime behavior and resource requirements for each of the 
benchmarks, they can be classified as compute-intensive (CI), bal-
anced (B), and memory-intensive (MI) [7] [6]. Figure 6 shows the 
classification of each of the CPU2017 benchmarks. The classifica-
tion helps better understand the impact of frequency scaling on 
different types of applications.  
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Table 1: SPEC CPU Floating-point Benchmarks 
SPECrate 2017 
Floating Point 

SPECspeed 2017 
Floating Point 

Application Area 

503.bwaves_r 603.bwaves_s Explosion modeling 
507.cactuBSSN_r 607.cactuBSSN_s Physics: relativity 
508.namd_r - Molecular dynamics 
510.parest_r - Biomedical imaging 
511.povray_r - Ray tracing 
519.lbm_r 619.lbm_s Fluid dynamics 
521.wrf_r 621.wrf_s Weather forecasting 
526.blender_r - 3D rendering and animation 
527.cam4_r 627.cam4_s Atmosphere modeling 
- 628.pop2_s Wide-scale ocean modeling 
538.imagick_r 638.imagick_s Image manipulation 
544.nab_r 644.nab_s Molecular dynamics 
549.fotonik3d_r 649.fotonik3d_s Computational Electromagnetics 
554.roms_r 654.roms_s Regional ocean modeling 

Table 2: SPEC CPU2017 Integer Benchmark 
SPECrate 2017 

Integer 
SPECspeed 2017 

Integer 
Application Area 

500.perlbench_r 600.perlbench_s Perl interpreter 
502.gcc_r 602.gcc_s GNU C compiler 
505.mcf_r 605.mcf_s Route planning 

520.omnetpp_r 620.omnetpp_s 
Discrete Event simulation: computer 
network 

523.xalancbmk_r 623.xalancbmk_s XML to HTML conversion via XSLT 
525.x264_r 625.x264_s Video compression 
531.deepsjeng_r 631.deepsjeng_s AI: alpha-beta tree search (Chess) 
541.leela_r 641.leela_s AI: Monte Carlo tree search (Go) 

548.exchange2_r 648.exchange2_s 
AI: recursive solution generator (Sudo-
ku) 

557.xz_r 657.xz_s General data compression 
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Figure 6: SPEC CPU2017 Classification 

5.2 Hardware 
The study primarily utilizes a workstation with an Intel x86 pro-
cessor. The test system is built around an 8th generation Coffee-
Lake-based Core i7-8700K with 6 physical processor cores, manu-
factured using Intel’s 14nm++ technology node as described in 
Table 3. The system has 32 GiB of DRAM. The test system is run-
ning Ubuntu 18.04 LTS natively with sufficient power and cooling 
requirements. The Intel Parallel Studio Cluster XE 2018 is used to 
compile all the CPU2017 benchmarks with -O3 optimization level 
[9]. 

Intel processors, from the Sandy Bridge microarchitecture, 
have included the Running Average Power Limit (RAPL) interface 

designed to limit on-chip power while ensuring maximum perfor-
mance [21]. The interface supports fine-grain time measurement 
of power, energy, and temperature of the socket, individual cores, 
uncore structures, and on-chip GPUs. Intel has validated the ener-
gy estimates provided by the RAPL interface to actual power con-
sumption. Studies have explored the effectiveness of on-chip pow-
er meters and explained hardware and soft-ware optimizations as 
a function of performance and energy efficiency [5]. Various tools 
make use of the RAPL interface to enable power and energy meas-
urements of different domains [19] [18]. We use the likwid tool to 
read the processor’s model-specific registers that measure proces-
sor package power consumption. 

Table 3: Test System Parameters  
Test System Intel Workstation 
Processor Core i7-8700K 
Lithography 14nm 
Intel Codename Coffee-Lake 
Core Count 6 (12 Logical Cores) 
CPU Max Turbo Freq. 4.70 GHz 
All Core Turbo Freq. 4.30 GHz 
CPU Nominal. Freq. 3.7 GHz 
CPU Min Freq. 0.8 GHz 
# P-States 39 
RAM 32 GB DDR4 
RAM Freq. 2400 MHz 
TDP (watts) 95 W 

5.3 Metrics 
A reference measurement set is established for each of the 
CPU2017 benchmarks by measuring their execution times, T(Bi, 
3.7), and energy consumed, E(Bi, 3.7) when the processor clock is 
set to the nominal frequency of 3.7 GHz. The speed benchmarks 
are run with 6 threads, whereas the rate benchmarks are run with 
6 copies, thus matching the number of physical processor cores. To 
compare various techniques, we define performance speedup, P.S, 
calculated as shown in Eq. 1, where T(Bi, DVFSGOV) is the execu-
tion time of a speed benchmark Bi when a DVFS governor is in 
charge of P-states. Similarly, we calculate energy efficiency im-
provement EE.I, of each benchmark as shown in Eq. 2.  

𝑃. 𝑆 (𝐵𝑖 , 𝐷𝑉𝐹𝑆𝐺𝑂𝑉)  =
𝑇(𝐵𝑖 , 3.7 )

𝑇(𝐵𝑖 , 𝐷𝑉𝐹𝑆𝐺𝑂𝑉)
  (1) 

𝐸𝐸. 𝐼 (𝐵𝑖, 𝐷𝑉𝐹𝑆𝐺𝑂𝑉) =
𝐸(𝐵𝑖 , 3.7 )

𝐸(𝐵𝑖 , 𝐷𝑉𝐹𝑆𝐺𝑂𝑉)
  (2) 

Finally, a single-number metric that captures both performance 
and energy efficiency, termed PxEE. Consequently, when compar-
ing the effectiveness of a DVFS governor versus the reference run, 
PxEE.I improvement defined in Eq. 3 is used.  

𝑃𝑥𝐸𝐸. 𝐼(𝐵𝑖 , 𝐷𝑉𝐹𝑆𝐺𝑂𝑉) =
 𝑇(𝐵𝑖, 3.7 ) ∗ 𝐸(𝐵𝑖 , 3.7 )

𝑇(𝐵𝑖 , 𝐷𝑉𝐹𝑆𝐺𝑂𝑉 ) ∗ 𝐸(𝐵𝑖 , 𝐷𝑉𝐹𝑆𝐺𝑂𝑉)
  (3) 

5.4 Experiments 
For a comprehensive evaluation, we use the following DVFS tech-
niques: (a) CPU-utilization-based OS-ondemand (also known as 
powersave; it is identical to performance for all CPU2017 bench-
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marks), (b) FS-CPI, (c) FS-Total Stalls, (d) FS-Memory Stalls, and (e) 
the manually selected P-states to maximize the PxEE metric for 
each benchmark separately, Static Selection. All the techniques are 
run for the same configuration of the benchmarks and the results 
are presented as the speedup relative to the reference run with the 
fixed, nominal frequency (3.7 GHz), Ref(Nominal). The experi-
ments are repeated 3 times and the median value is reported. We 
find that the margin of error is under 2%. 

6 RESULTS 
This section discusses the experimental results for performance, 
energy-efficiency, and PxEE.  

6.1 Performance 
Figure 7 shows the performance speedup, P.S as defined in Eq. 1. 
Expectedly, the OS-powersave/ondemand governor provides the 
best performance. This governor takes advantage of the turbo-
modes, yielding a proportional speedup to the compute-intensive 
benchmarks (~15%). In the case of the balanced benchmarks, it 
provides mostly positive results (~7% gain). In the case of memory-
intensive benchmarks, minimal gains (~1%) are observed.  

FS-CPI provides the next best performance overall. It yields ~7% 
gains for the compute-intensive benchmarks, whereas the balanced 
and memory-intensive see a performance loss of ~4% and ~3% re-
spectively. FS-Memory Stalls degrades the overall performance by 
~4%. The compute-intensive benchmarks see marginal performance 
gains. The balanced and memory-intensive benchmarks see a per-
formance degradation by ~10% and ~5%, respectively. FS-Total 
Stalls has the worst overall performance (loss of ~10%). The degra-
dation is especially high for the balanced benchmarks (~19%). 

6.2 Energy Efficiency 
Figure 8 shows the energy efficiency improvement as defined in 
Eq. 2. We first observe that the power consumption of OS-

powersave/ondemand is consistently higher than that of all other 
techniques, resulting in the lowest energy efficiency improvement 
metric (a ~26% loss in EE.I).  

FS-CPI provides the least overall gains in EE.I (~4%) of all the 
techniques. The compute-intensive benchmarks see an EE.I loss 
(~12%) because of the use of turbo-mode. The balanced applications 
see the minimal impact (loss of ~1%). The memory-intensive appli-
cation sees a gain of ~31%. Next, FS-Memory Stalls provides a bit 
better energy efficiency overall (~12%). The compute-intensive 
benchmarks see an EE.I loss (~13%) because of the use of turbo-
mode. The balanced applications see marginal gains (~12%). How-
ever, the memory-intensive application sees a significant gain of 
~47%. Finally, FS-Total Stalls provides the best overall EE.I. Minor 
degradation is observed for the compute-intensive benchmarks. 
However, it improves energy-efficiency by ~30% for the balanced 
benchmarks and by ~80% for the memory-intensive benchmarks.  

6.3 PxEE 
Figure 9 shows the PxEE.I metric as defined in Eq. 3. The OS-
powersave/ondemand has the worst PxEE.I, especially for the bal-
anced and memory-intensive benchmarks with a PxEE.I loss of ~22% 
and ~29%, respectively. 

FS-CPI has a marginal PxEE.I degradation for the compute-
intensive (~7%) and balanced (~4%) benchmarks. However, the 
memory-intensive benchmarks see a gain of ~28%. FS-Memory Stalls 
provides the next best overall PxEE.I (~15%). The compute-intensive 
benchmarks see a loss of ~8%. However, the PxEE.I improves by 
~4% for the balanced benchmarks and ~41% for the memory-
intensive benchmarks. Finally, FS-Total Stalls provides the best 
overall PxEE.I of ~26%. A loss of ~6% is seen for the compute-
intensive benchmarks. However, it improves PxEE.I by ~8% for the 
balanced benchmarks and ~67% for the memory intensive bench-
marks.  

 

Figure 7: Performance Speedup for individual SPEC CPU2017 Benchmarks 
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6.4 Results Summary 
Figure 10 shows a summarized view of all three metrics for the 
evaluated techniques. The speedup metrics are calculated by 
considering all benchmarks together, i.e., the execution times and 
energies consumed are summarized across all benchmarks before 
they are used in equations (1)-(3). Overall, the OS governors 
(ondemand/powesave) provide the best performance, but with a 
huge penalty in energy efficiency: the total performance gain of 
6% results in a 26% increase in the energy consumed, resulting in a 
PxEE.I loss of ~23%. While the manual static frequency selection 
provides an estimate of achievable gains, it is of little practical use, 
as it would require profiling all benchmarks for all possible P-
states in advance. FS-CPI offers marginal improvements in energy-
efficiency of 4%. FS-Total Stall (FS-TS) results in performance 
degradation of 10%, but significant improvements in energy-
efficiency (29%) and the composite metric PxEE.I (26%). FS-Memory 
Stall (FS-MS) reduces the performance losses but shows modest 
gains in energy efficiency.  

These results underscore the high potential of the proposed 
techniques. The gains can be further increased if the proposed 
techniques are only used when the memory-intensive benchmarks 
are run. 

 

Figure 10: Summary of total performance, energy-
efficiency, and PxEE improvements for SPEC CPU2017  
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Figure 8: Energy-Efficiency Improvement for individual SPEC CPU2017 Benchmarks 

 

Figure 9: PxEE Improvement for individual SPEC CPU2017 Benchmarks 
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7 CONCLUSIONS 
Dynamic voltage and frequency scaling is one of the most im-
portant tools in regulating processor power consumption. The 
current implementations of DVFS governors in modern OSes are 
heavily focused on providing the best possible performance. As the 
cost of computing increases, more power-oriented DVFS gover-
nors need to be implemented. The paper presents the results of the 
measurement-based analysis of various dynamic voltage and fre-
quency scaling techniques. We observe that the current implemen-
tation of DVFS in BIOS/OS is not ideal for memory-intensive 
benchmarks. We investigate the effectiveness of CPI-based fre-
quency selection and propose new techniques that utilize the total 
stalls and the memory stalls to determine the optimal P-state. Uti-
lizing the PxEE metric that incorporates both performance and 
energy efficiency, we show that our proposed techniques provide 
PxEE improvement of ~29% when using the total stalls and ~15% 
when using the memory-related stalls as the primary metrics for 
driving DVFS.  

In terms of future work, the proposed techniques FS-Total Stalls 
and FS-Memory Stalls implement a linear mapping onto the availa-
ble operating states (P-states). This assumes that the relationship 
between the power and frequency is linear. However, in reality, 
we can observe through measurements that this is not the case. 
Thus, better mapping of stall parameters to clock frequency is 
desirable.  
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