
An Experimental Evaluation of Workload Driven DVFS

Ranjan Hebbar
Electrical and Computer Engineering,

The University of Alabama in Huntsville;
rr0062@uah.edu

Aleksandar Milenković
Electrical and Computer Engineering,

The University of Alabama in Huntsville;
milenka@uah.edu

ABSTRACT
Modern processors support dynamic voltage and frequency scaling
(DVFS) that can be leveraged by BIOS or OS drivers to regulate
energy consumed in run-time. In this paper, we describe the re-
sults of a study that explores the effectiveness of the existing DVFS
governors by measuring performance, energy efficiency, and the
product of performance and energy efficiency (PxEE), when run-
ning both the speed and throughput SPEC CPU2017 benchmark
suites. We find that the processor operates at the highest clock
frequency even when ~90% of all active CPU cycles are stalled,
resulting in poor energy-efficiency, especially in the case of
memory-intensive benchmarks. To remedy this problem, we intro-
duce two new workload-driven DVFS techniques that utilize
hardware events, (i) the percentage of all stalls (FS-Total Stalls) and
(ii) the percentage of memory-related stalls (FS-Memory Stalls),
linearly mapping them into available clock frequencies every 10
ms. Our experimental evaluation finds that the proposed tech-
niques considerably improve PxEE relative to the case when the
processor is running at a fixed, nominal frequency. FS-Total Stalls
improves PxEE by ~26% when all benchmarks are considered and
~67% when only memory-intensive benchmarks are considered,
whereas FS-Memory Stalls improves PxEE by ~15% and ~41%, re-
spectively. The proposed techniques thus outperform a prior pro-
posal that utilizes cycles per instruction to control clock frequen-
cies (FS-CPI) that improves PxEE by 4% and 9%, respectively.

CCS CONCEPTS
General and reference → Measurement; Evaluation; Per-
formance; Metrics; • Hardware → Energy metering

KEYWORDS
DVFS, ACPI, Benchmarks, Energy-efficiency, Measurements.

ACM Reference format:

Ranjan Hebbar and Aleksandar Milenković. 2021. An Experimental Evalua-
tion of Workload Driven DVFS. In the Companion of the 2021 ACM/SPEC
International Conference on Performance Engineering, (ICPE'21 Companion),
April 19-23, 2021, Virtual Event, France. ACM, New York, NY, USA. 8 pages.
https://doi.org/10.1145/3447545.3451192

1 INTRODUCTION
Modern data centers are a vital part of the computing infrastruc-
ture. A majority of the servers in data centers currently utilize x86
processors. Modern x86 processors have evolved to be extremely
complex hardware structures, integrating multiple physical cores,
on-chip interconnect, uncore cache, memory controllers, and a
slew of hardware accelerators on a single chip. Each processor
core is highly pipelined with a superscalar out-of-order execution
engine with speculative execution, hardware prefetching, hyper-
threading, advanced vectorization, and various other performance-
enhancing structures. Modern x86 processors also include a num-
ber of hardware resources dedicated to the monitoring and man-
agement of its operating states [4] [22]. Dynamic Voltage and
Frequency Scaling (DVFS) is a technique used in modern proces-
sors to adjust the clock frequency and supply voltage of individual
processor modules, thus enabling significant power and energy
savings. Each new generation of processors, starting from Intel’s
Haswell/Broadwell architecture, adds more sophisticated hardware
resources for managing power consumption [5] [14]. Thus, mod-
ern processors support several performance states (P-states) that
leverage DVFS and power states (C-states) that allow for unused
modules to be turned off.

Generally, algorithms for controlling the P- and C-states are
carried out by either BIOS firmware or an OS driver, as defined in
the Advanced Configuration and Power Interface (ACPI) standard
[23]. The control algorithms (in the further text referred to as gov-
ernors) monitor the utilization of individual processor cores and
use it as a primary factor in determining their operating states
[17]. The governors send out requests to a dedicated unit to
change operating states of individual processor cores and other
components at regular time intervals (e.g., ~10 ms). Prior research
efforts have proposed a number of analytical models [13] [16] and
experimental methods [11] [24] to inform the design and imple-
mentation of these governors. However, these proposals have not
seen widespread adoption. Many recent proposals leverage per-
formance monitoring units (PMU) that offer a high-fidelity view of
processor activity. One of the most promising methods is to use
cycles per instruction (CPI) to determine the optimal P-states [25].

In this paper, we first evaluate the effectiveness of the state-of-
the-art BIOS/OS governors. Our evaluation was carried out on a
workstation with an Intel Core i7-8700K processor, running SPEC
CPU2017 benchmark suites. We find that the state-of-the-art gov-
ernors tend to put processor cores at the highest possible clock
frequency, regardless of the properties of benchmarks being exe-
cuted. While this policy maximizes performance for all types of
benchmarks, it results in wasted energy, especially in the case of
benchmarks bounded by the memory subsystem. To address this
problem, we propose two techniques that consider two perfor-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or repub-
lish, to post on servers, or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
ICPE'21 Companion, April 19–23, 2021, Virtual Event, France
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8331-8/21/04…$15.00
https://doi.org/10.1145/3447545.3451192

PECS 2021 Workshop ICPE ‘21 Companion, April 19–23, 2021, Virtual Event, France

95

https://doi.org/10.1145/3447545.3451192

mance monitoring unit (PMU) events when adjusting the clock
frequency of processor cores: the total number of stall cycles (FS-
Total Stalls) and the total number of memory stalls (FS-Memory
Stalls). The percentage of the total stall cycles or the percentage of
memory stall cycles is linearly mapped to available P-states every
1 ms.

The experimental evaluation considers performance (P), energy
efficiency (EE), and a composite metric that is the product of per-
formance and energy efficiency (PxEE). We compare the effective-
ness of the proposed techniques relative to the effectiveness of the
state-of-the-art governors and the previously proposed FS-CPI
technique. All three metrics for all techniques considered are nor-
malized to the case when the processor is running at a fixed, nom-
inal frequency (P1-state). We find that the proposed techniques
improve energy efficiency at a minimal loss of performance. FS-
Total Stalls improves PxEE by 26% and FS-Memory Stalls by 15%,
whereas FS-CPI improves PxEE by 9% when all SPEC CPU bench-
marks are considered together. The proposed techniques are espe-
cially effective for memory-bound benchmarks. When compared
to the state-of-the-art governors, we find that FS-Total Stalls im-
proves PxEE by 64%, when all benchmarks are considered, and by
134% when only memory-intensive benchmarks are considered,
whereas FS-Memory Stalls improves PxEE by 50% and 97%, respec-
tively.

The rest of the paper is organized as follows, Section 2 gives
background information. Section 3 discusses related work. Section
4 describes the proposed techniques for workload-driven DVFS.
Section 5 describes the experimental setup used for the evaluation.
Section 5.4 describes the results. Finally, Section 7 concludes the
paper and discusses possible future work.

2 BACKGROUND & MOTIVATION
Power management in modern CPUs has seen significant im-
provements over the last two decades. In order to save energy
when the processor is idle, the processor can enter a low-power
state. Each processor has several power states, called C-states as
shown in Figure 1. The C0 state corresponds to the processor ac-
tive mode, where all processor resources are turned on and the
clocks are active. Within this state, multiple performance, or P-
states, are available, enabling dynamic changes of the processor
clock frequency and power supply voltage. The P0 state corre-
sponds to the processor's highest operating clock frequency in the
so-called turbo mode. Higher P-states (P1-Pn) correspond to active
states with progressively lower processor clock frequency and
power supply. The C1 power state enables gating the internal
processor clocks via software while keeping the bus interface and
the Advanced Configuration and Power Interface (ACPI) active. The
higher C-states (C2-Cn) progressively turn off more and more
hardware resources, thus saving more energy, albeit at the cost of
increased wake-up time.

Each new generation of modern processors introduces a higher
number of C- and P-states, faster and more efficient switching
between states, and a richer set of functions in processor configu-
ration and power control [5] [15]. The BIOS or an OS driver is
generally responsible for sending requests to a dedicated unit (P-

Unit in Intel processors) that is responsible for monitoring and
controlling thermal and power aspects of any major component on
a processor (processor core, memory control, uncore unit, graph-
ical processor unit). This unit then honors or ignores the request
based on the thermal and power constraints.

Figure 1: Processor Power States (C-states). The C0 state

corresponds to the normal operating mode when the pro-
cessor is 100% active. Multiple performance states (P0-Pn)
allow for frequency and voltage scaling within the active
state. Low-power states (C1-Cn) progressively turn off an

increasing number of unused resources.

BIOS and/or OS power profiles/governors govern processor
thermal and power management. Hardware vendors provide pro-
prietary BIOS governors for P-state and C-state management. If
control is transferred to the OS, drivers from processor manufac-
turers such as the Intel P-state driver (Intel default) or the CPUFreq
driver (AMD default) can be utilized. Figure 2 illustrates: (i) the
BIOS governors supported by a Dell server (top of the graph), (ii)
the OS governors supported by the Intel P-state driver (bottom,
left), and (iii) the CPU-Freq generic driver for all Linux-based ma-
chines (bottom, right). The performance profiles are utilized for
latency-sensitive workloads where the processor always runs at
the highest possible clock frequency (P0-state) to minimize the
response time. However, this policy tends to be wasteful when the
system is idle or underutilized. To alleviate this problem, the gov-
ernors such as ondemad, powersave, or the Dell Active Power Con-
trol (DAPC) are utilized. With these, the processor utilization is
constantly monitored, and an appropriate P-state is selected in
order to minimize energy consumption without sacrificing per-
formance.

The ondemand and powersave governors employ CPU utiliza-
tion as the primary metric to determine appropriate P-states.
However, the CPU utilization metric used in modern processors
can be misleading. The metric widely known as ‘%CPU’ can be
accurately described as the percentage of “non-idle time” in a spe-
cific time window (e.g., 100 ms). The non-idle time corresponds to
the time the processor is running a useful (non-idle) thread. The
OS keeps track of the CPU utilization by monitoring context
switches. When a non-idle thread begins execution the CPU utili-
zation goes to 100% and remains at this level throughout the

C0

P0 P1 P2 P3

C1

C2

Cn

Pn

. . .

. . .

Performance States (P-States)

Power
States

(C-States)

PECS 2021 Workshop ICPE ‘21 Companion, April 19–23, 2021, Virtual Event, France

96

thread execution. It should be noted that CPU utilization does not
reflect the actual utilization of the processor pipeline. For example,
wasted processor clock cycles due to the processor front-end stalls,
structural hazards in the back-end, stalls due to memory reads and
writes, and other stalls are not captured by this metric.

Figure 2: BIOS and OS governors

Figure 3 illustrates a simplified thread execution. In this exam-
ple, a thread runs on a processor core resulting in 90% CPU utiliza-
tion (10% CPU executes an idle thread). However, we can further
break down the busy processor clock cycles into those doing use-
ful work (30% in this example) and those that are wasted due to
stalls (60% in this example). The governors relying on the CPU
utilization only, do not take wasted clock cycles into account as
they belong to an active thread. In this example, the processor core
would typically operate at the highest operating frequency (P0-
state). In this paper, we will show that this policy results in wasted
energy and that a better policy can be derived to increase the en-
ergy-efficiency of benchmarks that spend a lot of time waiting on
data from the memory subsystem.

Figure 3: CPU Utilization Metric Breakdown

3 RELATED WORK
The impact of DVFS on energy-efficiency is extensively studied.
Thus, researchers have developed an analytical model for power
consumed in older generations of processors and have used the
model to determine optimal clock frequency [13]. The closed-form
mathematical solution to determine optimal frequency [16] saved
7% of the energy used by the NAS benchmarks. Another experi-
mental-based study explored the effects of DVFS and thread
counts on the energy-efficiency and performance in several Intel
processors using the PARSEC benchmark suite [3]. More recently,
a study has shown that parallel benchmarks achieve better energy-
efficiency when utilizing higher P-states (lower clock frequency)
[8].

However, finding an efficient method to select an optimal op-
erating frequency remains a challenging problem. Past studies
have proposed techniques for DFVS that outperform the current
power governors. One such method proposes the use of cycles per
instruction (CPI) when selecting P-states [25]. CPI is a useful tool
in assessing the performance of a system running a benchmark.
However, in modern superscalar processors, the interpretation of
CPI can at times be misleading. As vectorization becomes more
prevalent, a significant amount of work can be done with a rela-
tively small number of instructions. This artificially increases CPI
relative to when running non-vectorized code. This is especially
evident, for example in [9], where the performance of vectorized
code (with a relatively high CPI) significantly outperforms the
performance of non-vectorized code (with a relatively low CPI). It
is better to use fewer SIMD instructions that do more work than to
use many scalar instructions that retire faster [1] [26].

Next, CPI-driven DVFS can lead to sub-optimal frequency scal-
ing in benchmarks with a relatively high percentage of stalls orig-
inating in the processor front-end. These stalls may result in a
high CPI that will in turn lower the processor clock frequency and
thus be detrimental to overall performance and energy efficiency.
In this paper, we evaluate the CPI-based P-state selection tech-
nique by linearly mapping CPI, to the available P-states. Based on
an analysis of the results, we propose alternative dynamic voltage
and frequency scaling techniques based on the runtime workload
parameters obtained from the performance monitoring registers.

4 PROPOSED DVFS TECHNIQUES
Superscalar out-of-order processors consist of the front-end that
fetches and decodes machine instructions into micro-operations
and the back-end that issues, execute, and retires micro-
operations. Multiple micro-operations can be executed and retired
in a single clock cycle. The performance of a program directly
correlates to the percentage of retired pipeline slots. An unused
pipeline slot implies a stall. The Top-down Micro-architectural
Analysis Method (TMAM) proposed by A. Yasin provides a practi-
cal method to quickly identify true bottlenecks in Intel processors
[20]. The TMAM analysis breaks up all pipeline slots into four
categories: (i) Pipeline slots containing useful micro-operations
that are issued and retired (Retired); (ii) Pipeline slots containing
micro-operations that are issued and canceled (Bad Speculation);
(iii) Pipeline slots that could not be filled with useful micro-
operations due to problems in the front-end (Front-End Bound);
and (iv) Pipeline slots that could not be filled with useful micro-
operations due to structural and data hazards in the back-end
(Back-End Bound).

Based on TMAM, applications can broadly be classified as com-
pute-intensive, balanced, and memory-intensive. Compute-intensive
refers to applications that are bound by the compute resources
available. Balanced applications are bound by both the available
compute resources and the memory subsystem where perfor-
mance depends on both compute resources, memory size, and
bandwidth. Memory-intensive applications are bound by the
memory subsystem, where performance is dependent on the avail-
able memory size and bandwidth alone.

Active Execution
(30%)

Busy (90%) Idle (10%)

Waiting (60 %)
Stalled

Performance States
(P-states)

Power States
(C-states)

Waiting (10%)
idle

PECS 2021 Workshop ICPE ‘21 Companion, April 19–23, 2021, Virtual Event, France

97

The processor clock cycles while executing an application can
be divided into (i) those that contain at least one pipeline slot that
actively dispatches a micro-operation and (ii) those that contain all
stalls. The stall cycles can be further divided into (i) on-chip stall
cycles and (ii) off-chip stall cycles as shown in Figure 4. The on-
chip stall cycles are caused by stalls that originate in the processor
front-end and the back-end, excluding the stalls caused by the
memory subsystem.

Figure 4: CPU Cycle Breakdown

Prior studies exploring static frequency selection have shown
that the performance of compute-intensive benchmarks scales line-
arly with the clock frequency scaling: an increase in the clock
frequency results in a proportional increase in the overall perfor-
mance [8]. These benchmarks have a small percentage of stall
cycles, and when they are present, they mainly originate on-chip.
The impact of frequency scaling on the performance of balanced
benchmarks depends on the number and distribution of off-chip
requests and the number of stalls associated with them. For
memory-intensive benchmarks, the impact of frequency scaling on
performance is not linear. An increase in the clock frequency typi-
cally does not result in the proportional increase in performance,
and consequently, a decrease in the clock frequency does not re-
sult in the proportional decrease in performance.

We propose two techniques that either use the total stall cycles
or the total memory-related stall cycles to determine P-states. The
implementation of the techniques is illustrated in Figure 5. The
system is initialized to start using the nominal clock frequency
(P1-state). We utilize the Performance Monitoring Unit (PMU) to
collect the following events of interest: cycles, instructions, the
total stall cycles, and the total memory stall cycles. Metrics such as
CPI, the total stall ratio, and the total memory stall ratio can be
determined every ~1 ms interval. The obtained data are then used
to determine P-states as described below. We evaluate three inde-
pendent techniques based on the collected PMU data. They linear-
ly map a metric of interest to all available P-states on the machine,
including P0 (turbo frequencies). The use of P0 ensures that com-
pute-intensive benchmarks would not see performance loss.

The first technique, FS-CPI, utilizes the CPI as the metric to de-
termine P-state. CPI ranging from 0 to 6 is linearly mapped onto
all available P-states. It implements the previously proposed DVFS
and it is used here for comparison. The second technique, FS-Total
Stalls, utilizes the ratio of the total stall cycles to all cycles in the
observation period, as the metric to determine the next P-state.
This metric accounts for all the stalls associated with the program
(both the front-end and back-end stalls). The third technique, FS-
Memory Stalls, utilizes the ratio of the memory-related stall cycles
to all cycles in the observation period to determine the next P-
state.

Figure 5: Proposed DVFS Implementation Flowchart

Once the P-state is determined, a request is sent out to the P-
unit to switch the P-state. The cycle repeats until the end of the
execution of the program. The proposed techniques aim to mini-
mize energy consumption for memory-intensive benchmarks that
have a significant portion of stalls.

5 EXPERIMENTAL SETUP
This section provides a brief view of the software and hardware
setup used in the experimental evaluation. The study utilizes the
speed and throughput SPEC CPU2017 benchmark suites for testing
the proposed techniques.

5.1 SPEC CPU2017 Overview
SPEC CPU2017 contains 43 benchmarks, organized into four suites
[27] [2]. The fp_speed/fp_rate and int_speed/int_rate suites (Table 1
and Table 2) include benchmarks with predominantly floating-
point data and integer data types, respectively, designed to stress
speed (speed suites) and throughput (rate suites) of modern com-
puter systems. The benchmarks are derived from a wide variety of
application domains and are written in C, C++, and Fortran pro-
gramming languages. The highlighted (green) speed benchmarks
are parallelizable through OpenMP.

A number of prior studies have characterized the SPEC
CPU2017 benchmarks on modern x86 machines [12] [10]. Based on
the runtime behavior and resource requirements for each of the
benchmarks, they can be classified as compute-intensive (CI), bal-
anced (B), and memory-intensive (MI) [7] [6]. Figure 6 shows the
classification of each of the CPU2017 benchmarks. The classifica-
tion helps better understand the impact of frequency scaling on
different types of applications.

Total Execution
Cycles

Total Execution
Cycles Active

Total Execution
Cycles Stalled

Total Execution Cycles
Stalled On-Chip

Total Execution Cycles
Stalled Off-Chip

Performance Monitoring
(1 ms interval)

Start

Read PMU Data

Initialize (Nominal
Operating Frequency-P1)

Determine P-state

Send P-state Request to
Processor

Instructions

Cycles

Total Memory Related Stalls

Total Stall Cycles

Done

End of
Program

Yes

No

PECS 2021 Workshop ICPE ‘21 Companion, April 19–23, 2021, Virtual Event, France

98

Table 1: SPEC CPU Floating-point Benchmarks
SPECrate 2017
Floating Point

SPECspeed 2017
Floating Point

Application Area

503.bwaves_r 603.bwaves_s Explosion modeling
507.cactuBSSN_r 607.cactuBSSN_s Physics: relativity
508.namd_r - Molecular dynamics
510.parest_r - Biomedical imaging
511.povray_r - Ray tracing
519.lbm_r 619.lbm_s Fluid dynamics
521.wrf_r 621.wrf_s Weather forecasting
526.blender_r - 3D rendering and animation
527.cam4_r 627.cam4_s Atmosphere modeling
- 628.pop2_s Wide-scale ocean modeling
538.imagick_r 638.imagick_s Image manipulation
544.nab_r 644.nab_s Molecular dynamics
549.fotonik3d_r 649.fotonik3d_s Computational Electromagnetics
554.roms_r 654.roms_s Regional ocean modeling

Table 2: SPEC CPU2017 Integer Benchmark
SPECrate 2017

Integer
SPECspeed 2017

Integer
Application Area

500.perlbench_r 600.perlbench_s Perl interpreter
502.gcc_r 602.gcc_s GNU C compiler
505.mcf_r 605.mcf_s Route planning

520.omnetpp_r 620.omnetpp_s
Discrete Event simulation: computer
network

523.xalancbmk_r 623.xalancbmk_s XML to HTML conversion via XSLT
525.x264_r 625.x264_s Video compression
531.deepsjeng_r 631.deepsjeng_s AI: alpha-beta tree search (Chess)
541.leela_r 641.leela_s AI: Monte Carlo tree search (Go)

548.exchange2_r 648.exchange2_s
AI: recursive solution generator (Sudo-
ku)

557.xz_r 657.xz_s General data compression

SPEC
CPU2017

fp_speed

BCI MI

int_speed fp_rate int_rate

BCI MI BCI MI BCI MI

638
644

607
621
627
628

603
619
649
654

600
625
631
641
648

602
605
623
657

620

508
511
526
538
544

507
510
521
527

503
519
549
554

500
525
531
541
548

502
505
523
557

520

Figure 6: SPEC CPU2017 Classification

5.2 Hardware
The study primarily utilizes a workstation with an Intel x86 pro-
cessor. The test system is built around an 8th generation Coffee-
Lake-based Core i7-8700K with 6 physical processor cores, manu-
factured using Intel’s 14nm++ technology node as described in
Table 3. The system has 32 GiB of DRAM. The test system is run-
ning Ubuntu 18.04 LTS natively with sufficient power and cooling
requirements. The Intel Parallel Studio Cluster XE 2018 is used to
compile all the CPU2017 benchmarks with -O3 optimization level
[9].

Intel processors, from the Sandy Bridge microarchitecture,
have included the Running Average Power Limit (RAPL) interface

designed to limit on-chip power while ensuring maximum perfor-
mance [21]. The interface supports fine-grain time measurement
of power, energy, and temperature of the socket, individual cores,
uncore structures, and on-chip GPUs. Intel has validated the ener-
gy estimates provided by the RAPL interface to actual power con-
sumption. Studies have explored the effectiveness of on-chip pow-
er meters and explained hardware and soft-ware optimizations as
a function of performance and energy efficiency [5]. Various tools
make use of the RAPL interface to enable power and energy meas-
urements of different domains [19] [18]. We use the likwid tool to
read the processor’s model-specific registers that measure proces-
sor package power consumption.

Table 3: Test System Parameters
Test System Intel Workstation
Processor Core i7-8700K
Lithography 14nm
Intel Codename Coffee-Lake
Core Count 6 (12 Logical Cores)
CPU Max Turbo Freq. 4.70 GHz
All Core Turbo Freq. 4.30 GHz
CPU Nominal. Freq. 3.7 GHz
CPU Min Freq. 0.8 GHz
P-States 39
RAM 32 GB DDR4
RAM Freq. 2400 MHz
TDP (watts) 95 W

5.3 Metrics
A reference measurement set is established for each of the
CPU2017 benchmarks by measuring their execution times, T(Bi,
3.7), and energy consumed, E(Bi, 3.7) when the processor clock is
set to the nominal frequency of 3.7 GHz. The speed benchmarks
are run with 6 threads, whereas the rate benchmarks are run with
6 copies, thus matching the number of physical processor cores. To
compare various techniques, we define performance speedup, P.S,
calculated as shown in Eq. 1, where T(Bi, DVFSGOV) is the execu-
tion time of a speed benchmark Bi when a DVFS governor is in
charge of P-states. Similarly, we calculate energy efficiency im-
provement EE.I, of each benchmark as shown in Eq. 2.

𝑃. 𝑆 (𝐵𝑖 , 𝐷𝑉𝐹𝑆𝐺𝑂𝑉) =
𝑇(𝐵𝑖 , 3.7)

𝑇(𝐵𝑖 , 𝐷𝑉𝐹𝑆𝐺𝑂𝑉)
 (1)

𝐸𝐸. 𝐼 (𝐵𝑖, 𝐷𝑉𝐹𝑆𝐺𝑂𝑉) =
𝐸(𝐵𝑖 , 3.7)

𝐸(𝐵𝑖 , 𝐷𝑉𝐹𝑆𝐺𝑂𝑉)
 (2)

Finally, a single-number metric that captures both performance
and energy efficiency, termed PxEE. Consequently, when compar-
ing the effectiveness of a DVFS governor versus the reference run,
PxEE.I improvement defined in Eq. 3 is used.

𝑃𝑥𝐸𝐸. 𝐼(𝐵𝑖 , 𝐷𝑉𝐹𝑆𝐺𝑂𝑉) =
 𝑇(𝐵𝑖, 3.7) ∗ 𝐸(𝐵𝑖 , 3.7)

𝑇(𝐵𝑖 , 𝐷𝑉𝐹𝑆𝐺𝑂𝑉) ∗ 𝐸(𝐵𝑖 , 𝐷𝑉𝐹𝑆𝐺𝑂𝑉)
 (3)

5.4 Experiments
For a comprehensive evaluation, we use the following DVFS tech-
niques: (a) CPU-utilization-based OS-ondemand (also known as
powersave; it is identical to performance for all CPU2017 bench-

PECS 2021 Workshop ICPE ‘21 Companion, April 19–23, 2021, Virtual Event, France

99

marks), (b) FS-CPI, (c) FS-Total Stalls, (d) FS-Memory Stalls, and (e)
the manually selected P-states to maximize the PxEE metric for
each benchmark separately, Static Selection. All the techniques are
run for the same configuration of the benchmarks and the results
are presented as the speedup relative to the reference run with the
fixed, nominal frequency (3.7 GHz), Ref(Nominal). The experi-
ments are repeated 3 times and the median value is reported. We
find that the margin of error is under 2%.

6 RESULTS
This section discusses the experimental results for performance,
energy-efficiency, and PxEE.

6.1 Performance
Figure 7 shows the performance speedup, P.S as defined in Eq. 1.
Expectedly, the OS-powersave/ondemand governor provides the
best performance. This governor takes advantage of the turbo-
modes, yielding a proportional speedup to the compute-intensive
benchmarks (~15%). In the case of the balanced benchmarks, it
provides mostly positive results (~7% gain). In the case of memory-
intensive benchmarks, minimal gains (~1%) are observed.

FS-CPI provides the next best performance overall. It yields ~7%
gains for the compute-intensive benchmarks, whereas the balanced
and memory-intensive see a performance loss of ~4% and ~3% re-
spectively. FS-Memory Stalls degrades the overall performance by
~4%. The compute-intensive benchmarks see marginal performance
gains. The balanced and memory-intensive benchmarks see a per-
formance degradation by ~10% and ~5%, respectively. FS-Total
Stalls has the worst overall performance (loss of ~10%). The degra-
dation is especially high for the balanced benchmarks (~19%).

6.2 Energy Efficiency
Figure 8 shows the energy efficiency improvement as defined in
Eq. 2. We first observe that the power consumption of OS-

powersave/ondemand is consistently higher than that of all other
techniques, resulting in the lowest energy efficiency improvement
metric (a ~26% loss in EE.I).

FS-CPI provides the least overall gains in EE.I (~4%) of all the
techniques. The compute-intensive benchmarks see an EE.I loss
(~12%) because of the use of turbo-mode. The balanced applications
see the minimal impact (loss of ~1%). The memory-intensive appli-
cation sees a gain of ~31%. Next, FS-Memory Stalls provides a bit
better energy efficiency overall (~12%). The compute-intensive
benchmarks see an EE.I loss (~13%) because of the use of turbo-
mode. The balanced applications see marginal gains (~12%). How-
ever, the memory-intensive application sees a significant gain of
~47%. Finally, FS-Total Stalls provides the best overall EE.I. Minor
degradation is observed for the compute-intensive benchmarks.
However, it improves energy-efficiency by ~30% for the balanced
benchmarks and by ~80% for the memory-intensive benchmarks.

6.3 PxEE
Figure 9 shows the PxEE.I metric as defined in Eq. 3. The OS-
powersave/ondemand has the worst PxEE.I, especially for the bal-
anced and memory-intensive benchmarks with a PxEE.I loss of ~22%
and ~29%, respectively.

FS-CPI has a marginal PxEE.I degradation for the compute-
intensive (~7%) and balanced (~4%) benchmarks. However, the
memory-intensive benchmarks see a gain of ~28%. FS-Memory Stalls
provides the next best overall PxEE.I (~15%). The compute-intensive
benchmarks see a loss of ~8%. However, the PxEE.I improves by
~4% for the balanced benchmarks and ~41% for the memory-
intensive benchmarks. Finally, FS-Total Stalls provides the best
overall PxEE.I of ~26%. A loss of ~6% is seen for the compute-
intensive benchmarks. However, it improves PxEE.I by ~8% for the
balanced benchmarks and ~67% for the memory intensive bench-
marks.

Figure 7: Performance Speedup for individual SPEC CPU2017 Benchmarks

 0.50

 0.60

 0.70

 0.80

 0.90

 1.00

 1.10

 1.20

 1.30

 6
38

.im
a

g
ic

k_
s

 6
4

4
.n

a
b

_s

 5
0

8
.n

a
m

d
_r

 5
1

1
.p

o
vr

a
y_

r

 5
26

.b
le

n
d

er
_r

 5
38

.im
a

g
ic

k_
r

 5
44

.n
a

b
_r

 5
00

.p
er

lb
en

ch
_r

 5
25

.x
2

64
_r

 5
3

1
.d

ee
p

sj
en

g
_r

 5
4

1
.le

el
a

_r

 5
48

.e
xc

h
a

n
g

e2
_r

 6
07

.c
a

ct
u

B
SS

N
_s

 6
2

1
.w

rf
_s

 6
27

.c
a

m
4

_s

 6
28

.p
o

p
2_

s

 6
5

7
.x

z_
s

 5
0

7
.c

a
ct

u
B

SS
N

_r

 5
10

.p
a

re
st

_r

 5
21

.w
rf

_r

 5
27

.c
a

m
4

_r

 5
02

.g
cc

_r

 5
0

5
.m

cf
_r

 5
23

.x
a

la
n

cb
m

k_
r

 5
57

.x
z_

r

 6
03

.b
w

a
ve

s_
s

 6
1

9
.lb

m
_

s

 6
49

.f
o

to
n

ik
3d

_s

 6
5

4
.r

o
m

s_
s

 5
03

.b
w

a
ve

s_
r

 5
1

9
.lb

m
_

r

 5
4

9
.f

o
to

n
ik

3
d

_r

 5
5

4
.r

o
m

s_
r

 5
2

0
.o

m
n

et
p

p
_r

 Compute-intensive Balanced Memory-Intensive

Sp
ee

d
u

p

Performance Speedup for SPEC CPU2017 Benchmarks

 Ref (nominal) OS-powersave/ondemand FS-CPI FS-Total Stalls FS-Memory Stalls Static Selection

PECS 2021 Workshop ICPE ‘21 Companion, April 19–23, 2021, Virtual Event, France

100

6.4 Results Summary
Figure 10 shows a summarized view of all three metrics for the
evaluated techniques. The speedup metrics are calculated by
considering all benchmarks together, i.e., the execution times and
energies consumed are summarized across all benchmarks before
they are used in equations (1)-(3). Overall, the OS governors
(ondemand/powesave) provide the best performance, but with a
huge penalty in energy efficiency: the total performance gain of
6% results in a 26% increase in the energy consumed, resulting in a
PxEE.I loss of ~23%. While the manual static frequency selection
provides an estimate of achievable gains, it is of little practical use,
as it would require profiling all benchmarks for all possible P-
states in advance. FS-CPI offers marginal improvements in energy-
efficiency of 4%. FS-Total Stall (FS-TS) results in performance
degradation of 10%, but significant improvements in energy-
efficiency (29%) and the composite metric PxEE.I (26%). FS-Memory
Stall (FS-MS) reduces the performance losses but shows modest
gains in energy efficiency.

These results underscore the high potential of the proposed
techniques. The gains can be further increased if the proposed
techniques are only used when the memory-intensive benchmarks
are run.

Figure 10: Summary of total performance, energy-
efficiency, and PxEE improvements for SPEC CPU2017

1.00
1.06

0.99
0.90 0.96 0.92

0.74

1.04

1.29

1.12

1.21

0.77

1.09 1.26
1.15

1.19

 0.5

 0.6

 0.7

 0.8

 0.9

 1.0

 1.1

 1.2

 1.3

 1.4

 1.5

 Ref
(nominal)

 OS
(powersave)

 FS-CPI FS-TS FS-MS Static
Selection

Performance, Energy Efficiency & PxEE Improvements

 PS EE.I PxEE.I

Figure 8: Energy-Efficiency Improvement for individual SPEC CPU2017 Benchmarks

Figure 9: PxEE Improvement for individual SPEC CPU2017 Benchmarks

 0.50

 0.70

 0.90

 1.10

 1.30

 1.50

 1.70

 1.90

 2.10

 2.30
 6

3
8

.im
a

g
ic

k_
s

 6
4

4
.n

a
b

_s

 5
0

8
.n

a
m

d
_r

 5
1

1
.p

o
vr

a
y_

r

 5
2

6
.b

le
n

d
er

_
r

 5
3

8
.im

a
g

ic
k_

r

 5
4

4
.n

a
b

_r

 5
00

.p
er

lb
en

ch
_r

 5
2

5
.x

2
6

4
_r

 5
3

1
.d

ee
p

sj
en

g
_r

 5
4

1
.le

el
a

_r

 5
4

8
.e

xc
h

a
n

g
e2

_r

 6
0

7
.c

a
ct

u
B

SS
N

_s

 6
2

1
.w

rf
_s

 6
2

7
.c

a
m

4
_s

 6
2

8
.p

o
p

2
_s

 6
5

7
.x

z_
s

 5
0

7
.c

a
ct

u
B

SS
N

_r

 5
1

0
.p

a
re

st
_r

 5
2

1
.w

rf
_r

 5
2

7
.c

a
m

4
_r

 5
0

2
.g

cc
_r

 5
0

5
.m

cf
_r

 5
2

3
.x

a
la

n
cb

m
k_

r

 5
5

7
.x

z_
r

 6
0

3
.b

w
a

ve
s_

s

 6
1

9
.lb

m
_

s

 6
4

9
.f

o
to

n
ik

3
d

_s

 6
54

.r
o

m
s_

s

 5
0

3
.b

w
a

ve
s_

r

 5
1

9
.lb

m
_

r

 5
4

9
.f

o
to

n
ik

3
d

_r

 5
5

4
.r

o
m

s_
r

 5
2

0
.o

m
n

et
p

p
_r

 Compute-intensive Balanced Memory-Intensive

EE
.I

Energy Efficiency Improvement for SPEC CPU2017 Benchmarks

 Ref (nominal) OS-powersave/ondemand FS-CPI FS-Total Stalls FS-Memory Stalls Static Selection

 0.50

 0.70

 0.90

 1.10

 1.30

 1.50

 1.70

 1.90

 2.10

 6
38

.im
a

g
ic

k_
s

 6
44

.n
a

b
_s

 5
08

.n
a

m
d

_r

 5
11

.p
o

vr
a

y_
r

 5
26

.b
le

n
d

er
_

r

 5
38

.im
a

g
ic

k_
r

 5
44

.n
a

b
_r

 5
00

.p
er

lb
en

ch
_r

 5
25

.x
2

64
_r

 5
31

.d
ee

p
sj

en
g

_r

 5
41

.le
el

a
_r

 5
48

.e
xc

h
a

n
g

e2
_r

 6
07

.c
a

ct
u

B
SS

N
_s

 6
21

.w
rf

_s

 6
27

.c
a

m
4

_s

 6
28

.p
o

p
2_

s

 6
57

.x
z_

s

 5
07

.c
a

ct
u

B
SS

N
_r

 5
10

.p
a

re
st

_r

 5
21

.w
rf

_r

 5
27

.c
a

m
4

_r

 5
02

.g
cc

_r

 5
05

.m
cf

_r

 5
23

.x
a

la
n

cb
m

k_
r

 5
57

.x
z_

r

 6
03

.b
w

a
ve

s_
s

 6
19

.lb
m

_
s

 6
49

.f
o

to
n

ik
3d

_s

 6
54

.r
o

m
s_

s

 5
03

.b
w

a
ve

s_
r

 5
19

.lb
m

_
r

 5
49

.f
o

to
n

ik
3d

_r

 5
54

.r
o

m
s_

r

 5
20

.o
m

n
et

p
p

_r

 Compute-intensive Balanced Memory-Intensive

P
xE

E.
I

PxEE Improvements for SPEC CPU2017 Benchmarks

 Ref (nominal) OS-powersave/ondemand FS-CPI FS-Total Stalls FS-Memory Stalls Static Selection

PECS 2021 Workshop ICPE ‘21 Companion, April 19–23, 2021, Virtual Event, France

101

7 CONCLUSIONS
Dynamic voltage and frequency scaling is one of the most im-
portant tools in regulating processor power consumption. The
current implementations of DVFS governors in modern OSes are
heavily focused on providing the best possible performance. As the
cost of computing increases, more power-oriented DVFS gover-
nors need to be implemented. The paper presents the results of the
measurement-based analysis of various dynamic voltage and fre-
quency scaling techniques. We observe that the current implemen-
tation of DVFS in BIOS/OS is not ideal for memory-intensive
benchmarks. We investigate the effectiveness of CPI-based fre-
quency selection and propose new techniques that utilize the total
stalls and the memory stalls to determine the optimal P-state. Uti-
lizing the PxEE metric that incorporates both performance and
energy efficiency, we show that our proposed techniques provide
PxEE improvement of ~29% when using the total stalls and ~15%
when using the memory-related stalls as the primary metrics for
driving DVFS.

In terms of future work, the proposed techniques FS-Total Stalls
and FS-Memory Stalls implement a linear mapping onto the availa-
ble operating states (P-states). This assumes that the relationship
between the power and frequency is linear. However, in reality,
we can observe through measurements that this is not the case.
Thus, better mapping of stall parameters to clock frequency is
desirable.

REFERENCES
[1] Alaa R Alameldeen and David A Wood. 2006. IPC Considered Harmful for

Multiprocessor Workloads. IEEE Micro 26, 4 (July 2006), 8–17.
DOI:https://doi.org/10.1109/MM.2006.73

[2] James Bucek, Klaus-Dieter Lange, and Jóakim v. Kistowski. 2018. SPEC
CPU2017: Next-Generation Compute Benchmark. In Companion of the 2018
ACM/SPEC International Conference on Performance Engineering - ICPE ’18,
ACM Press, Berlin, Germany, 41–42.
DOI:https://doi.org/10.1145/3185768.3185771

[3] Armen Dzhagaryan and Aleksandar Milenković. 2014. Impact of thread and
frequency scaling on performance and energy in modern multicores: a meas-
urement-based study. In Proceedings of the 2014 ACM Southeast Regional Confer-
ence (ACM SE ’14), Association for Computing Machinery, New York, NY, USA,
1–6. DOI:https://doi.org/10.1145/2638404.2638473

[4] Lev Finkelstein, Efraim Rotem, Aviad Cohen, Ronny Ronen, and Doron Rajwan.
2013. Power management for multiple processor cores. Retrieved November 18,
2020 from https://patents.google.com/patent/US8402290B2/en

[5] Daniel Hackenberg, Robert Schöne, Thomas Ilsche, Daniel Molka, Joseph Schu-
chart, and Robin Geyer. 2015. An Energy Efficiency Feature Survey of the Intel
Haswell Processor. In 2015 IEEE International Parallel and Distributed Processing
Symposium Workshop, 896–904. DOI:https://doi.org/10.1109/IPDPSW.2015.70

[6] Ranjan Hebbar S R. 2018. Spec CPU2017: Performance, Energy and Event Char-
acterization on Modern Processors. M.S.E. The University of Alabama in Hunts-
ville, United States -- Alabama. Retrieved March 4, 2019 from
https://search.proquest.com/docview/2176930551/abstract/2D54E63E98594146P
Q/1

[7] Ranjan Hebbar S R and Aleksandar Milenković. 2019. SPEC CPU2017: Perfor-
mance, Event, and Energy Characterization on the Core i7-8700K. In Proceedings
of the 2019 ACM/SPEC International Conference on Performance Engineering
(ICPE ’19), ACM, New York, NY, USA, 111–118.
DOI:https://doi.org/10.1145/3297663.3310314

[8] Ranjan Hebbar S R and Aleksandar Milenković. 2019. Impact of Thread and
Frequency Scaling on Performance and Energy Efficiency: An Evaluation of

Core i7-8700K Using SPEC CPU2017. In 2019 SoutheastCon, 1–7.
DOI:https://doi.org/10.1109/SoutheastCon42311.2019.9020637

[9] Ranjan Hebbar S R, Mounika Ponugoti, and Aleksandar Milenković. 2019. Battle
of Compilers: An Experimental Evaluation Using SPEC CPU2017. In 2019 South-
eastCon, 1–8. DOI:https://doi.org/10.1109/SoutheastCon42311.2019.9020474

[10] Ankur Limaye and Tosiron Adegbija. 2018. A Workload Characterization of the
SPEC CPU2017 Benchmark Suite. In 2018 IEEE International Symposium on Per-
formance Analysis of Systems and Software (ISPASS), 149–158.
DOI:https://doi.org/10.1109/ISPASS.2018.00028

[11] Arindam Mallik, Bin Lin, Gokhan Memik, Peter Dinda, and Robert P Dick. 2006.
User-Driven Frequency Scaling. IEEE Computer Architecture Letters 5, 2 (Febru-
ary 2006), 16–16. DOI:https://doi.org/10.1109/L-CA.2006.16

[12] Reena Panda, Shuang Song, Joseph Dean, and Lizy K John. 2018. Wait of a
Decade: Did SPEC CPU 2017 Broaden the Performance Horizon? In 2018 IEEE
International Symposium on High Performance Computer Architecture (HPCA),
271–282. DOI:https://doi.org/10.1109/HPCA.2018.00032

[13] Thomas Rauber, Gudula Rünger, and Matthias Stachowski. 2019. Model-based
optimization of the energy efficiency of multi-threaded applications. Sustainable
Computing: Informatics and Systems 22, (June 2019), 44–61.
DOI:https://doi.org/10.1016/j.suscom.2019.01.022

[14] Efraim Rotem, Alon Naveh, Avinash Ananthakrishnan, Eliezer Weissmann, and
Doron Rajwan. 2012. Power-Management Architecture of the Intel Microarchi-
tecture Code-Named Sandy Bridge. IEEE Micro 32, 2 (March 2012), 20–27.
DOI:https://doi.org/10.1109/MM.2012.12

[15] Rober Schöne, Thomas Ilsche, Mario Bielert, Andreas Gocht, and Daniel
Hackenberg. 2019. Energy Efficiency Features of the Intel Skylake-SP Processor
and Their Impact on Performance. In 2019 International Conference on High Per-
formance Computing Simulation (HPCS), 399–406.
DOI:https://doi.org/10.1109/HPCS48598.2019.9188239

[16] Vaibhav Sundriyal and Masha Sosonkina. 2018. Modeling of the CPU frequency
to minimize energy consumption in parallel applications. Sustainable Compu-
ting: Informatics and Systems 17, (March 2018), 1–8.
DOI:https://doi.org/10.1016/j.suscom.2017.12.002

[17] Guy Therien and Michael Walz. 2006. Power management system that changes
processor level if processor utilization crosses threshold over a period that is dif-
ferent for switching up or down. Retrieved November 18, 2020 from
https://patents.google.com/patent/US7017060B2/en

[18] Jan Treibig, Georg Hager, and Gerhard Wellein. 2010. LIKWID: A Lightweight
Performance-Oriented Tool Suite for x86 Multicore Environments. In 2010 39th
International Conference on Parallel Processing Workshops, 207–216.
DOI:https://doi.org/10.1109/ICPPW.2010.38

[19] Vincent M Weaver, Matt Johnson, Kiran Kasichayanula, James Ralph, Piotr
Luszczek, Dan Terpstra, and Shirley Moore. 2012. Measuring Energy and Power
with PAPI. In 2012 41st International Conference on Parallel Processing Work-
shops, 262–268. DOI:https://doi.org/10.1109/ICPPW.2012.39

[20] Ahmad Yasin. 2014. A Top-Down method for performance analysis and coun-
ters architecture. In IEEE International Symposium on Performance Analysis of
Systems and Software, 35–44. DOI:https://doi.org/10.1109/ISPASS.2014.6844459

[21] Huazhe Zhang and Henry Hoffmann. 2015. A Quantitative Evaluation of the
RAPL Power Control System. Feedback Computing 2015 (2015), 6.

[22] Power Management States: P-States, C-States, and Package C-States. Retrieved
August 21, 2020 from
https://software.intel.com/content/www/us/en/develop/articles/power-
management-states-p-states-c-states-and-package-c-states.html

[23] Advanced Configuration and Power Interface - an overview | ScienceDirect
Topics. Retrieved January 20, 2021 from
https://www.sciencedirect.com/topics/computer-science/advanced-
configuration-and-power-interface

[24] US7840825B2 - Method for autonomous dynamic voltage and frequency scaling
of microprocessors - Google Patents. Retrieved October 20, 2019 from
https://patents.google.com/patent/US7840825B2/en

[25] US8219993B2 - Frequency scaling of processing unit based on aggregate thread
CPI metric - Google Patents. Retrieved October 20, 2019 from
https://patents.google.com/patent/US8219993B2/en

[26] Recognize and Measure Vectorization Performance. Intel. Retrieved January 30,
2021 from
https://www.intel.com/content/www/us/en/develop/articles/recognizing-and-
measuring-vectorization-performance.html

[27] SPEC CPU® 2017. Retrieved March 19, 2018 from
https://www.spec.org/cpu2017/

PECS 2021 Workshop ICPE ‘21 Companion, April 19–23, 2021, Virtual Event, France

102

