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ABSTRACT
Key-value stores are currently used by major cloud computing ven-
dors, such as Google, Facebook, and LinkedIn, to support large-scale
applications with concurrent read and write operations. Based on
very simple data access APIs, the key-value stores can deliver out-
standing throughput, which have been hooked up to high-performan-
ce solid-state drives (SSDs) to boost this performance even further.
However, measuring performance interference on SSDs while shar-
ing cloud computing resources is complex and not well covered by
current benchmarks and tools. Different applications can access
these resources concurrently until becoming overloaded without
notice either by the benchmark or the cloud application. In this
paper, we define a methodology to measure the problem of perfor-
mance interference. Depending on the block size and the proportion
of concurrent write operations, we show how a key-value store
may quickly degrade throughput until becoming almost inoperative
while sharing persistent storage resources with other tenants.
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1 INTRODUCTION
In this paper, we consider the performance interference of key-
value stores when competing for persistent storage resources. In
cloud computing environments, a common strategy to reduce costs
is to increase tenants’ density in the same hardware. However, this
strategy comes with the inconvenience of performance interference
among tenants due to the competition for computing resources.
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Even in a single-node, this performance interference may poten-
tially impair an entire database cluster.

Benchmarking is a powerful tool to assess performance before
deploying a system into production. Although YCSB [7] and db_-
bench [13] are representative key-value benchmarks, their major
drawback is that they only analyze a one-sided perspective, without
considering the multi-tenant effect and the underlying hardware.

In this paper, we design a benchmarking strategy, named “pres-
sure scale,” to uncover performance interference by putting pressure
into the key-value stores’ components. This strategy consists of a
systematic methodology that progressively increases the concur-
rent workload intensity on a shared persistent storage device to
reveal unpredictable performance states.

The class of storage devices considered by our benchmarking
strategy corresponds to the solid-state drives (SSDs) based on flash
memory. SSDs are becoming very common within cloud computing
infrastructures. Despite the promised superior performance inmany
workloads, the internal architecture of these devices is far more
complex than traditional hard disk drives (HDDs), i.e., the out-of-
place updates due to the necessity of erasing blocks before writing
and the use of flash translation layers (FTLs) [14]. Such a complexity
not only hinders the performance modeling of a single application
but also turns it even more complex in multi-tenant environments.

As the key-value store, we evaluate the performance of RocksDB
[13], a storage engine based on Log-Structured Merge-trees (LSM-
trees) that has its design focused on SSDs. RocksDB is currently
used in production by many companies and cloud applications, as
at Facebook, LinkedIn, and Yahoo.

By applying our methodology, we quantify the pressure of dif-
ferent concurrent workloads on the key-value store’s performance.
The experiments conducted in this work demonstrate that the per-
formance impact is highly dependent on block size and the pro-
portion of write operations in the concurrent workload mix. These
results show that such a strategy is efficient in catching uncovered
functional issues in RocksDB.

The remainder of this paper is organized as follows. Section 2
introduces the pressure scale methodology. Section 3 describes the
experimental setup and shows the main results using the bench-
marks YCSB and db_bench. Section 4 lists the related work and
Section 5 summarizes the conclusions of this work.

2 THE PRESSURE SCALE METHODOLOGY
We propose the pressure scalemethodology to measure the perfor-
mance interference that a key-value storage engine may experience
when sharing persistent storage resources with other concurrent
workloads. The following definitions formalize the concepts used
in this paper:
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Definition 1. LetW be the set of possible concurrent workloads,
andC be the set of performance criteria to be analyzed for a particular
system. We define pressure ρ :W → C as a functional mapping be-
tweenW and C , i.e., workloads that pressure the system performance.

Definition 2. Let (C, ⪯C ) be a linearly ordered set, where ca ⪯C cb
means “ca is an inferior performance value than or equal to cb ” for ca
and cb ∈ C . We denote pressure scale as a linear preorder (W , ⪰W ),
such thatwa ⪰W wb iff ρ(wa ) ⪯C ρ(wb ). The relationwa ⪰W wb
means “wa exerts more or the same pressure thanwb .”

According to Definition 1, this paper considers the key-value
store’s throughput as the primary performance criterion (C). Once
fewer throughput represents worse performance, ⪯C can be triv-
ially defined as ≤ (Def. 2). We determine the pressure function (ρ)
experimentally by measuring the key-value store’s average perfor-
mance for each instance ofW . Considering w0 as the condition
with no concurrent workloads, we define normalized pressure as
the difference between ρ(w0) and ρ(wi ) ∈W normalized by ρ(w0),
i.e., ρ(w0)−ρ(wi )

ρ(w0)
.

Our objective is to define several instances ofW that produce
different degrees of pressure. In order to generate these instances,
we implemented a configurable micro-benchmark, named access_-
time3, and combined four simultaneous instances of it [17]. Each
instance of this micro-benchmark can perform read() and write()
system calls on a large file (10 GiB) within a closed-loop according
to the following parameters: block size (bs), i.e., the size of each
read and write operation; random ratio (rr ), i.e., the proportion
of random accesses in the workload mix ([0 − 1]); and write ratio
(wr ), i.e., the proportion of write operations in the workload mix
([0−1]). To avoid the influence of the operating system’s cache, each
access_time3 instance only performed direct I/O operations (i.e.,
setting the flags O_DIRECT and O_DSYNC in the open() syscall).

We produced one setW for each bs evaluated in this paper: 4, 8,
16, 32, 64, 128, 256, and 512 KiB. For example, we denoteW bs=512 as
the set of concurrent workloads performing I/O operations of 512
KiB. EachW bs=X contains 25 concurrent workloads. The first four
instances (w1 tow4) represent a progressive increase of read-only
operations:w1 corresponds to only one instance of access_time3
configured withwr = 0;w2 has two active access_time3 instances
withwr = 0, and so on.

The remainder instances ofW (w5 tow25) represent a progressive
increase of write operations. For these concurrent workloads, we
progressively set the parameterwr of each instance of access_time3
to 0.1 (fromw5 tow8), then to 0.2 (fromw9 tow12), and so on for
wr = 0.3, 0.5, 0.7, and 1.0, following the same round-robing pattern.
Once SSDs are less sensitive to random accesses than HDDs, this
paper considers rr = 0.5 in all the evaluated experiments. The
analysis of other rr values is left for future work.

3 EVALUATION
Using the pressure scale methodology described in the previous
section, we analyze the performance interference experienced by
RocksDB with different benchmarks and workloads when compet-
ing for persistent storage resources. The performance evaluation
presented in this paper focuses on a single-node key-value stor-
age engine accessing a representative high-performance SSD. The

evaluation of multiple nodes and different SSD models are left for
future work. The experimental setup is described in Section 3.1.
Section 3.2 brings the results using one specific block size (i.e.,
W bs=512), whereas the comparison between different block sizes is
discussed in Section 3.3.

3.1 Experimental Setup
The experiments were conducted on a single machine with a 6-
core, 12-thread AMD Ryzen 3600 CPU, 32 GB of memory, a 500 GB
Samsung 970 EVO SSD NVMe, and a 500 GB 7500 RPM SATA disk.
The operating system used was a GNU/Linux Ubuntu 20.04 with
kernel 5.4. The NVMe device was formatted as an ext4 file system
and mounted with the discard parameter activated.

From the YCSB benchmark, we used the workloads A (50% get,
50% put) and B (95% get, 5% put). The number of records used in
this benchmark was 50 million (≈ 50 GiB), with 20 bytes for each
key and 1 KiB for data. From db_bench, we used the workload
readwhilewriting, which consists of one thread to perform puts and
nine threads to perform gets. In this case, we used a database with
500 million records (≈ 54 GiB), containing 20 bytes for key and 400
bytes for data.

3.2 Performance Interference withW bs=512

This subsection presents the performance impact of our pressure
scale usingW bs=512. For each benchmark and workload mentioned
before, we use an experimentwindow of 60minutes after 30minutes
of warm-up. After this warm-up period, all the analyzed bench-
marks are in steady-state, which was experimentally verified by
running the same benchmarks without concurrent workloads for
180 minutes. This steady-state analysis was omitted due to space
constraints [17, plot/exp_db.ipynb].

To define w0, the first 10 minutes of each experiment were re-
served for running the RocksDB’s workload without concurrency.
After the first 10 minutes, we started theW instances to produce
an approximated progressive increase of demand for the storage re-
sources. Each instance ofW ran along two minutes, i.e.,w1 initiated
at minute 10,w2 at minute 12,w3 at minute 14, and so on.

Figures 1a, 1b, and 1c show the throughput telemetry of RocksDB
measured in transactions per second (tx/s) obtained, respectively,
from YCSB, workloads A and B, and db_bench when competing
for the same persistent performance device withW bs=512. We also
plot in these graphs the mean value of each 2 minutes interval.
Additionally, the labels at the top of each figure indicate when each
wi ∈W

bs=512 starts.
The Figs. 1d, 1e, and 1f correspond to the same experiments

presented by the Figs. 1a, 1b, and 1c. These graphs show the aver-
age throughput of RocksDB for each wi ∈ W bs=512 (left axis) in
addition to the corresponding pressures normalized by thew0 of
each experiment (right axis). At the bottom of each figure, we also
plot the same normalized pressure of eachwi sorted by ⪯W (Def. 2).
Once normalized pressure corresponds to the performance degra-
dation relative tow0, the following discussion uses these values in
terms of percentage, i.e., normalized pressure ×100.

We observe from Fig. 1 distinct performance trends for each
benchmark. The read-only concurrent workloads (w1 to w4) ex-
erted a marginal effect on db_bench (Fig. 1f), being significantly
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Figure 1: The performance interference on the RocksDB’s benchmark and workloads (W bs=512KiB).

more aggressive on YCSB workload A and B with a performance
reduction of 30% and 50% inw1, respectively (Figs. 1d and 1e). As
the concurrent write requests gradually increased fromw5 tow25,
the RocksDB’s performance further degraded in all benchmarks,
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(b) YCSB workload B

bs=32

bs=4

bs=512

bs=128

bs=256

bs=64

bs=8

bs=16

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
normalized pressure: ( (w0) (wi))/ (w0)

w
0

w
1

w
2

w
3

w
4

w
5

w
6

w
7

w
8

w
9

w
1

0
w

1
1

w
1

2
w

1
3

w
1

4
w

1
5

w
1

6
w

1
7

w
1

8
w

1
9

w
2

0
w

2
1

w
2

2
w

2
3

w
2

4
w

2
5

w
0

w
1

w
2

w
3

w
4

w
5

w
6

w
7

w
8

w
9

w
1

0
w

1
1

w
1

2
w

1
3

w
1

4
w

1
5

w
1

6
w

1
7

w
1

8
w

1
9

w
2

0
w

2
1

w
2

2
w

2
3

w
2

4
w

2
5

w
0

w
1

w
2

w
3

w
4

w
5

w
6

w
7

w
8

w
9

w
1

0
w

1
1

w
1

2
w

1
3

w
1

4
w

1
5

w
1

6
w

1
7

w
1

8
w

1
9

w
2

0
w

2
1

w
2

2
w

2
3

w
2

4
w

2
5

w
0

w
1

w
2

w
3

w
4

w
5

w
6

w
7

w
8

w
9

w
1

0
w

1
1

w
1

2
w

1
3

w
1

4
w

1
5

w
1

6
w

1
7

w
1

8
w

1
9

w
2

0
w

2
1

w
2

2
w

2
3

w
2

4
w

2
5

w
0

w
1

w
2

w
3

w
4

w
5

w
6

w
7

w
8

w
9

w
1

0
w

1
1

w
1

2
w

1
3

w
1

4
w

1
5

w
1

6
w

1
7

w
1

8
w

1
9

w
2

0
w

2
1

w
2

2
w

2
3

w
2

4
w

2
5

w
0

w
1

w
2

w
3

w
4

w
5

w
6

w
7

w
8

w
9

w
1

0
w

1
1

w
1

2
w

1
3

w
1

4
w

1
5

w
1

6
w

1
7

w
1

8
w

1
9

w
2

0
w

2
1

w
2

2
w

2
3

w
2

4
w

2
5

w
0

w
1

w
2

w
3

w
4

w
5

w
6

w
7

w
8

w
9

w
1

0
w

1
1

w
1

2
w

1
3

w
1

4
w

1
5

w
1

6
w

1
7

w
1

8
w

1
9

w
2

0
w

2
1

w
2

2
w

2
3

w
2

4
w

2
5

w
0

w
1

w
2

w
3

w
4

w
5

w
6

w
7

w
8

w
9

w
1

0
w

1
1

w
1

2
w

1
3

w
1

4
w

1
5

w
1

6
w

1
7

w
1

8
w

1
9

w
2

0
w

2
1

w
2

2
w

2
3

w
2

4
w

2
5

(a) YCSB workload A

Figure 2: Pressure scale with different block sizes.

with a moderated reduction for db_bench (47%) and a more severe
degradation for YCSB workload B (84%) inw5. These results demon-
strate the high sensitivity of RocksDBwhen competing for the same
flash storage device with other workloads.

3.3 Block Size Effect on the Pressure Scale
This subsection analyzes the effects of our pressure scale with differ-
ent block sizes, i.e., bs = 4, 8, 16, 32, 64, 128, 256, and 512 KiB. Due to
space constraints, this paper only presents the normalized pressure
scale. All the remainder graphs produced from these experiments
are available in the project’s repository [17, plot/exp_db.ipynb].

Figures 2a, 2b, and 2c show the normalized pressure scale of all
evaluated block sizes in concurrency with YCSB workloads A and
B, and db_bench, respectively. From these graphs, we observe a
clear distinction between the read-only concurrent workloads (w1
tow4) and the workloads with write operations (w5 tow25), which
we discuss in the following.

Read-only concurrent workloads. For the three benchmarks
and workloads analyzed, the concurrent workloadsw1 tow4 pro-
duced little pressure in the experiments with small block sizes. In
most cases, the distance between w1 and w4 was also smaller if
compared to larger block sizes, with some eventual order inver-
sions, especially with respect tow1. Due to the small performance
difference produced by some concurrent workload instances, the
performance fluctuation presented by the key-value store is the
most probable cause of these order inversions [19].

The small pressure produced by the read-only concurrent work-
loads in the experiments with small block sizes reveals the intrinsic
parallelism of flash devices when handling small concurrent read
requests. These results suggest that RocksDB may be co-located
with these workload types without significantly degrading perfor-
mance. On the other hand, concurrent workloads with large read
requests must be avoided.

Write concurrent workloads.We observe from Fig. 2 that the
introduction of concurrent write operations produced more pres-
sure in the experiments with small and large block sizes. For YCSB
workloads A and B, the cases with the lowest pressures occurred
in the experiments with bs = 32, 64, and 128 KiB, whereas the
db_bench presented better results with bs = 128 and 256 KiB. Even

LTB 2021 Workshop ICPE ‘21 Companion, April 19–23, 2021, Virtual Event, France

91



in the best cases, however, the introduction of concurrent write
requests represented significant performance degradation for YCSB
workloads A (59%) and B (70%). For db_bench, the degradation
produced byw5 was inferior to 35% in the best cases (bs = 128 and
256), but rapidly dropped performance withw6 andw7.

Although concurrent read-only workloads with small block sizes
had little impact on RocksDB’s performance, the introduction of
small write requests in the concurrent workload mix may repre-
sent serious performance concerns. In these cases, the pressure
difference between the read-only (w1 to w4) and the read-write
concurrent workloads (w5 to w25) was significantly large in all
evaluated benchmarks. Furthermore, the pressure produced byw5
andw6 inW bs=4 was superior tow5 andw6 inW bs=512 for YCSB
workload A (Fig., 2a) and db_bench (Fig., 2c).

The above results suggest that RocksDBmay be better co-located
with read-only concurrent workloads that perform small (≤ 16KiB)
read requests. The presence of concurrent write requests may rep-
resent serious performance issues depending on the workload sub-
mitted to the key-value store. In this case, the better choice is to
consider concurrent write requests with larger block sizes, i.e., be-
tween 32 and 128 KiB, or 256 KiB in some cases. Smaller and larger
write requests must be avoided for co-located workloads.

The performance behavior produced by our pressure scale with
different block sizes demonstrates how our methodology can stress
the intrinsic characteristics of the evaluated storage device. Such
characteristics include out-of-place updates, the use of garbage
collector, as well as the internal organization of flash memory (i.e.,
pages, blocks, dies, and packages) and its respective communication
with the device controller (i.e., parallel channels and ways) [14].

4 RELATEDWORK
Diverse studies have investigated key-value stores’ performance
and its relation to persistent storage devices. Luo and Carey [19]
analyzed the performance stalls caused by merge-operations and
proposed a scheduler based on I/O bandwidth budgets. Yoon et al.
[23] considered different storage devices for hot and cold data to
balance workload performance and storage costs. Other works also
analyzed the performance variance of key-value stores in database
transactions [15, 16], query processing [1, 2, 6], and Google’s work-
loads [9]. Nevertheless, none of these studies consider performance
interference on the storage device, which is critical in the presence
of concurrent workloads.

Z. Cao et al. [5] recently performed an in-depth analysis of
RocksDB workloads at Facebook, disclosing that the key-value
pairs’ distribution and space localities play a significant role in
operational environments. Other works also evaluated the perfor-
mance and implementation of realistic workloads [4, 10–12, 18].
However, these studies did not consider key-value stores disputing
the persistent storage device with other tenants, critical in today’s
cloud computing environments.

Although there are several benchmarks designed to evaluate
key-value stores’ performance, including YCSB [8], LinkBench [3],
BigDataBench [22], and db_bench [13], the assessment of perfor-
mance interference caused by concurrent workloads is still missing
in these projects. Other benchmarks and frameworks are designed
to coordinate multi-tenant workloads, such as SPEC’s Cloud IaaS

[21] and CloudBench [20], but they do not evaluate the intrinsic
characteristics of flash-based storage devices.

5 CONCLUSION
This paper has analyzed the performance interference on a key-
value store deployed in a multi-tenant environment. Through a
systematic methodology named “pressure scale” that generates
proper concurrent workloads over time, we revealed the perfor-
mance impact that a key-value storage engine may suffer when
competing for persistent storage resources based on flash memory.

We conducted several experiments using the proposed concur-
rent workloads with two representative benchmarks, i.e., YCSB,
workloads A and B, and db_bench. The results reveal how differ-
ent access patterns may affect the key-value store’s performance,
especially with respect to the block size and the proportion of
write operations in the workload mix. For the read-only concurrent
workloads, the key-value store exhibited less performance degrada-
tion with small block sizes. The read/write concurrent workloads
presented significant performance degradation in most of the ex-
periments, especially in the cases with small and very large block
sizes. The significant performance degradation observed in most
of the experiments emphasizes the importance of measuring and
managing performance interference in multi-tenant environments.
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