
PIERES: A Playground for Network Interrupt Experiments on
Real-Time Embedded Systems in the IoT

Franz Bender
franz.bender@icloud.com

Technische Universität Berlin
Berlin, Germany

Jan Jonas Brune
jan.j.brune@campus.tu-berlin.de
Technische Universität Berlin

Berlin, Germany

Nick Lauritz Keutel
keutel@campus.tu-berlin.de
Technische Universität Berlin

Berlin, Germany

Ilja Behnke
i.behnke@tu-berlin.de

Technische Universität Berlin
Berlin, Germany

Lauritz Thamsen
lauritz.thamsen@tu-berlin.de
Technische Universität Berlin

Berlin, Germany

ABSTRACT
IoT devices have become an integral part of our lives and the in-
dustry. Many of these devices run real-time systems or are used as
part of them. As these devices receive network packets over IP net-
works, the network interface informs the CPU about their arrival
using interrupts that might preempt critical processes. Therefore,
the question arises whether network interrupts pose a threat to
the real-timeness of these devices. However, there are few tools to
investigate this issue.

We present a playground which enables researchers to conduct
experiments in the context of network interrupt simulation. The
playground comprises different network interface controller im-
plementations, load generators and timing utilities. It forms a flex-
ible and easy to use foundation for future network interrupt re-
search.We conduct two verification experiments and two real world
examples. The latter give insight into the impact of the interrupt
handling strategy parameters and the influence of different load
types on the execution time with respect to these parameters.

CCS CONCEPTS
•Computer systems organization→ Embedded hardware; •Com-
puting methodologies→ Simulation tools; •Hardware→ Test-
ing with distributed and parallel systems;

KEYWORDS
internet of things; real time; interrupts; load simulation; cyber phys-
ical systems; benchmarking
ACM Reference Format:
Franz Bender, Jan Jonas Brune, Nick Lauritz Keutel, Ilja Behnke, and Lau-
ritz Thamsen. 2021. PIERES: A Playground for Network Interrupt Exper-
iments on Real-Time Embedded Systems in the IoT. In Companion of the
2021 ACM/SPEC International Conference on Performance Engineering (ICPE

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
the author(s) must be honored. Abstracting with credit is permitted. To copy other-
wise, or republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
ICPE ’21 Companion, April 19–23, 2021, Virtual Event, France
© 2021 Copyright held by the owner/author(s). Publication rights licensed to the As-
sociation for Computing Machinery.
ACM ISBN 978-1-4503-8331-8/21/04. . . $15.00
https://doi.org/10.1145/3447545.3451189

’21 Companion), April 19–23, 2021, Virtual Event, France. ACM, New York,
NY, USA, 4 pages. https://doi.org/10.1145/3447545.3451189

1 INTRODUCTION
Many processes in industrial settings have real-time constraints.
Engineers need guarantees for these processes, e.g. that an action
A takes at most N seconds. Real-time operating systems (RTOSs)
have proven to be a suitable platform for implementing software
by providing such guarantees. RTOSs offer, in contrast to regular
operating systems, special interfaces for precise timing and sched-
uling of time critical tasks [9]. These RTOSs have therefore found
application in the field of embedded systems such as sensor sys-
tems, industrial control systems and many other specialized de-
vices. For researchers and engineers using RTOSs it is essential
that the real-timeness of their device is maintained.

With the rise of the Internet of Things (IoT) many of these de-
vices get connected to the internet. This trend has been described
as a new era [10]. It enables features such as remote monitoring,
remote debugging and a more intelligent management of devices
by combining data from multiple devices for decisions. You could
take smart navigation systems as proposed in [3] as an example
for the latter.

Modern network interface controllers (NIC) such as the Intel©82574
GbEController Family use interrupts to inform the CPU about new
packets. This implies that other network devices have the ability
to invoke interrupts at the target. As interrupts are handled by in-
terrupt service routines (ISRs), which have a very high execution
priority, these interrupts may interfere with user code. As the rate
of network interrupts increases, more time is spent in the ISR in-
stead of the user code [1].

This behavior is sound as ISRs reside in a higher priority space
to minimize the I/O delay of the embedded system. However, while
being a valid phenomenon, this behavior may not be intended by
the engineer of the device, as network packets might not be as
important as the critical user code. Note that the high number of
interrupts may be caused by a malicious attacker or by other non-
malicious conditions such as a bad network configuration or other
similar conditions. All in all it means that adding network capabil-
ities to real-time systems adds a per-packet workload which may
drown critical tasks and break time guarantees.

In this paperwe present a playgroundwhich enables researchers
and engineers to tackle these issues. The playground

LTB 2021 Workshop ICPE ‘21 Companion, April 19–23, 2021, Virtual Event, France

81

https://doi.org/10.1145/3447545.3451189
https://doi.org/10.1145/3447545.3451189


• can simulate network interrupts on amicrocontroller to help
analyze the impact of network traffic on applications run-
ning on IoT devices.

• offers simulation of continuous and Poisson-distributed1 net-
work interrupts, as well as replays of captures of actual net-
work traffic

The remainder of this paper is structured as follows. Section
II gives an overview of the related workSection III details the ap-
proach we took to design the playground. Section IV details the
experiments we conducted using our playground. Finally, Section
V summarizes our work.

2 RELATED WORK
Available literature focusses mostly on mitigation strategies.

As a general example, interrupt moderation or coalescing [8] is
used by the authors of [2] to reduce energy consumption in a sys-
tem for high speed networks. Multiple interrupts are grouped to
invoke a single interrupt at a later time.

Other approaches rely on the optimization of the interrupts them-
selves. The authors of [6] use that the interrupt mechanism can be
split up into preprocessing, the ISR and postprocessing. They ex-
ploit that the preprocessing and the postprocessing are indepen-
dent of the interrupt itself and “reuse” these phases for multiple
interrupts and only calling the ISR for every interrupt.

While these authorsworked onmitigation strategies, others con-
ducted research on the interrupts themselves. This resulted in dif-
ferentmodels for network interrupts that differ in their approaches:
The authors of [4] present a complex model for the firing and exe-
cution of interrupts. They use an extension of stochastic Petri nets
to model the system as this allows them to combine the proba-
bilistic aspects caused by the randomness of the interrupts with
the stateful aspects of prioritized interrupt handling.

A more basic model was presented in [7]. There, a double inter-
rupted poisson process is employed for their calculations. This is
a poisson process that can be can be in either a high or a low state
which determines the poisson parameters for the load. They con-
clude by giving formulas for blocking probabilities, i.e. the proba-
bility that a link is blocked and packets are dropped.

To the best of our knowledge, there is no work that focusses on
providing a testing capability for the impact of network interrupts
on real-time systems.

3 APPROACH
This section describes the goal of the playground, how to enable
different NIC implementations and the choice of network traffic
scenarios as test loads, which are detailed in the following.

3.1 Goal of the Playground
The goal of this playground is to enable researchers to conduct
experiments and to enable engineers to test their code regarding
network interrupt simulation. This shall be done on an actual de-
vice used for IoT applications. Therefore, the playground has to
fulfill the following requirements: It has to

• run on real IoT hardware.

1A Poisson distribution is commonly used to model traffic in the literature, e.g. [7]

setup microcontroller

insert user code

configure load parse recorded PCAP

configure NIC

flash to µC & execute

copy result for analysis

Figure 1: General procedure of a user operating the play-
ground.

• be capable of simulating multiple NIC implementations.
• be able to simulate multiple network traffic scenarios.
• be easily configurable.
• have minimal performance impact on the tested process.

3.2 Operation of the Playground
The operation of the playground is shown in Fig. 1. The play-
ground is setup on the microcontroller. The user then inserts the
code of the critical process under test and either chooses a configu-
ration for a Uniform, a Random Load, or parses a recorded network
trace. Afterwards, the user configures the NIC and flashes the play-
ground onto the device. Measuredmetrics can be configured by the
user and range from execution time and number of interrupts to
more complex metrics such as the ratio between interrupt sources
(see Sec.4).

3.3 NIC Implementations
The playground has tomodel different NICs, that can be configured
by the user. The simplest NIC would inform the CPU at the arrival
of every packet by triggering an interrupt for each. Alternatively,
some modern NICs offer interrupt moderation. To incorporate this
into the playground, we offer the choice between a simple NIC
model without any interrupt moderation and several smarter NIC
implementations.

For the simple NIC, the duration d(l) of an interrupt is depen-
dent on the packet length l and plainly modeled as a length depen-
dent delay dl which is evoked l times plus constant length inde-
pendent delay dc which is an overhead evoked for every interrupt:

d(l) = dl · l + dc
Different simple NIC implementations can be characterized by

the user through setting the values for the length dependent delay
dl and the length independent delay dc .

For smarter, more elaborate NIC simulationswith interruptmod-
eration, we support NICs to be defined with a counter mode, a
timer mode or a combination out of the box. Here, the parts of the
interrupt duration model, packet length and corresponding depen-
dent and independent delay, are modeled twice each, once for the
simulated ISR and once for a simulated receiver task.

LTB 2021 Workshop ICPE ‘21 Companion, April 19–23, 2021, Virtual Event, France

82



A NIC with the counter mode does not trigger an interrupt for
every received packet, but counts the arriving packets, stores them
in a buffer and – after a specified number of packets – evokes one
interrupt for them all. Afterwards, the counter and buffer are re-
set. Another option is a NIC with the timer mode. In this case, for
an arriving packet a delay timer of specified duration is set. Upon
expiration, one interrupt will be triggered. If further packets ar-
rive before the timer has run out, the timer will be reset without
evoking an interrupt. However, problems may arise if the timer is
constantly being reset by arriving packets, never allowing an inter-
rupt to be triggered. The combination of both modes circumvents
this problem.

3.4 Network Traffic Scenarios as Load
The arrival of packets with corresponding time stamps over some
observed time constitutes a load scenario. As we want to simulate
different scenarios, the playground offers uniform loads, random
loads and user defined/recorded loads.

Uniform loads have a constant receive frequency. For the ran-
domized loads, a Poisson distribution is used to model the arrival
of new packets.

The Poisson distribution is achieved by inverse transform sam-
pling with a uniform distribution. Assuming the number of incom-
ing packets per intervalpi are Poisson distributed, the inter-arrival
time di is exponentially distributed:

pi ∼ Poisson(λ), di = pi+1 − pi

⇒ di ∼ Exp(λ)

d̂i = F−1(ui ) = − 1
λ
ln(1 − ui )=̂ −

1
λ
ln(ui ).

By inverse transform sampling (as described in [5] Section 23.2)
we determine the empirical delays between packets d̂i by sampling
ui ∼ U (0, 1) and calculating d̂i . By setting the parameter λ, differ-
ent randomized Poisson distributed loads can be specified.

As a third option, the playground allows for recorded network
scenarios to be replayed.

4 EXPERIMENTS
Two validation and two demonstration experimentswere performed
for which a large summation (in a loop) with a conditional state-
ment at each step of the iteration was used as the user code.

4.1 Prototype Implementation
The playground is implemented on the ESP32 2, a dual core CPU,
and written in C and C++, matching the system of the microcon-
troller. The parsing script for the recorded network scenarios (PCAPs)
is written in Python and generates C++ code. The last playground
requirement is fulfilled by using both cores to separate the compu-
tational load of the playground code from the tested user code.

2ESP32 Series Datasheet Version 3.4, https://www.espressif.com/sites/default/files/
documentation/esp32_datasheet_en.pdf, accessed 2021-01-07

Figure 2: Execution time and number of interrupts decrease
inversely with the increase of the times threshold when us-
ing the Smart NIC packet delay timer for interrupt modera-
tion.

Figure 3: Comparison of the execution time of three
Poisson-distributed random network load scenarios for dif-
ferent λ in dependence of the counter threshold.

4.2 Validation
All validation testing was performed using a Poisson-distributed
random load. The following results merely show a selection of all
the experiments that have been carried out with the playground.

First, the impact of the packet delay timer on the execution
time and the number of interrupts was measured, as seen in Fig.
2. This test was performed using the combined interrupt modera-
tion mode. Both, the execution time and the number of interrupts
decrease with an increasing packet delay timer. As the number of
packets is constant, the execution time is reduced by using inter-
rupt moderation. This gain from increasing the packet delay timer
comes with the caveat of a higher packet latency.

In the second validation experiment three different parameters
λ for the Poisson-distributed random load generation were com-
pared, as seen in Fig. 3. This test was performed using the counter
mode. A larger parameter value corresponds to a higher load. In
the graph, the counter threshold is plotted against the execution
time. λ1 is half as big as λ2 and λ3 is twice as big as λ2. As shown
in the legend, it can be observed that the difference between the
execution times of λ3 and λ2 is twice as big as the one between

LTB 2021 Workshop ICPE ‘21 Companion, April 19–23, 2021, Virtual Event, France

83

https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf


Figure 4: Ratio of the reasons for triggering interrupts,
shown in relation to counter threshold, timer delay and ex-
ecution time when using the smart NIC with mixed mode.

Figure 5: Execution time of the test code in two replayed
network scenarios from prerecorded PCAPs is shown for di-
verse delay timer thresholds.

λ2 and λ1. This ratio stays roughly the same along the x-axis. This
shows that the counter mode scales linearly with load.

4.3 Practical Examples
In the first practical example the reasons for interrupts using the
combined interruptmoderationmode of the smart NICmodel were
investigated, as seen in Fig. 4. A Poisson-distributed random load
was used for this test. The coloring of the data points indicates the
reason why an interrupt was triggered. An area in the plane of the
data points where the coloring indicates an equilibrium between
the two reasons can be observed. The area extends in both counter
threshold and timer delay directions but drifts towards the direc-
tion of the counter threshold axis, indicating that with increasing
counter threshold, it plays less of a role in causing interrupts than
the timer delay does.

In the second practical examplewe take a look at recorded loads.
We compare the execution time of the user code when using a
mixed mode NIC with a Spotify network load to a Zoom confer-
ence load that have been prerecorded. The load is a lot less intense
compared to the previous experiments. We use these two loads be-
cause they have two different packet arrival patterns: the Spotify

load is a bursty load, while the Zoom load is a rather continuous
load. Note that we use a longer running user code (more iterations)
here to allow for a longer measurement.

Fig. 5 is a combination of two diagrams: the lines show the exe-
cution time for different delay timer thresholdswhile the filled area
is a histogram which shows in what intervals packets arrive in the
two load scenarios. We see that the execution time in the Spotify
scenario benefits more from the relaxing of the timer timeout de-
lay while in the Zoom scenario the behavior matches the behavior
of a Poisson load more closely.

When comparing the results from both scenarios it becomes
more obvious that the expected load progression can be used to
find suitable interrupt moderation parameters. 3

5 CONCLUSION AND FUTUREWORK
We presented a playground which enables researchers to conduct
experiments in the context of network interrupt simulation in real-
time scenarios. It offers multiple load generators including random
and custom prerecorded settings as well as logging capabilities.
The playground was validated through a series of tests. We also
presented two practical use cases, highlighting the ability of the
playground to simulate desired network characteristics and ana-
lyze the results.

Further steps include a broader range of more complex NIC
models and random load sources. Additionally, a repository of PCAP
files could be created by playground users.

REFERENCES
[1] Ilja Behnke, Lukas Pirl, Lauritz Thamsen, Robert Danicki, Andreas Polze, and

Odej Kao. 2020. Interrupting Real-Time IoT Tasks: How Bad Can It Be to Con-
nect Your Critical Embedded System to the Internet?. In IPCCC 2020: 39th Inter-
national Performance Computing and Communications Conference. IEEE, 1–6.

[2] Jaeil Han and Young Man Kim. 2016-10. Interval-Based Adaptive Interrupt Co-
alescing in High-Speed Networks. In 2016 International Conference on Informa-
tion and Communication Technology Convergence (ICTC). IEEE, 68–70. https:
//doi.org/10.1109/ICTC.2016.7763437

[3] Marcus Handte, Stefan Foell, Stephan Wagner, Gerd Kortuem, and Pedro Jose
Marron. 2016-10. An Internet-of-Things Enabled Connected Navigation System
for Urban Bus Riders. 3, 5 (2016-10), 735–744. https://doi.org/10.1109/JIOT.2016.
2554146

[4] Gang Hou,Weiqiang Kong, Kuanjiu Zhou, JieWang, Xun Cao, and Akira Fukud.
2018-07. Analysis of Interrupt Behavior Based on Probabilistic Model Checking.
In 2018 7th International Congress on Advanced Applied Informatics (IIAI-AAI).
IEEE, 86–91. https://doi.org/10.1109/IIAI-AAI.2018.00026

[5] Kevin Patrick Murphy. 2012. Machine Learning: A Probabilistic Perspective. MIT
Press.

[6] K. Nakashima, S. Kusakabe, H. Taniguchi, and M. Amamiya. 2002. Design and
Implementation of Interrupt Packaging Mechanism. In International Workshop
on Innovative Architecture for Future Generation High-Performance Processors and
Systems. IEEE Comput. Soc, 95–102. https://doi.org/10.1109/IWIA.2002.1035023

[7] M. Rajaratnam and F. Takawira. 1996. Network Modelling in Circuit-Switched
Networks Using the Double Interrupted Poisson ProcessModel. In Proceedings of
8th Mediterranean Electrotechnical Conference on Industrial Applications in Power
Systems, Computer Science and Telecommunications (MELECON 96), Vol. 2. IEEE,
971–975. https://doi.org/10.1109/MELCON.1996.551371

[8] Khaled Salah. 2007-04. To Coalesce or Not to Coalesce. 61, 4 (2007-04), 215–225.
https://doi.org/10.1016/j.aeue.2006.04.007

[9] John A. Stankovic. 1994. Real-Time Operating Systems. In Real Time Computing,
Wolfgang A. Halang and Alexander D. Stoyenko (Eds.). Springer Berlin Heidel-
berg, Berlin, Heidelberg, 65–82.

[10] MartinWollschlaeger, Thilo Sauter, and Juergen Jasperneite. 2017-03. The Future
of Industrial Communication: Automation Networks in the Era of the Internet
of Things and Industry 4.0. 11, 1 (2017-03), 17–27. https://doi.org/10.1109/MIE.
2017.2649104

3 code and details on https://github.com/dos-group/pieres_playground

LTB 2021 Workshop ICPE ‘21 Companion, April 19–23, 2021, Virtual Event, France

84

https://doi.org/10.1109/ICTC.2016.7763437
https://doi.org/10.1109/JIOT.2016.2554146
https://doi.org/10.1109/IIAI-AAI.2018.00026
https://doi.org/10.1109/IWIA.2002.1035023
https://doi.org/10.1109/MELCON.1996.551371
https://doi.org/10.1016/j.aeue.2006.04.007
https://doi.org/10.1109/MIE.2017.2649104
https://github.com/dos-group/pieres_playground



